
Programming Crystalline Hardware

Phillip Stanley-Marbell, Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

{pstanley, dianam}@ece.cmu.edu

ABSTRACT
Advances in VLSI technologies, and the emergence of new sub-
strates for constructing computing devices, necessitate a rethink-
ing of the manner in which software interacts with hardware.
Traditional computing systems are typified by general purpose
processors, which abstract their hardware capabilities through
instruction sets. Instruction sets and the abstractions they en-
courage at the programming language level, were however cre-
ated, and well suited for, situations in which available hardware
was limited and had to be multiplexed in time. In particular,
the organization of programs around tightly coupled modules,
be they functions, procedures or similar abstractions, make it
difficult to perform partitioning of applications both statically
and at runtime.

This paper presents preliminary work on a programming lan-
guage for crystalline architectures, based on the idea of structur-
ing programs around communication. The communication be-
tween components in a program is made explicit by employing
an abstraction of names on which communication occurs, rather
than functions or procedures. Employing such an abstraction as
the core of the language makes it possible to explicitly address
issues such as information-theoretic analysis of the communica-
tion between components of a program, the safety of such com-
munications, and fault-tolerance of applications which execute
over a failure prone communication and computational substrate.

1. INTRODUCTION
Programming languages in use today evolved in the era where

most machines had von Neumann architectures. Hardware was
expensive, and to permit the use of restricted amounts of hard-
ware to solve problems of reasonable size, problems were de-
composed into elementary operations and sequences of these op-
erations executed. The tradeoffs included requiring memory to
store the sequences of operations (instructions) to be performed
by hardware, and decoding these stored operations. Along with
these hardware abstractions, imperative programming languages,
which naturally correspond to the programming model of Tur-
ing [19], have been dominant over the last 4 decades. An equiva-
lent programming model embodied by the work of Gödel [6] and
Church [4, 5] forms the basis for applicative programming, in
which the underlying primitive is that of functions. This model
has likewise been dominant in various forms, both in high level
programming languages and intermediate representations (such
as SSA [16, 1]) for both imperative and functional programming
languages.

The traditional von Neumann hardware architectures and the
abstractions they provide to software, are however giving way
to architectures which are crystalline/regular, looking more like
cellular automata [21]. This change is being driven both by in-
creasing device integration in VLSI technologies, coupled with
increasing costs of wires, and by new technologies such as those
fabricated by chemical self-assembly. As a result of high manu-

facture time defect rates, these architectures must be inherently
regular in their design, such that a failed component can be easily
supplanted by a surrogate fault-free one. The future hardware
platforms share the common traits of:

• Cheaper hardware real estate. Hardware substrates manu-
factured by chemical self-assembly and other promising
non-silicon technologies may provide orders of magnitude
increased device integration. Having significantly more
hardware resources means there is decreasing motivation
to multiplex hardware in time to perform computation. As
a result of cheaper hardware, there is now:

• Increased deployment of microprocessor based systems. Decreas-
ing cost and physical dimensions makes it enticing to em-
bed processing hardware in more devices of everyday use,
or to employ large numbers of them. The devices must
communicate, both internally and between devices to achieve
maximal utility. Technology constraints however mean that
there is:

• Increasing cost of wires and communication. The relative cost
of wires in designs is increasing in traditional VLSI de-
signs, and the trend may likely also be true for non-silicon
technologies. Even though structures such as carbon nan-
otubes hold the promise of very fast wires, the difficulties
involved in making Ohmic contacts between devices might
still make many forms of inter-device communication ex-
pensive. It is thus desirable to expose the occurrence and
costs of communication in hardware to the layers above,
that it may be considered during optimizations.

Despite these trends, the models of computation currently preva-
lent in programming languages do not lend themselves well to
hardware architectures that are cellular in nature. An underlying
issue, is the close association of operations to be performed to
where they should be performed. It is most apparent in imper-
ative programming languages, but is not inherently absent in
other paradigms [2]. Given an application composed of modular
units (e.g. functions), it is difficult to partition it for execution
over a crystalline substrate, statically or dynamically. This dif-
ficulty is largely due to the transfer of control between modules
such as functions. The fundamental goal in calling functions is
an interaction—passing arguments to another module of code,
and possibly receiving results—not the transfer of control flow
or vectoring of a program counter value to a location in memory.

The partitioning of applications for execution over crystalline
hardware is of interest not only for hardware architectures which
are crystalline at the micro scale, such as hardware constructed
via chemical self-assembly or wire-limited VLSI designs. It is
also of great interest in architectures which are crystalline at the
macro scale, such as large arrays of processing elements such
as microprocessors. In both cases, the communication between
processing elements is a limiting factor that must be directly opti-
mizable, and it is thus desirable for it to be explicitly represented.

In addition to the changes in store with respect to hardware
organization, are changes in the reliability of hardware. Com-
puting systems today rely on an abstraction of perfectly reliable
hardware. This abstraction becomes increasingly difficult to main-
tain as the underlying hardware becomes inherently prone to
runtime failures and manufacturing defects. The reliance on the
fault-free abstraction is exacerbated by the increasing dependence
in modern culture on computing systems. Not all computations
however, require perfectly reliable hardware. The data path por-
tions of many signal processing applications may be able to tol-
erate errors in computations, whereas the control flow in those
same applications may not.

Organizing applications around the fundamental concept of
computation as interaction, enables many of the aforementioned
issues to be addressed in a coherent manner. Exposing the un-
derlying communication in interactions between modules in an
application makes partitioning them for regular / crystalline sub-
strates easier. Once the basic unit of computation is commu-
nication, it may become possible to apply ideas developed in
Information Theory for communication in the presence of errors,
to the units of computation, which now rather than being the
invocation of functions, are communication.

1.1 Example
The following is an implementation in the C language, of the

Sieve of Eratosthenes, an algorithm for computing prime numbers:

void sieve(void)
{

int i, pi, nums[100];

for (i = 0; i < 100; i++)
{

nums[i] = i+1;
}

for (i = 1; i <= 10; i++)
{

for (pi = 0; pi <= 100; pi++)
{

if (!(nums[pi] % i))
{

nums[pi] = 0;
}

}
}

for (i = 0, pi = 0; i <= 100; i++)
{

if (nums[i] != 0)
{

printf("p(%d) = %d\n", pi++, nums[i]);
}

}

return;
}

It proceeds by iteratively zeroing out entries in a list of num-
bers which are multiples of any number less than the square
root of the largest number in the list. The list in this case is
implemented as an array of 100 elements. This implementation
is inherently monolithic, and it is difficult to conceive how it
could be partitioned to take advantage of a hardware substrate
that had a very large number of processing elements. It might
be conjectured that this implementation is the natural approach
encouraged by the nature and capabilities of the C programming
language in which it is implemented.

An alternative implementation might be to structure the pro-
gram as a set of coroutines, which act as “sieves” on a stream of
numbers. The interaction between these routines will have to oc-
cur by the transfer of control flow between routines. Partitioning

such an implementation for execution on a regular computing
substrate is made difficult by the interaction between the compo-
nent routines, which are manifest as transfers of control between
the routines.

This paper describes ongoing efforts to design a programming
environment based on the aforementioned ideas. Section 2 de-
scribes our proposal, as embodied in a prototype language im-
plementation. Section 3 provides a comparison between our pro-
posal and related efforts, by way of an example. Section 4 out-
lines additional challenges that need to be addressed, and new
opportunities presented by our approach. Related research is
discussed in section 5, and the paper concludes with a summary
of the ideas presented and notes on the current status of our
efforts in Section 6

2. COMMUNICATION ORIENTED PROGRAMMING
To explore the aforementioned ideas, we have begun an ef-

fort to design and implement an experimental programming lan-
guage, tentatively named M, based partly on formalisms of the
π-calculus [12]. M is a simple language, in which the primary
operators are communication on names which have type structure.
The language runtime is constructed as a name space—a hierar-
chy of names which are interfaces to system software support.
The runtime name spaces of different systems can be connected,
using a simple alphabet, for navigating and connecting name
spaces. The core ideas in M are:

• Structuring of applications around communication on names.
Programs are organized into modules, which are invoked
by communication on names which represent them, rather
than transfer of control between modules.

• Representation of the runtime system as a hierarchical name space
with typed names. The runtime system and facilities akin to
standard libraries, are implemented as names which have
types.

• Ability to extract type information from names in the runtime
system. This is essential for both the partitioning and com-
position of applications—it enables the enforcement of a
correct interface between communicating components.

• A specified alphabet of communication operations for accessing
and creating names in the runtime name space. Employing
a specified alphabet for accessing and creating entries in
the runtime name space enables a new direction in opti-
mization: Encodings may be developed for the interactions on
names. It is possible, for example, to specify encodings
for interaction on module names which enable, in essence,
reliable interaction with modules in the presence of noise,
which translates to being able to perform optimizations for,
in a sense, “fault-tolerant function calls”. Hardware that
implements this encoding as its interface is indistinguish-
able from a software module, and so this may further ease
the integration of hardware and software components.

2.1 Language overview
The goal in the design of M, is to provide a language struc-

ture that enables the description of concurrency, centered on the
concept of all operations (computations) as communication, and
enabling the automatic partitioning of programs. To this end, ap-
plications are structured as a collection of modules, which interact
by communication over names in a runtime name space. The com-
munication on names is performed using a small alphabet of op-
erations, and the encoding of the communication on names pro-
vides a possible avenue for interesting optimizations. By making
all interaction between program components (modules) explicit,

it is possible to employ alternative encodings for the communica-
tion between modules, and thus, it is possible to begin reasoning
about the information-theoretic aspects of module interactions.

2.2 Modules
Modules are the basic units of applications in M. A module is

a collection of program statements. A module’s interface defines
what name(s) it makes visible in the runtime namespace. Mod-
ules in an application exist concurrently, and interact with each
other over these names.

For example, the following is the definition of a module type,
followed by the definition of the module implementation:

Sort : module
{

-- Sort interface difinition: This example
-- interface contains two items
bsort : string;
qsort : string;

}

Sort () =
{

-- Code for the module Sort.
}

The above could be taken as a valid program that defines a sin-
gle module, Sort. Its interface defines two names, bsort and
qsort, which both have the type string. The above module
interface definition leads to entries in the runtime name space,
as described in the following section. The names defined in the
module interface, may be bound to variables in a module im-
plementation. Such variables that are bound to names in the
runtime name space are called channels—reading them will block
until the corresponding name in the runtime is written to and
vice versa. They are therefore identical to channels in CSP [9] or
languages such as Alef [23] or Limbo [17].

bsort qsort

Sort

Figure 1: Runtime name space due to the definition of the Sort
module above.

2.3 Runtime System
The runtime system forms the core of M. It is through the run-

time system that individual modules may create communica-
tion paths to each other, access system software support such
as facilities for performing I/O (file access, printing to standard
output), etc. The entries in the runtime name space resulting
from the definition of the module Sort in the previous section
are illustrated in Figure 1.

The runtime system is organized as a hierarchy of names. For
example, the hierarchy in Figure 1 has the name Sort at its top,
and the names bsort and qsort at one level below. The struc-
ture of the tree in essence represents the scope of names in the
runtime name space. Nodes in the tree represent modules, and
leaves are names defined within some module interface.

It is through the runtime name space that components of ap-
plications which have been partitioned for execution on multiple
devices interact. The runtime name space serves as the means by
which different modules executing on different devices, may be
connected seamlessly. This is facilitated in the following manner:

Modules executing on a particular device interact with names
in their local runtime name space. The runtime name space on
a particular device may be connected to that of another, such
that names from one runtime become visible on another, trans-
parent to the executing modules. The connection of runtime
name spaces occurs by making it accessible outside the runtime
system, e.g., as an address/port accessible over a network, or as
a shared memory window—the exact means by which this con-
nection is achieved will be dependent on the particular hardware
platform, and is transparent to applications.

An application is structured as a set of modules, and the mod-
ules interact through the runtime name space. The actual pro-
cessing devices on which the component modules of an appli-
cation execute, is irrelevant, as long as the runtime name spaces
of the individual devices are connected together. For example,
an application which consists of many modules including the
Sortmodule above, may be partitioned such that different mod-
ules that comprise it execute on different devices in a hardware
substrate. The constituent modules will interact with the Sort
module by attempting to access the name Sort in the runtime,
and the names bsort and qsort in the hierarchy below it.

What is then required to enable the execution of the applica-
tion, whose constituent modules are on different devices in an
interconnect network, is to provide a means by which commu-
nications on names are delivered to the appropriate devices. In
its simplest form, each unique name in the runtime name space
space may be conceived as a unique channel in a communication
medium, and communication on a name is in essence communi-
cation on a specific channel. The number of names that such a
runtime name space will be able to support will then be limited
by the bandwidth of the communication interconnect between
devices.

2.4 Names
Every name must be unique within the current scope in the

name space (level in the hierarchy). The operators defined on
names arename2type,name2thread,name2scope,name2chan,
nameread and namewrite, corresponding to operations for type
extraction, creation of new module instances from names, listing
the names defined within a module, making a name accessible
as a channel, reading a name and writing a name, respectively.
There is an additional operator, chan2name which is defined
on channels, and makes them available as names in the run-
time name space. The encoding of this alphabet of operations
on names is independent of the actual operations, and may be
pursued as an optimization point.

2.4.1 name2type

The name2type operator, when applied to a name in the run-
time name space returns the type of the name, or nil if the
operation cannot be performed (e.g. the name does not exist
within the current scope). The name2type operator is in some
ways similar to the tagof operator in the Limbo language, for
determining the variant type of a Limbo pick ADT. The result
of name2type is however more expressive : it details the en-
tire structure of a type in terms of the language primitive types,
whereas tagof simply results in a unique numerical value for
each variant, useful only for comparing two types for equality.
The result of the tagof does not in itself express the structure of
the type it is applied to.

It is feasible to declare variables in an application, based on a
type extracted from a name in the runtime name space. For ex-
ample, in the following, a name is declared to be of the type of the
system formatted I/O facility, "/sys/printf" in the runtime
name space. A string subsequently sent on the channel bound to
that name is printed on the console:

print : name2type "/sys/printf";

print <- "Hello\n";

2.4.2 name2thread

Applying the name2thread operator to a name which is a
node (not a leaf) in the runtime name space will create a new
instance of the module, resulting in the creation of a new node
in the runtime name space. Naturally, if the name to which the
operator is applied is a leaf in the runtime name space, i.e., it
is a name defined within some module interface and not itself a
module interface, the operation will fail.

2.4.3 name2scope

The name2scope operator returns a (possibly empty) list of
names within the scope of the name to which it is applied.

2.4.4 name2chan

The name2chan operator is used to connect channels in mod-
ules to names in the runtime name space.

2.4.5 nameread

The nameread operator corresponds to the operation that oc-
curs when a channel variable that is connected to a name in the
runtime system is read from, via the channel communication, <-.

2.4.6 namewrite

The namewrite operator corresponds to the operation that
occurs when a channel variable that is connected to a name in
the runtime system is written to.

2.4.7 chan2name

The chan2name operator makes a channel in a module visible
in the runtime system as a leaf in the runtime name space.

3. EXAMPLE
The example in Figure 2 illustrates an implementation of the

Sieve of Eratosthenes, an algorithm for the generation of prime
numbers, in M. The implementation follows the natural solution
of a series of “sieves” acting on a stream of integers. There are
two primary components, module Sieve and module Worker.
At runtime each of these is visible in the runtime name space, as
"Sieve" and "Worker" respectively.

An instance of Sieve generates a stream of integers on a chan-
nel, outchan, which is made visible in the runtime name space
as the name "streamsource", via the chan2name operator.
The Sieve module creates a new instance from a name in the
runtime name space, "Worker", of the module Worker. Each
instance of Worker further creates more instances, at lower lev-
els in the runtime name space hierarchy, to act as further sieve
stages. Each instance of Worker reads from the name
"streamsource" from the level above in the hierarchy, and
creates a new name "streamsource" which will be read by
the level below.

At runtime, each name2thread might lead to the creation of
an instance of the module on one device in a hardware substrate,
versus another, based for example, on a runtime defect map or
other constraints. It is irrelevant that the implementation of the
module Worker is defined alongside that of Sieve—they only
interact through names in the runtime name space. As long as
the communication interconnect between devices supports the
communication on names, modules which are part of an appli-
cation can interact seamlessly. Once the runtime name spaces of
different devices are connected together, it is irrelevant on which
particular device Worker executes.

Sieve () =
{

i : int <- 2;
status : string;
outchan : chan of int;

chan2name outchan "streamsource";
status <- name2thread "Worker" (2);

for (; status != nil ;)
{

outchan <- i;
i <- i + 1;

}
}

Worker (ourprime : integer) =
{

print : name2type "/system/print";
outchan : chan of int;
newprime, n : int;
inchan : name2chan "streamsource";

chan2name outchan "streamsource";
print <- ("%d", ourprime);
for (; !((newprime <- inchan) % ourprime) ;)
{
}

status <- name2thread "Worker" (newprime);
for (; status != nil ;)
{

if ((n <- inchan) % ourprime)
{

outchan <- n;
}

}
}

Figure 2: An implementation of the Sieve of Eratosthenes algo-
rithm for generating a stream of prime numbers, in M.

In contrast to the previously described implementation in C,
the structuring of the implementation around communication
is more straightforward in M, as it would be in any language
that provides language-level communication primitives such as
channels. Partitioning is made possible by the decoupling of
interfaces into the facilities of the runtime name space, and is
made safe by the enforcement of types on entries in the runtime
name space.

For comparison, an equivalent implementation in the Pict lan-
guage [14], taken from the official Pict distribution is shown in
Figure 3. Pict is a language that aims to directly implement ideas
of the π-calculus. The π-calculus is a formalism for representing
concurrency and has as its basic operation the interaction between
agents.

4. CHALLENGES, OPPORTUNITIES AND OPEN ISSUES
In addition to the direct goal of enabling partitioning of appli-

cations for crystalline hardware substrates, making the commu-
nication components of programs explicit enables new directions
for exploration, which are of increased importance in non-silicon
computing systems.

4.1 Fault-Tolerance
In hardware substrates with high manufacture-time defect rates,

as well as high runtime failure rates, mechanisms for enabling
fault-free operation in the presence of failures are essential. For
example, hardware architectures constructed by chemical self-
assembly must employ regular structures [7], in order to be able
to employ fault-free devices as surrogates for defective devices.

If such an architecture acts as a general purpose processing

{-
- The sieve of Eratosthenes
-}

now (reset checks)

def interval (min:Int max:Int):(List Int) =
if (>> min max) then nil else (cons min (interval (inc min) max))

def sieve (max:Int):(List Int) = (
def again (l:(List Int)):(List Int) =
if (null l) then

nil
else
(val n = (car l)
if (>> (* n n) max) then l
else (cons n (again (list.filter #Int l \(x) = (<> (mod x n) 0)))))

(again (interval 2 max))
)

def prPrime (idx:Int x:Int):[] =
if (== (mod idx 10) 9) then ((int.pr x); (nl))
else ((int.pr x); (pr " "))

(list.itApply (sieve 4000) prPrime);

Figure 3: An implementation of the sieve of Eratosthenes in Pict, taken from the Pict distribution.

device, software must execute over the array of failure-prone
elements, with communication occurring over failure-prone in-
terconnections. Exposing communication at the language level
is therefore a step towards enabling fault-tolerant computation.
Since the basic operation in M programs is communication, they
lend themselves to, e.g., ideas from Information Theory, such as
coding to enable reliable communication over a noisy medium.
For example, the encoding of the alphabet for communication
on names may be an exciting avenue for further research — op-
timizations may involve trading off encodings which employ a
larger number of bits per operation (e.g. for an operation such as
nameread) versus greater resilience of the operation to failures
in the interconnect network between devices, which acts as the
support for the runtime name space. The same encoding might
be employed for all the operators defined in this paper, or differ-
ent encodings might be employed for different operations, etc.

4.2 The Hardware-Software Interface Contract
An Instruction Set Architecture (ISA) is the contract between the

hardware and the programmer. The integer functional units on a
modern microprocessor are available to a programmer through
integer instructions, likewise floating point units through float-
ing point instructions. In the presence of failure prone “oper-
ations”, various methods could be used to provide asymptoti-
cally small probability of failure in an aggregate device, though
techniques employing redundancy and multiplexing [20]. Such
techniques however, provide asymptotically small (though not
zero) failure rates (in terms of the current notion of what reliable
hardware is), and do so with potentially large hardware over-
head.

For some applications however, the possibility of error in op-
erations is acceptable, such as in the datapath operations of some
signal processing applications. Given failure prone hardware
therefore, it is natural to imagine including as part of the hardware-
software interface contract, the notion of “probabilistic” instruc-
tions. For example, an ADD operation becomes an ADD p 0.9,
an ADD which operates correctly with probability 0.9. Part of the
task of a compiler then becomes to generate code appropriately
such that the right type (i.e. both the operation and the probability)
of operation are appropriately generated. Being able to deter-
mine this however, requires that the compiler has some semantic

information about what is being performed at the high level, i.e.,
whether a piece of code is an FFT or a password verification
routine. It is therefore desirable to incorporate such high level
notions in programs.

Given the possibility of defect variation over time however, it
will be difficult to guarantee such instruction behaviors for a par-
ticular piece of hardware. The location independence afforded
by the use of a runtime name space for accessing all resources
might provide a means of guaranteeing such operation probabil-
ities from a collection of hardware devices.

4.3 Security
The partitioning of applications poses new challenges with

respect to information security and data integrity. In traditional
computing systems, where applications are executed on a sin-
gle processor or tightly coupled multiprocessor, very little of the
application’s internal communication is susceptible to attack by
an external entity. With applications partitioned to execute over
large numbers of computing elements, concerns about the pri-
vacy and integrity of data exchanged across components of an
application becomes more acute. Making the communication be-
tween components explicit, in the form of interaction over names
in the runtime name space makes it easier to approach the task
of devising measures to enable safe execution of applications in
a possibly malicious environment. For example, the encoding
of the operations on names could be used as one avenue for
addressing data integrity and privacy.

4.4 Issues
Many outstanding issues remain to be addressed, some of which

are already clear, and others which become apparent as we pro-
ceed with the design, implementation and evolution of the pro-
totype language M. One such issue is the manner in which the
runtime name space should be organized. It is currently concep-
tualized as a hierarchy which corresponds to the scope structure
of modules, however it is not clear whether this is the most ap-
propriate organization.

5. RELATED RESEARCH
Related efforts can be categorized broadly into three groups:

init()
{

i := 2;
sourcechan := chan of int;
spawn sieve(i, sourcechan);

while ()
{

sourcechan <-= i++;
}

}

sieve(ourprime : int, inchan : chan of int)
{

n : int;
print("%d ", ourprime);
newchan := chan of int;

while (!((n = <-inchan) % ourprime))
{
}
spawn sieve(n, newchan);
while ()

if ((n = <-inchan) % ourprime)
{

newchan <-= n;
}

}

Figure 4: An implementation of the sieve of Eratosthenes in
the Limbo programming language

1. Languages based on, or derived from Hoare’s CSP[9]. Such
languages include Occam [11], Newsqueak [15], Alef [23]
and Limbo [17]. Although all the aforementioned languages
include language level channels, facilities for creating threads
either statically or dynamically and provide direct support
for many of the ideas in CSP, they also suffer from one of
CSP’s admitted drawbacks: there is no true modularity
in terms of channels, and to communicate on a channel
a process must already hold a reference to it. In a case
where a language employed only processes and communi-
cation on channels as a means of breaking programs down
into components, the channel reference requirement would
make it difficult to implement facilities such as libraries—
how can you communicate with a library over a channel
unless you already have a reference to it ?

The above languages however do not really have to deal
with this issue, since they are not pure CSP-derived lan-
guages, and unlike CSP, contain function call abstractions.
This however, is the matter of concern in this work. The
program extract in Figure 4, in the Limbo language, is an
implementation of the sieve of Eratosthenes. The versions
in Newsqueak, Occam and Alef are almost identical, mod-
ulo minor syntactic differences. In the figure, the processes
init and sieve share a reference to the channel sourcechan.
If it were desired to replace the executing sieve thread
with another instance or, for example, with a hardware im-
plementation, there would be no way to obtain a reference
to the channel a posteriori.

2. The second group of languages are those built around the
ideas of streaming architectures, and examples in this group
include Brook [10] and StreaMIT [8]. These languages hold
as an underlying concept the construction of programs as
filters what act on streams. They still employ the same pro-
gram organizations of traditional imperative non-concurrent
programming languages, and implement the ideas of stream-
ing and filters, over and traditional language structure. The
StreaMIT language for example is really just a subset of
Java.

3. The third class of languages are those based on the π–calculus,
such as Pierce’s Pict language. Pict is in essence an im-
plementation of the attributes of the π–calculus in a func-
tional language. Its implementation of the features of the
π–calculus are in terms of function calls, and Pict is not
designed with the ability to automatically partition pro-
grams in mind. For example, the Pict program in Figure 3
implements the sieve of Eratosthenes.

The ideas of the runtime name space may be likened to that of
tuple spaces in Linda [3], in the sense that language level operators
can be used to create entries, read and write entries in a runtime
space. Unlike tuple spaces, entries in the runtime system in M
have type structure, and are organized in a hierarchical structure.
The idea of automatic program partitioning has been pursued
under the ideas of closure conversion [22, 18, 13].

6. SUMMARY AND STATUS
This paper presented our preliminary investigations into a pro-

gramming platform for failure-prone regular architectures. Our
proposal, embodied by our prototype implementation, M, is based
on the formalism of the π-calculus, and employs as the basic
operation in programs the communication on names which have
type structure. Programs are organized into modules which inter-
act with each other by communicating on names in a hierarchical
runtime name space.

Organizing applications into modules which interact through
names in a runtime name space removes the restrictions imposed
by function calls on the partitioning of programs. All ties be-
tween components of a program are now through entries in the
runtime name space. It however introduces problems of its own,
such as interfacing with the runtime system and facilities such
as standard libraries. Organizing the runtime as a name space,
and structuring the language around basic operators for binding
to names and creating new entries in the runtime name space
mitigates these issues. It has further benefits—by defining a sim-
ple alphabet for accessing entries in the runtime, hardware may
directly create entries in the runtime name space, and such en-
tries are indistinguishable from those created by software mod-
ules. The runtimes of different applications, executing on dif-
ferent hardware components can also be connected using this
simple set of operations. Interaction between modules, possibly
executing on different devices, and hardware, poses a potential
problem to scaling applications. The use of names with type
structure and operations for extracting types from names in the
runtime, makes it feasible to safely connect modules from differ-
ent devices, with hardware and with each other.

We have completed a preliminary design of a language incor-
porating the ideas proposed in this document, and are in the
process of a preliminary implementation of a compiler for the
language. The current design contains the ideas presented in
this paper; an EBNF grammar is presented in the appendix. Our
initial implementation is being performed on the Inferno oper-
ating system, since it affords us a major benefit—resources in
Inferno are typically represented through a filesystem interface,
making it possible to make many system resources available to
M programs as names, obeying the familiar semantics of reads
and writes.

APPENDIX
An EBNF grammar for the language is listed in Figure 5.

1. REFERENCES
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting

equality of variables in programs. In ACM, editor, POPL

program ::= {module}
module ::= ident "(" decllist ")" "=" scopedstmtlist
decllist ::= [typedeclaration {"," typedeclaration}]
tuple ::= "(" exprlist ")"
identlist ::= ident {"," ident}
scopedstmtlist ::= "{" stmtlist "}"
stmtlist ::= [statement {";" statement}]
statement ::= nullstatement | forstatement | ifstatement

| typedeclaration | assignstmt
typedeclaration ::= identlist ":" (type | typexpr)

identlist ":" (type | typexpr) "<-" expression
assignstmt ::= ident "<-" expression
nullstatement ::= ";"
ifstatement ::= "if" "(" expression ")" scopedstmtlist

| "if" "(" expression ")" scopedstmtlist "else" scopestmtlist
forstatement ::= "for" "(" [statement] ";" [expression] ";" [statement] ")"

scopestmtlist
factor ::= "(" expression ")" | integerconst | stringconst

| ident | "nil" | tuple
term ::= factor {hprecbinop factor}
monadicexpr ::= monadicop term
typexpr ::= "name2type" expression
newmodexpr ::= "name2thread" tuple
expression ::= term (booleanop | lprecbinop) term | monadicexpr | newmodexpr
ident ::= letter {letter | digit}
integerconst ::= {digit}
stringconst ::= """ [{unicodech}] """
exprlist ::= expr {"," expr}

booleanop ::= ">" | "<" | "=" | "&&" | "||" | ">=" | "<=" | "!=" | "<-" | "=="
hprecbinop ::= "*" | "/" | "%" | "ˆ"
lprecbinop ::= "+" | "-" | "|"
monadicop ::= "+" | "-" | "˜" | "!" | "name2chan" | "chan2name"

| "name2type" | "nameread" | "namewrite" | "name2scope"
| "name2thread"

type ::= "integer" | "string"
letter ::= "A" | ... | "Z" | "a" | ... | "z"
digit ::= "0" | ... | "9"
unicodech ::= Any Unicode character

Figure 5: The M language grammar in EBNF

’88. Proceedings of the conference on Principles of programming
languages, January 13–15, 1988, San Diego, CA, pages 1–11,
New York, NY, USA, 1988. ACM Press.

[2] J. Backus. Can Programming be Liberated from the von
Neumann Style? Communications of the ACM,
21(8):613–641, 1978.

[3] N. Carriero and D. Gerlenter. Linda in Context. In , 1989.
[4] A. Church. A set of postulates for the foundation of logic

part I. Annals of Mathematics, 33:346–366, 1932.
[5] A. Church. A set of postulates for the foundation of logic

part II. Annals of Mathematics, 34:839–864, 1933.
[6] K. Gödel. Über die Vollständigkeit des Logikkalküls. PhD

thesis, University of Vienna, 1930.
[7] S. C. Goldstein and M. Budiu. Nanofabrics: Spatial

computing using molecular electronics. In 28th Annual
International Symposium on Computer Architecture, Goteborg,
Sweden, 2001. ACM SIGARCH / IEEE.

[8] M. I. Gordon, M. K. W. Thies, J. Lin, A. S. Meli, A. A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, and
S. Amarasinghe. A Stream Compiler for Communication
Exposed Architectures. In ASPLOS-X, pages 291–303, 2002.

[9] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, Aug. 1978.

[10] M. Horowitz, P. Hanrahan, B.Mark, I. Buck, B. Dally,
B. Serebrin, U. Kapasi, and L. Hammond. Brook: A
Streaming Programming Language. Technical report, 2001.

http://graphics.stanford.edu/streamlang/.
[11] D. May. Occam. In IFIP Conference on System Implementation

Languages: Experience and Assessment, Canterbury, Sept.
1984.

[12] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes. Information and Computation, 100:1–77, 1992.

[13] Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. In ACM, editor, Conference record of POPL ’96,
23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the Symposium:
St. Petersburg Beach, Florida, 21–24 January 1996, pages
271–283, New York, NY, USA, 1996. ACM Press.

[14] B. C. Pierce and D. N. Turner. Pict: A programming
language based on the pi-calculus. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays
in Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[15] R. Pike. The implementation of Newsqueak. Software —
Practice and Experience, 20(7):649–659, July 1990.

[16] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value
numbers and redundant computations. In ACM, editor,
POPL ’88. Proceedings of the conference on Principles of
programming languages, January 13–15, 1988, San Diego, CA,
pages 12–27, New York, NY, USA, 1988. ACM Press.

[17] P. Stanley-Marbell. Inferno Programming with Limbo. John
Wiley & Sons, Chichester, 2003.

[18] P. A. Steckler and M. Wand. Lightweight closure

conversion. ACM Transactions on Programming Languages
and Systems, 19(1):48–86, Jan. 1997.

[19] A. M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, Series 2(42):230–265, 1936-1937.

[20] J. von Neumann. Probabilistic logics and the synthesis of
reliable organisms from unreliable components. Automata
Studies, pages 43–98, 1956.

[21] J. von Neumann. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana, 1966. Edited and
completed by A. W. Burks.

[22] M. Wand and P. Steckler. Selective and lightweight closure
conversion. In ACM, editor, Conference record of POPL ’94,
21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the Symposium:
Portland, Oregon, January 17–21, 1994, pages 435–445, New
York, NY, USA, 1994. ACM Press.

[23] P. Winterbottom. Alef Language Reference Manual. In Plan
9 Programmer’s Manual, Murray Hill, NJ, 1992. AT&T Bell
Laboratories.

