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Abstract— This paper presents methods for addressing two
sources of variability in the context of microprocessors -
within-die process variability and dynamic thermal vari-
ability - and shows the improvements in performance and
energy efficiency obtained by applying them to a globally
asynchronous, locally synchronous (GALS) microprocessor
design. The GALS design style partitions the core into several
independently-clocked domains, which provides a natural
granularity for variability to be addressed at. Process vari-
ability is addressed by observing that each domain has fewer
critical paths than the processor as a whole, shifting their
maximum frequency distributions towards higher speeds.
Meanwhile, the detrimental effects of thermal variability
are reduced by isolating the effects of thermal hotspots on
delay to the domains they occur in. We simulate a subset of
the SPEC2000 benchmarks, comparing the baseline GALS
architecture against a version that accounts for the reduction
in the number of critical paths per domain, a version
that scales the clock speed of each domain based on the
slack between its temperature and the maximum operating
temperature of the core, and a final version that does both.
These schemes achieve improvements of 2.0%, 9.5%, and
11.4% in execution time and 4.4%, 16.0%, and 20.0% in
energy-delay2, respectively.

I. INTRODUCTION

Variability is becoming a key concern for microarchi-
tects as technology scaling continues and more and more
increasingly ill-defined transistors are placed on a sin-
gle die. Both process and thermal variations result in a
nonuniformity of transistor delays across a single die. As
both the amount of variation and the number of critical
paths increase, the clock speed must be set lower and
lower to reduce the probability of a timing violation to an
acceptably small level. However, the worst-case delay is
very rarely exercised and as a result the overdesign that is
necessary to deal with variability sacrifices large amounts
of performance in the common case. Bowman et al. found
that designs for the 50 nm technology node will lose an
entire generation’s worth of performance due to systematic
within-die process variability alone [1].

A variability-aware architecture is able to recover some
of this performance loss. We address two sources of
variability. First, we attempt to reduce the magnification
of the effects of process variability as a result of the
existence of multiple critical paths in a microprocessor.

Since every critical path in a synchronously-timed block
must meet some delay constraint for the block as a whole
to meet that constraint, the probability of meeting a given
timing constraint tmax decreases with both the magnitude
of variability and the number of critical paths. We leave
this first factor alone and instead attack the second.

Second, we address dynamic thermal variability that man-
ifests itself as hotspots across the surface of the micro-
processor die. At typical operating temperatures transistor
delay increases with temperature as a result of the effect
of temperature on carrier mobility. Once again, an entirely
synchronously timed block must be clocked such that the
delay through its hottest part meets the timing constraint,
even though cooler parts of the die could safely be run
faster.

We choose the globally asynchronous, locally synchronous
(GALS) [2], [3], [4] architecture as the design driver to
which we apply our techniques. In a GALS micropro-
cessor, the core is split into several domains which are
clocked independently. Communication between the clock
domains is accomplished through the use of synchroniza-
tion circuitry. GALS design has been proposed as a method
to reduce the amount of power dissipated by the clock
network, as several smaller clock networks can be made to
use less power than a single large one. GALS also reduces
clock skew, since each local clock network can use shorter
wires than a single global one.

Both of our techniques have the same basic approach:
isolate the detrimental effects of some variation to the clock
domain it occurs in, rather than allowing it to affect the
entire processor. Addressing process variability, we observe
that each domain in the GALS processor has fewer critical
paths than the processor as a whole, which shifts the mean
of the maximum frequency distribution for each domain
towards higher speeds. Thus the domains in the GALS
version can be clocked faster than the synchronous baseline
to some degree. Looking at thermal variability, we see that
in the synchronous case the entire core must be slowed
down to accommodate the temperature-induced increase
in delay through the hottest block. For the GALS case,
the same is only true at the domain granularity. Thus the
effects of a hotspot are isolated to the domain it is in and



do not require a global reduction in clock frequency.

The paper is organized as follows. Section II details our
methods for addressing process variability while Section III
does the same for thermal variability. Section IV presents
our experimental methodology and Section V our results.
Section VI concludes.

II. ADDRESSING PROCESS VARIABILITY

A. Approach

The impact of parameter variations has been extensively
studied at the circuit and device levels. However, with
the increasing impact of variability on design yield it
has become essential to consider higher-level models for
parameter variation. Bowman et al. introduced the generic
critical path model with the aim of quantifying the impact
of die-to-die and within-die variations on overall timing
yield [1]. They showed that the impact of variability on
combinational circuits can be captured using two param-
eters: the logic depth of the circuit ncp and the number
of independent critical paths in the circuit Ncp. They
observed that WID variations tend to determine the mean
of the worst-case delay distribution of a circuit, while
D2D variability determines its variance. Their model was
validated against microprocessors from two different tech-
nology nodes (250 nm and 130 nm) and achieved an error
of under 3%.

We assume a balanced microprocessor design with equal
ncp across stages, so we focus on Ncp for the rest
of this work. According to the generic critical path
model, if FWID−Tcp,nom

(tmax) is the cumulative dis-
tribution function of a single path delay due to WID
variations with corresponding probability density function
fWID−Tcp,nom

(tmax), the PDF of the worst-case delay for
a circuit with Ncp independent critical paths will be given
by:

fWID(tmax) = NcpfWID−Tcp,nom
(tmax) (1)

×(FWID−Tcp,nom
(tmax))Ncp−1

In Figure 1 we plot the worst-case delay distributions for
Ncp = (1, 2, 10). As Ncp increases the standard deviation
of the worst-case delay distribution decreases while its
mean increases. We observe that each of the five clock
domains in the GALS partitioning has fewer critical paths
than the microprocessor as a whole. As a result, the mean
of the FMAX distribution for each clock domain occurs at
a higher frequency than the mean of the baseline FMAX
distribution.

Unfortunately, determining the number of independent
critical paths in a given circuit is not trivial. Correlations
between critical path delays occur due to inherent spatial

correlations in parameter variations and, more fundamen-
tally, due to the overlap of critical paths that pass through
one or more of the same gates. Instead of deriving a new
analytical framework to deal with correlated critical paths,
we redefine Ncp to be the effective number of independent
critical paths that, when plugged into Equation 1, will yield
a worst-case delay distribution that matches the statistics
of the actual worst-case delay distribution of the circuit.
We developed a new methodology to estimate the effective
number of independent critical paths for the two kinds of
circuits that occur most frequently in processor microar-
chitectures - combinational logic and array structures. This
work improves on the assumptions about the distribution of
independent critical paths that have been made in previous
studies. For example, Marculescu and Talpes assumed 100
total independent critical paths in a microprocessor and
distributed them among blocks proportionally to device
count [5], while Humaney et al. assumed that logic stages
have only a single critical path [6]. We currently use a
variability model that accounts for random variation in the
gate length, Leff , modeling it as a normal random variable
with mean µL and standard deviation σL.

B. Combinational Logic Variability Modeling

Determining the effective number of critical paths for
combinational logic is fairly straightforward. Following the
generic critical path model [1], we use the SIS environment
[7] to map uncommitted logic to a technology library of
two-input NAND gates with a maximum fan-out of three.
Gate delays are assumed to be independent normal random
variables with mean equal to the nominal delay of the gate
dnom and standard deviation σL

µL
dnom. We use Monte Carlo

sampling to obtain the worst-case delay distribution for a
given circuit. Moment matching is then used to determine
the value of Ncp that, when plugged into Equation 1,
will yield a distribution similar to the one obtained via
Monte Carlo sampling. Since Equation 1 has only one

Fig. 1. Delay distributions for Ncp = (1, 2, 10). The x-axis is
normalized with respect to the nominal path delay of the circuit.



Circuit Critical Paths % Error in standard deviation
C432 4 35%
C499 11 22%
C880 4 33%
C2670 5 28%
C6288 1.2 7%

TABLE I
ESTIMATED EFFECTIVE NUMBER OF CRITICAL PATHS AND ERROR FOR

ISCAS’85 BENCHMARK CIRCUITS.

unknown, we chose to match the first moments (means) of
the two distributions. We evaluated our methodology over
a range of circuits in the ISCAS’85 benchmark suite and
observed that the obtained effective critical path numbers
yield distributions that are reasonably close to the actual
worst-case delay distributions, as seen in Table I. Note that
the difference in the means of the two distributions will
always be zero since we explicitly match them. Although
the error in standard deviation can be as high as 35%,
we expect the error to be much lower when considering
the combined effect of D2D and WID variations. This
is because, as mentioned before, the mean of the overall
worst-case delay distribution is primarily determined by
the mean of the WID distribution, which we match exactly,
while the overall standard deviation is primarily determined
by the standard deviation of the D2D distribution. These
results can be used to directly assign critical path numbers
to the functional units - the critical path numbers for ALUs
and multipliers are taken from the C2670 and the C6288
circuits, respectively. We note that pipelining typically
causes the number of critical paths in a circuit to be
multiplied by the number of pipeline stages, as each critical
path in the original implementation will now be critical in
each of the pipeline stages as well. We therefore multiply
the functional unit critical path numbers by their respective
pipeline depths to estimate the impact of pipelining.

C. Array Structure Variability Modeling

Array structures are incompatible with the generic critical
path model since they cannot be represented as com-
binational circuits composed of two-input NAND gates
with a maximum fan-out of three. Since they constitute
a large percentage of die area, it is essential to model the
effect of WID variability on their access times accurately.
One solution would be to simulate the impact of WID
variability in a SPICE-level model of an SRAM array,
but this would be prohibitively time-consuming. Instead
we chose to enhance an existing high-level cache access
time simulator, CACTI [8]. CACTI has been shown to
accurately estimate access times to within 6% of HSPICE
values while significantly reducing runtime.

To model the access time of an array, CACTI replaces
the transistors and wires in a cache with an equivalent
RC network. Figure 2 shows an inverter driving a load
capacitance CL and the equivalent RC model. Assuming

Fig. 2. An inverter with a rising output modeled as an RC network.
Rnom corresponds to the equivalent nominal on-resistance of the PMOS
transistor.

that we are interested in the delay of a rising edge at
the output of the inverter, the resistance Rnom is the full
on-resistance of the PMOS pull-up transistor. Since the
on-resistance of a transistor is directly proportional to its
effective gate length Leff , which is modeled as a normal
distribution N(µL, σL), we can represent R as a normal
distribution N(Rnom, σL

µL
Rnom). To determine the inverter

delay, CACTI uses the first-order time constant of the
network tf , which can be written as tf = R · CL, and
the Horowitz model [9]:

delay = tf ·

√
α +

β

tf
(2)

α and β are functions of the threshold voltage, supply
voltage, and the input rise time, which we assume to be
constant in our analysis. The delay is a weakly nonlinear
(and therefore strongly linear) function of tf , which in
turn is a linear function of R. Each stage delay in the
RC network can therefore be modeled as a normal random
variable.

This analysis holds true for all stages in an array struc-
ture except the comparator and bitline stages, for which
CACTI uses a second-order RC model. However, under
the assumption that the input rise time is fast, we can
approximate these stage delays as normal random variables
as well.

Until now we have only considered variability in the on-
resistance of the transistors due to gate length variations.
Since the wire-delay contribution to overall delay is in-
creasing as technology scales, we also model random
variations in the wire dimensions. CACTI lumps the entire
resistance and capacitance of a wire of length L into
a single resistance L ∗ Rwire and a single capacitance
L∗Cwire, where Rwire and Cwire represent the resistance
and capacitance of a wire of unit length. Variations in the
wire dimensions translate into variations in the wire resis-
tance and capacitance. We assume that Rwire and Cwire

are independent normal random variables with standard
deviation σwire. This assumption is not unreasonable, since
the only physical parameter that affects both Rwire and
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Fig. 3. Estimated versus actual worst-case delay distribution for a 1 KB
direct-mapped cache with 32 B blocks. The x-axis is normalized to the
nominal delay of the cache.

Array Size Wordlines Bitlines Critical Paths
256 B 32 64 47
512 B 64 64 115
1024 B 128 64 225
2048 B 256 64 345

TABLE II
EFFECTIVE NUMBER OF CRITICAL PATHS FOR ARRAY STRUCTURES

Cwire is wire width, which typically has the least impact
on wire delay variability [10]. Furthermore, we model
variability across the length of a single wire and between
wires. We assume that a wire of length L is composed
of N segments, each of which has its own Rwire and
Cwire. The standard deviation of the lumped resistance and
capacitance of a wire of length L is therefore σwire√

N
. The

length of each segment is assumed to be the feature size of
the technology in which the array structure is implemented,
since this is the minimum distance across which a change
in the physical parameters of a wire can be expected.

We implemented these variability models within CACTI
and obtained the delay distributions of each stage along
the critical path of an array access and the overall path
delay distribution for the array. Monte Carlo sampling
was used to obtain the worst-case delay distribution for
the array from the observed stage delay distributions and
the effective number of critical paths was then computed
through moment matching. This is highly accurate - in
most cases we observe that the estimated and actual worst-
case delay distributions are nearly indistinguishable, as
seen in Figure 3 for a 1 KB direct-mapped cache with a
32 B block size. In Table II we show some effective inde-
pendent critical path numbers obtained with our model. As
expected, larger caches have a greater number of effective
critical paths. Furthermore, we can see that due to their

regular structure caches typically have more critical paths
than the combinational circuits evaluated previously. Hu-
maney et al. reached a similar conclusion while comparing
datapaths with memory arrays [6]. However, their analysis
assumed that the number of critical paths in an array was
equal to the number of bitlines. We provide an enhanced
model that accounts for all sources of variability, including
the wordlines, bitlines, decoders, and output drivers.

D. Application to the GALS Processor

We applied these critical path estimation methods to a
microarchitecture similar in implementation to that in [5].
We assume a balanced microarchitecture with the same
logic depth ncp across stages. Table III details the effective
number of independent critical paths in each domain.
We then used these values of Ncp in Equation 1, which
yields the probability density functions and cumulative
distribution functions plotted in Figure 4.

We found the mean value of each distribution and then cal-
culated the resulting speedups for the five GALS domains
relative to the synchronous baseline as

speedupcp =
Tcp,nom + µ∆tmax,synchronous

Tcp,nom + µ∆tmax,domain

(3)

Results are shown in Table IV, assuming a path delay
standard deviation of 5% for our 130 nm process. This is
slightly higher than the 4.49% found for the 180 nm node
using an analytical method by Agarwal et al. [11]. The
fully sychronous baseline incurs an 18.5% higher mean
delay as a result of having 6188 critical paths rather than
only one. The GALS domains are only penalized by an
average of 14.3%. We present simulation results obtained
by applying these speedups in Section V.

Domain Number of critical paths
Fetch/Decode 3070
Rename/Retire/Read 384
Integer 61
Floating Point 44
Memory 2629
Total 6188

TABLE III
NUMBER OF CRITICAL PATHS IN EACH GALS DOMAIN

Domain Tcp,nom + µ∆tmax Speedup
Baseline 1.1845 1.000
Fetch 1.1754 1.0077
Rename/Retire/Register Read 1.1455 1.0340
Integer 1.1140 1.0633
Floating Point 1.1077 1.0694
Memory 1.1733 1.0095
Average over GALS domains 1.1432 1.0368

TABLE IV
SPEEDUPS OBTAINED WITH CRITICAL PATH INFORMATION
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III. ADDRESSING THERMAL VARIABILITY

At runtime there is dynamic variation in temperature across
the die surface, which results in a further nonuniformity of
transistor delays across the die. Some units, such as caches,
tend to be cool while others, such as register files and
ALUs, may run much hotter. Temperature affects delay in
several different ways. We model two of these in particular.
First, delay is inversely proportional to carrier mobility, µ:

d∝ 1
µ

(4)

We use the fitted model found in [12] to account for the
effects of temperature on carrier mobility:

µ =
a

T b
(5)

a and b are empirically determined constants. We use a =
1.06 × 109 and b = 2.49 [12]. However, the value of a
falls out of the equation we use for scaling frequency.

Temperature also affects delay indirectly through its effect
on threshold voltage. Delay, supply voltage, and threshold
voltage are related by the well-known alpha power law
[13]:

d∝ VDD

(VDD − VTH)α (6)

We use a value of 1.2 for α, the velocity saturation index,
as given in [14]. The threshold voltage itself is dependent
on temperature. We use the model from [15]:

VTH = VTH,0 − k(T − T0) (7)

k is the threshold voltage temperature coefficient. We
use k = 0.7 mV/K for our 130 nm process, as in [15].
Combining the effects of temperature on carrier mobility
and threshold voltage, we obtain

d∝T b

a

VDD

(VDD − VTH,0 + k(T − T0))
α (8)

Frequency is inversely proportional to delay, so we intro-
duce a proportionality constant C, lump the a term into it,

and write

f = C
1
T b

(VDD − VTH,0 + k(T − T0))
α

VDD
(9)

We simulate a processor similar to that in [16], so we
choose C such that our processor will run at 3.0 GHz
with VDD = 1.3 V and VTH = 0.212 V at a temperature of
100 ◦C. Essentially, the maximum operating temperature
for our processor as specified by the manufacturer would
be 100 ◦C. Normal operating temperatures will often be
below this ceiling and we exploit this thermal slack by
speeding up cooler domains.

IV. EXPERIMENTAL SETUP

A. Baseline Simulator

We used a modified version of the SimpleScalar simulator
[17] with the Wattch power estimation extensions [18] and
HotSpot thermal simulation package [16]. We reorganized
the microarchitecture to resemble an Alpha microproces-
sor, with the backend divided into integer, floating point,
and memory clusters, each with their own instruction
windows and issue logic, and separate instruction and data
TLBs. We used the HotSpot floorplan from [16], which
models an Alpha 21364-like core shrunken to 130 nm
technology while keeping die area constant (the resulting
excess area is used for additional L2 cache). The on-chip
multiprocessor interface logic is likewise replaced with
L2 cache. The processor parameters are summarized in
Table V. We enhanced Wattch by splitting structures such
as register files and map tables into integer and floating
point units, where previously the two had been lumped
together, allowing us to more accurately track the power
consumption of the different clock domains.

B. Static Power Model

We added a static power model based on that proposed
by Butts and Sohi [19] to complement Wattch’s dynamic
power model. We estimate the number of SRAM cells,



Parameter Value
Frequency 3.0 GHz with a ∼3 MHz step size
Technology 130 nm node with VDD = 1.3 V and VTH = 0.212 V
L1-I/D cache configuration 64 KB, 64 B blocks, 2-way set associative, 2-cycle hit time, LRU replacement
L2 cache configuration 4 MB, 128 B blocks, 8-way set associative, 12-cycle hit time, LRU replacement
TLB configuration (both TLBs) 128 entries, fully associative, 30-cycle miss latency, LRU replacement
Pipeline configuration 16 stages deep, 4 instructions wide
Window sizes 32 integer, 16 floating point, 16 memory
Load/Store queue size 64
Integer functional units 4 ALUs, 1 MUL/DIV
Floating point functional units 2 adders, 1 MUL/DIV
Memory access ports 2
Memory access time 120 ns for a random access, 4 ns for subsequent consecutive accesses
Branch predictor gshare, 12 bits of history, 4096-entry table

TABLE V
PROCESSOR PARAMETERS

Temperature

Carrier Mobility Threshold Voltage

Delay

Frequency

Dynamic Power Static Power

eqn. 7eqn. 5

eqn. 4 eqn. 6

eqn. 12

eqn. 12

Fig. 5. Dependencies modeled

CAM cells, D flip-flops, D latches, and random logic gates
in each block that is tracked by Wattch using the same
methodology as [5]. When power statistics are updated
every cycle, we use the same access counters used by
Wattch to determine if a block was unused and, if so,
compute the leakage power dissipated. We also model
the effect of temperature on leakage power. The leakage
current model of [19] accounts for the dependence of
leakage current on both temperature and threshold voltage:

IDsub = k · e
−q·VT H
a·kB ·T (10)

T is the absolute temperature, q and kB are physical
constants, and a and k are device parameters. We lump
together q, kB , and a into a single constant term c:

IDsub = k · e
c·VT H

T (11)

Since threshold voltage is directly dependent upon temper-
ature as well, as given by equation 7, leakage current ac-
tually depends on temperature both directly and indirectly.

BTB Instruction CacheFetch

Decode

Rename

Dispatch

Register Read Register Read Register Read

Rename Map

Register File

Integer Issue

Integer Execute

Write Back

Memory Issue

Memory Execute

Write Back

Data Cache

Retire

Floating Point Issue

Floating Point Execute

Write Back

Fetch/Decode

Rename/Retire/
Register Read

Rename/Retire/
Register Read

Integer Floating Point Memory

Fig. 6. Microarchitecture with GALS partitioning

Thus our final model for scaling leakage current based on
temperature is:

IDsub = k · e
c(VT H,0−k(T−T0))

T (12)

We extracted the values of the constants k and c from
Figure 5 in [19] and calculated a baseline per-device
leakage current of 13.14 nA at 100 ◦C. We call HotSpot
to update chip temperatures every 20,000 cycles. We then
compute a leakage scaling factor for each block (at the
same granularity used by Wattch) and use it to scale
the leakage power computed every cycle until the next
temperature update. Figure 5 shows all of the dependencies
that we take into account in our various simulations and
references the equations that govern them.

C. GALS Simulator

We also created a GALS simulator. It is split into five
clock domains: fetch/decode, rename/retire/register read,
integer, floating point, and memory. Figure 6 shows the
microarchitecture with clock domain boundaries superim-
posed. Each domain has a power model for its clock signal



that is based on the number of pipeline registers within
the domain. Inter-domain communication is accomplished
through the use of asynchronous FIFO queues [20], as
these offer improved throughput over many other synchro-
nization schemes under nominal FIFO operation. As long
as the FIFO is neither empty nor full, the cell to be used
for the next read differs from that to be used for the next
write, allowing the two operations to proceed in parallel.
As a result, an item can be enqueued every producer clock
cycle and an item can be dequeued every consumer clock
cycle as long as the FIFO does not become full or empty.

We created several versions of the GALS simulator. The
first is the baseline version (GALS-B), which splits the core
into multiple clock domains but runs each one at the same
speed as the synchronous baseline (SYNCH). The second
speeds up each domain as a result of the individual domains
having fewer critical paths than the microprocessor as a
whole. The speedups are taken from Table IV and this
version is called GALS-CP. In the interests of reducing
simulation time, we simulate only the mean speedups.
These represent the average benefit that a GALS processor
would display over an equivalent synchronous processor
over the fabrication of a large number of dies. The third
version, GALS-T, assigns each domain a baseline fre-
quency that is equal to the synchronous baseline’s but
then scales each domain’s frequency for its temperature
according to Equation 9 after every chip temperature
update (every 20,000 cycles). A final version, GALS-CP-
T, uses the speeds from GALS-CP as the baseline domain
speeds and then applies our thermally-aware frequency
scaling. Both GALS-T and GALS-CP-T perform dynamic
frequency scaling, for which we assume an aggressive Intel
Xscale-style DFS system as in [21] and [22], with a single
frequency step being approximately 3 MHz.

D. Benchmarks Simulated

The feedback effects from the dependencies in Figure 5 had
the effect of requiring multiple simulation runs for each
benchmark and configuration, feeding the output steady-
state temperatures of one run back in as the initial temper-
atures of the next in search of a consistent operating point.
We iterated until temperature, power, and performance
values converged and then recorded the results of three
additional runs as our reported statistics.

Benchmark Arguments
164.gzip input.source
175.vpr net.in arch.in place.in -nodisp -place only -init t 5

-exit t 0.005 -alpha t 0.9412 -inner num 2
197.parser 2.1.dict < ref.in
177.mesa -frames 1000 -meshfile mesa.in -ppmfile mesa.ppm
183.equake < inp.in
188.ammp < bptipg.amp

TABLE VI
BENCHMARKS USED

The large number of simulation runs required per bench-
mark prevented us from simulating the entire suite of
SPEC2000 benchmarks [23] due to time constraints.
We were limited to using six of the benchmarks: the
164.gzip, 175.vpr, and 197.parser integer benchmarks and
the 177.mesa, 183.equake, and 188.ammp floating point
benchmarks. Table VI shows the command-line parameters
used for each.

E. Simulation Variability

We addressed time variability by simulating three points
within each benchmark, starting at 500, 750, and 1000
million instructions and gathering statistics for 50 million
more. The one exception was 188.ammp, which finished
too early. Instead, the cycle-gathering phases were started
at 200, 300, and 400 million instructions. Because the
GALS microprocessor is globally asynchronous, space
variability is also an issue (for example, the exact order
in which domains tick could have a significant effect on
branch prediction performance as the arrival time of pre-
diction feedback will be altered). Our simulator randomly
assigns phases to the domain clocks, which introduces
slight perturbations into the ordering of events and so
averages out possible extreme cases over the three runs per
simulation point per benchmark. Both types of variability
were thus addressed using the approaches suggested by
[24].

V. RESULTS

A. Overview

The GALS configurations are compared on execution time,
average power, total energy, and energy-delay2 in Figure 8.
Note that the scale for the energy-delay2 graph differs from
that used on the first three due to the poor performance of
164.gzip on the GALS architecture. Tables VII and VIII
show the average speedups obtained for each benchmark
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(d) Total Energy
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(e) Energy-Delay2
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Fig. 8. Simulation results, all relative to synchronous baseline

under GALS-T and GALS-CP-T. These speedups are self-
consistent - that is, starting a run with these speedups
and the corresponding temperatures will yield the same
temperatures as steady-state temperatures in the result.
Figure 7 illustrates the convergence achieved with a sample
plot of average power versus iteration number for 175.vpr.
The other benchmarks displayed similar behavior.

B. GALS-B

Moving from a fully synchronous design to a GALS one
(GALS-B) incurs an average 11.8% penalty in execution
time, somewhat higher than observed in previous GALS
studies [3], [4]. This is primarily an effect of our larger
caches, which reduce the probability that some delay due
to GALS will be hidden behind a stall that occurred even in
the synchronous case, increasing the observed performance
penalty. Five out of the six benchmarks display a similar
performance degradation of roughly 10%, while 164.gzip
does more poorly in adapting to the GALS architecture and
runs over 17% slower. Due to the use of small local clock
networks and the stretching of execution time, the GALS
processor draws 14.6% less power per cycle, resulting in
a consumption of 4.5% less energy than the synchronous
baseline over the execution of the same instructions.

Energy-delay2 is increased by 19.7% in making the move
to the baseline GALS architecture, making it uncompetitive
in most applications.

C. GALS-CP

Despite the average per-domain speedup in GALS-CP
being 3.68%, execution time decreases by only 2.0%
because of the mismatch between speedups. The fetch and
memory domains are barely sped up at all as a result of
the large number of critical paths in the level 1 caches.
This decreases the average number of dispatched instruc-
tions per clock tick for each back-end domain because
1) instructions are entering their window at a relatively
reduced rate due to the low instruction cache speedup and
2) load-dependent instructions must wait relatively longer
for operands due to the low data cache speedup. As a result
of the faster clocking of domains, the average power drawn
per cycle increases very slightly when enabling the -CP
speedups (by about 1.6%). However, the faster execution
leads to essentially no change in energy usage (actually
an extremely marginal decrease of 0.4%) and an overall
energy-delay2 reduction of 4.4%.

We observe that GALS-CP suffers from the domain parti-



F/D R/R Int FP Mem Avg
164.gzip 1.15 1.11 1.10 1.23 1.16 1.15
175.vpr 1.14 1.12 1.11 1.23 1.18 1.16
197.parser 1.14 1.13 1.11 1.23 1.18 1.16
177.mesa 1.17 1.13 1.11 1.20 1.15 1.15
183.equake 1.16 1.12 1.10 1.23 1.16 1.15
188.ammp 1.24 1.23 1.22 1.25 1.24 1.24
Average 1.17 1.14 1.12 1.23 1.18 1.17

TABLE VII
PER-DOMAIN SPEEDUPS OBTAINED WITH GALS-T

tioning used, which is performed based on the actual func-
tionality of blocks without taking into account the number
of critical paths that they contain. A better partitioning
would use some metric that relates the number of critical
paths in a block to its criticality to performance. However,
“criticality to performance” can be difficult to quantify,
since the critical path through the core will be different for
different types of applications. Moreover, there is overhead
associated with every domain and domain boundary cross-
ing. Combining domains can reduce the required number
of domain boundary crossings as well as design complexity
but will also reduce the power savings introduced by the
GALS clocking scheme (since we are merging some small
clock networks to create a single larger one). Furthermore,
it reduces the flexibility of the GALS architecture and
might impact other schemes such as our thermally-aware
frequency scaling or dynamic voltage/frequency scaling.
On the other hand, splitting a clock domain into multiple
smaller domains requires the opposite set of tradeoffs to
be evaluated.

D. GALS-T

GALS-T offers significantly better performance than
GALS-B or GALS-CP, with an average execution time
reduction of 9.5%. For 188.ammp, which runs cool due
to its low IPC, thermally-aware frequency scaling actually
results in better performance than the synchronous base-
line. On the other hand, 164.gzip still lags in performance.
Overall, GALS-T begins to approach the performance of
the synchronous baseline, with an average execution time
penalty of only 1.0%. Since the speedups in GALS-T are
greater than those in GALS-CP, as seen in Table VII, a
more significant average power penalty is observed when
applying this scheme to the baseline GALS architecture at
13.2%. This includes increases in dynamic power due to
the higher clock frequencies as well as increases in leakage
power due to the elevated temperature arising from higher
power density. However, as a result of the faster execution,
the total energy penalty is much smaller at an average
of 2.3%, resulting in a 16.0% reduction in energy-delay2

relative to GALS-B and a 1.0% reduction relative to the
synchronous baseline.

GALS-T suffers somewhat from naı̈vely speeding up do-
mains whether this improves performance or not. The most

F/D R/R Int FP Mem Avg
164.gzip 1.15 1.14 1.16 1.31 1.17 1.19
175.vpr 1.14 1.16 1.18 1.31 1.18 1.19
197.parser 1.15 1.17 1.18 1.31 1.18 1.20
177.mesa 1.17 1.16 1.17 1.28 1.15 1.18
183.equake 1.17 1.16 1.16 1.31 1.17 1.19
188.ammp 1.25 1.27 1.29 1.33 1.25 1.28
Average 1.17 1.18 1.19 1.31 1.18 1.21

TABLE VIII
PER-DOMAIN SPEEDUPS OBTAINED WITH GALS-CP-T

egregious example is the speeding up of the floating point
domain by 23% in the integer benchmarks. This may
even adversely affect performance because each clock tick
dissipates some power, regardless of whether there are any
instructions in the domain or not. This results in higher
local temperatures, which may spill over into a neighboring
domain which is critical to performance and cause it to
be clocked at a lower speeds. One possible solution is to
use some control scheme similar to those used for DVFS
to decide whether a domain should actually be sped up.
Since Equation 9, which we use for scaling frequency with
temperature, also includes the dependence of frequency
on supply voltage, one could even combine the two. An
integrated control system would be required to prevent
the two schemes from pulling clock frequency in opposite
directions. This is an area that will require further research.
We have done some preliminary experiments with GALS-
T and DVFS which suggest that such a scheme may be
fairly complicated. Like GALS-CP, GALS-T could also
benefit from a more intelligent domain partitioning. Since
each domain’s speed is limited by its hottest block, it might
make sense to group blocks into domains based on whether
they tend to run cool, hot, or in-between. However, while
there are some functional blocks which can be identified
as generally being hotspots (e.g. the integer register file
and scheduling logic) the temperature at which some other
blocks run is highly workload-dependent (e.g. the entire
floating point unit).

E. GALS-CP-T

The results for GALS-CP-T show that the two schemes
are very largely additive. An 11.4% reduction in execution
time is achieved at the cost of 15.0% higher average
power. The total energy penalty is 1.7%. This is lower than
that of GALS-T, demonstrating once again that applying
the -CP speedups reduces total energy consumption. The
final energy-delay2 improvement relative to GALS-B is
20.0%. An initial fear when combining GALS-CP and
GALS-T was that the higher baseline speeds as a result of
the -CP speedups would result in a sufficient increase in
temperature to reduce the -T speedups by an equal amount,
resulting in a scheme that offered no better performance
than GALS-T and was more complex. However, our results
show that the speedups applied by GALS-CP and GALS-T
are largely independent.



Perhaps most importantly, we see that GALS-CP-T has
caught up to the synchronous baseline on the execution
time metric, displaying an average reduction of 0.9%. Of
course, this is within the likely margin of error of our
simulations and so does not provide conclusive evidence.
However, we observe that once we exclude the two extreme
cases in terms of relative execution time (164.gzip and
188.ammp), the remaining benchmarks are all essentially
even with the synchronous baseline (on average 0.001%
faster). GALS-CP-T displays a larger advantage over the
synchronous baseline on our other three metrics, with
reductions of 1.7%, 2.8%, and 4.6% in average power, total
energy, and energy-delay2, respectively.

VI. CONCLUSION

Variability is one of the major concerns that microprocessor
designers will have to face as technology scaling continues.
It is potentially easier for a GALS design to address
variability as a result of the processor being partitioned into
smaller clock domains, which allows the negative effects
of variability to be localized to the domain they occur in.
We evaluated two applications of this approach, one to
address process variability and one to address thermal vari-
ability. Both schemes improved performance and energy-
delay2 relative to the baseline GALS architecture, while
applying them at the same time led to essentially the same
performance as the synchronous baseline with somewhat
better energy-efficiency.

Interestingly, the 130 nm technology node this work was
conducted at seems to be the break-even point of GALS-
CP-T. As technology continues to scale, these schemes
will become more attractive as the magnitude of process
variations grows (increasing σWID−Tcp,nom

) and thermal
variations worsen (higher difference in power densities
and thus temperatures across the chip). Given the fact
that current commercial microprocessor designs are at the
65 nm node, two generations ahead of the one used for
this work, we can expect that the point were a significant
benefit would be offered by a variability-aware GALS
architecture will soon come if it has not, in fact, come
already.
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