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Abstract - Due to the shrinking of feature size and significant 
reduction in noise margins, nanoscale circuits have become more 
susceptible to manufacturing defects, noise-related transient faults and 
interference from radiation. Traditionally, soft errors have been a much 
greater concern in memories than in logic circuits. However, as 
technology continues to scale, logic circuits are becoming more 
susceptible to soft errors than memories. To estimate the susceptibility 
to errors in combinational logic, we propose the use of Binary Decision 
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs) for 
unified symbolic analysis of circuit reliability. We present a framework 
that uses BDDs and ADDs and enables analysis of combinational 
circuits reliability from different aspects: output susceptibility to error, 
influence of individual gates on individual outputs and overall circuit 
reliability, and the dependence of circuit reliability on glitch duration, 
amplitude, and input patterns. This is demonstrated by the set of 
experimental results, which show that the mean output error 
susceptibility can vary from less then 0.1%, for large circuits and small 
glitches, up to about 30% for very small circuits and large enough 
glitches.  
 
1. Introduction 
  
 For the last few decades, the main factors driving the 
design of digital systems have been cost, performance, and, 
more recently, power consumption. However, with technology 
scaling, reliable operation of digital systems is being severely 
challenged, thus pointing to the use of fault-tolerance-driven 
design methodologies, not only for mission critical applications 
(medical, banking, traffic control, etc.), but also for regular, 
mass-market applications [1].  
 To allow for the efficient design of a system that can 
tolerate faults, a first natural step includes understanding the 
source of induced errors, but most importantly, their modeling 
and analysis for the purpose of guiding the design process. 
 A fault manifests itself as an incorrect state in the hardware 
or software that is part of the system. Such faults can result from 
physical defects, design flaws, or operator errors. According to 
their source or duration, faults can be divided into permanent, 
transient and intermittent faults.  

• Permanent faults occur and remain stable until a repair is 
undertaken (e.g., stuck-at-zero, stuck-at-one). 

• Transient (external, soft, or SEU-Single Event Upset) faults 
occur for a short period of time and then disappear (a bit 
flip due to a transient physical phenomena, e.g., cosmic ray, 
alpha particle). These faults can cause an error in the 
system by changing the internal state, even though they last 
only for a short time. 

• Intermittent faults, after they first occur, usually exhibit a 
relatively high occurrence rate and, eventually, tend to 
become permanent [2].   

 Manifestation of a fault is called an error, and the system-
level effect of an error is known as a failure. The principle of 

fault-tolerance is to automatically surmount the effects of faults 
by use of redundant components. Consequently, a fault-tolerant 
system is one, which is capable of continued operation with 
little or no performance degradation and without corruption of 
data, in the presence of failure due to either internal or external 
causes. However, not all faults lead to errors and not all errors 
lead to failures.  
 In this work, we address the first issue mentioned above – 
that is, estimating the likelihood that a transient (physical) fault 
will lead to an error. Our main goal is to allow for symbolic 
modeling and efficient estimation of the soft error susceptibility 
of a combinational logic circuit. This can be further used to 
reduce the cost of applying various techniques for error 
detection and correction. 
 
1.1. Transient faults in current semiconductor technology 
 The shrinking of feature size leads to the increase of the 
amount of charge usually stored in circuit nodes. This increase, 
together with the significant reduction in noise margins makes 
circuits more susceptible to manufacturing defects, noise-related 
transient faults and interference from radiation. When high-
energy neutrons or alpha particles hit the silicon bulk, they 
create minority carriers, which, if collected by a p-n junction, 
result in a current pulse of very short duration. A current pulse 
that occurs as the result of the strike is often called a SEU 
(single-event upset). These events may cause a bit flip in some 
latch or memory element. Additionally, a SEU may occur in an 
internal node of combinational logic and propagate to the latch. 
If latched, it results in a soft error.  
 Traditionally, soft errors have been of greater concern in 
memories than in logic circuits, because of the small cell size of 
memories and the nature of memory – a SEU can immediately 
result in a soft error if it exceeds the critical charge stored in the 
cell. In contrast to this, three factors prevented logic from 
becoming more susceptible to soft errors: 
1. Logical masking – to be latched, a SEU needs to be on the 

sensitized path from the location where it originates to the 
latch; 

2. Electrical masking – a SEU needs to create a pulse that has a 
duration and amplitude large enough to reach the latches. Due 
to the electrical properties of the gates the pulse (glitch) is 
passing through, it can be attenuated and even completely 
masked before it reaches the latch; 

3. Latching-window masking – if the pulse reaches the latch and 
appears at its input “on time” (during this window), 
depending on its amplitude and duration, it has a great 
probability of being latched. 

 However, as technology continues to scale, logic circuits 
are becoming much more susceptible to soft errors. The trends 
toward reduced logic depth reduce the attenuation when SEU is 
propagating through the circuit. Smaller feature sizes and lower 



   
 

voltage levels allow lower energy particles to cause SEUs. 
Therefore, soft error failure rates in combinational logic are 
expected to become very important in the future [3] and even 
exceed soft error rates in memories. 
 
1.2. Paper organization 
 The rest of this paper is organized as follows. In Section 2 
we give an overview of related work. Section 3 describes our 
assumptions and the notations we use in the rest of the paper. 
Section 4 presents in more detail the mathematical model that 
lies behind our framework. In Section 5, we describe our 
symbolic modeling methodology, while in Section 6 we 
describe a practical method for determining circuit susceptibility 
to soft errors. In Section 7, we report experimental results for a 
set of common benchmarks. Finally, with Section 8 we conclude 
our work and provide some directions for future work. 
 
2. Related work 
  
2.1. Transient fault analysis and modeling. 
 Intensive research has been done so far in the area of 
analysis and modeling transient faults [3-5,7-9]. However, for 
estimating the likelihood of soft errors as the result of a SEU, 
most of the previous work has relied on fault injection [1,6,7] 
and simulation instead of the symbolic modeling of the 
probability of soft errors. The results presented by Mohanram et 
al. [1] show that soft error susceptibility of internal nodes in a 
logic circuit can vary by at least one order of magnitude. Based 
on this fact, the authors have applied concurrent error detection 
(CED) techniques asymmetrically (targeting mostly the nodes 
with high soft error susceptibility), which led to reduced cost.  
 In [7], the authors give a mathematical model for analyzing 
the propagation of a transient fault through a chain of 
combinational gates. They verified that their model has 90% 
average accuracy with respect to HSPICE simulation. However, 
their work was focused on estimating electrical masking on the 
sensitized path in the circuit, while logical and latching-window 
masking were not included.  
 Work by Zhao et al. [8], also stressed the importance of 
analyzing the effect of internal glitches on the latched outputs of 
the circuit. For electrical masking, the authors use noise 
rejection curves and find the probability that noise will 
propagate through the given node, without being completely 
attenuated. Each node is analyzed separately, so their analysis 
does not reflect the influence of the location of the node inside 
the circuit on the observability of the noise at the latched output. 
Moreover, for logical masking, the authors use path tracing, 
which can become very inefficient for larger circuits. 
 In [9], Zhang et al. present a methodology for soft error rate 
analysis. This work focuses mostly on modeling the probability 
that a single event transient is generated by a particle hit. 
Electrical masking for each path is obtained from HSPICE 
simulation, and logical masking is computed for each input 
vector and each path separately, by flipping the logic value of 
each node.  
 Two more recent works on reliability evaluation have been 
presented [10,11]. In [10], Dhillon et al. present an independent 
computation of the three factors, logical, electrical, and latching-
window masking to find the soft-error tolerance of the circuit. 
Work by Krishnaswamy et al. in [11] uses probabilistic transfer 

matrices and their representation via Algebraic Decision 
Diagrams. Each gate can be represented as a matrix where the 
probability of each output value is explicit for each input 
combination. Parallel compositions of gates are represented with 
tensor products. However, the work presented in [11] focuses 
only on logical masking effect of the circuit for given gate 
output probabilities, without considering electrical and latching-
window masking. 
 
2.2. Analysis of combinational circuits using BDDs and 
ADDs  
 In order to estimate the probability of errors in 
combinational logic, our symbolic tool uses Binary Decision 
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs), as 
part of the CUDD package [12]. BDDs [13,14] provide an 
efficient and canonical representation for Boolean functions. In 
[15], a new type of BDD, called a MultiTerminal BDD 
(MTBDD), was introduced. A MTBDD allows for multiple 
terminal nodes in the canonical representation. Similar to 
MTBDDs, ADDs [16] are presented as a class of symbolic 
models and associated algorithms applicable not only to 
arithmetic, but also to many algebraic structures. For example, 
these decision diagrams were applied to symbolic timing 
analysis in [17]. In that work, the authors present RESTA, a 
robust and extendable timing analysis tool that addresses three 
main goals: considers both internally and externally specified 
input constraints, handles a wide range of circuit structures and 
have a robust underlying framework. This application has 
shown ADDs to be practical and efficient, while providing quite 
accurate results. 
 
2.3. Paper contribution 
 There are some important differences between our model 
and those in [8-11]. In comparison to [8-10], where latching-
window, electrical and logical masking are analyzed separately 
and assumed independent, our approach provides a unified 
treatment of these three factors, while including their joint 
dependency on input patterns and circuit topology. In most of 
the previous work, information about electrical masking is 
obtained by simulation [9], while information about logical 
masking is obtained by path tracing [8-10]. In our work, by 
using BDDs and ADDs, this information is instead implicitly 
included inside the decision diagrams, and therefore allows for 
efficient concurrent computation of output error susceptibility 
due to hits on various internal nodes. In the case of reconvergent 
glitches (that is, glitches arriving at the same gate or latched 
output from the same source on two or more different sensitized 
logical paths), the problem of merging the glitches needs to be 
addressed. In [8], a similar problem for several different noise 
sources is solved by shifting the noise rejection curve. The 
authors in [9] approximate the case of reconvergent glitches 
with the worst case, and claim that in most cases this does not 
affect the accuracy significantly. Our approach to this problem 
is different from these two and is explained in more detail in 
Section 5. Finally, while [11] provides a symbolic method for 
circuit reliability, it does not include the additional joint impact 
of electrical and latching window masking and presents logical 
masking only. 
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3. Assumptions and notations 
 
 We show in Figure 1 an example of a target circuit we are 
analyzing, including the combinational logic, as well as its input 
and output latches. We estimate the probability that a pulse or 
glitch, occurring due to some transient physical phenomenon at 
an internal gate G of the circuit, will result in an error at output 
F. In our framework, we capture all gate-output combinations, 
i.e., we determine the probability of a soft error at any output 
due to a fault originating at any internal gate.  
 

 
 
 
 
 
 
 
 
Figure 1. A target combinational circuit with input and output 
latches. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A glitch at the (a) output of initial gate G, (b) input and 
output of gate G’ on sensitized path, and (c) circuit output F. 
 
 Figure 2 shows the propagation of the glitch, that is, the 
shape at the output of gate G where it occurs (Figure 2a), at the 
input and output of a gate G’ on the sensitized path between gate 
G and latched output F (Figure 2b), and at the output F (Figure 
2c). 
 At the output of gate G, the glitch has initial duration dinit, 
and initial amplitude ainit. The duration at the output of the gate 
is always measured at switching threshold voltage (VS) [18] of 
downstream gate, therefore, according to Figure 2: 
                                        12 ttdinit −=                                       (1) 
The propagation of a glitch through an internal gate G’ (Vs’) is 
shown in Figure 2b. At the input of gate G’, the glitch has 
amplitude ain and duration din, and the output amplitude aout and 
duration dout. Durations din and dout are in this case measured at 
the switching threshold voltage of gate G’ [18]. However, for all 
output neighbors of gate G’, dout will be recomputed according 
to their switching thresholds. Propagation delay of gate G’ is 
tprop. To find out if the glitch propagates through gate G’, and to 
compute the new amplitude and duration, we use the 

methodology from [7], as explained in Section 4. Finally, at the 
latched output F, the glitch has amplitude A and duration D. 
Switching threshold voltage of the latch, at which D is 
measured, is VS,latch. Since there is a delay from gate G to output 
F (T2), the time when the glitch becomes larger than VS,latch is t1’, 
and when it becomes lower than VS,latch is t2’: 
                                       112 ' ttT −=                                            (2) 
                                       '' 12 ttD −=                                           (3) 
The duration D, as well as the amplitude A, can have different 
values at output F, depending on the various sensitized paths, 
from G to F. The set of different values of duration D for 
various sensitized paths is denoted by {Dk}. The delay T2 
depends on the sensitized path (i.e., on the gate delays on that 
path) from gate G to output F, while the delay from input latches 
to gate G (T1) depends on the path from inputs to gate G. 
However, in our model, when computing latching window 
masking, we assume the worst case in which the latching 
window probability is maximized, as it will be seen next. 
 Since we are interested in the propagation of a glitch in the 
time interval between two rising edges of the clock signal, we 
can take [0, Tclk] as the interval of observation. For a signal to be 
latched, it needs to be stable during the setup time tsetup before 
the rising edge of the clock, and hold time thold after the rising 
edge of the clock. In other words, it needs to be stable inside 
interval [Tclk-tsetup, Tclk+thold]. 
 
4. Mathematical description of the model 
 
 This section describes the conditions that are needed for a 
transient glitch at the output of an internal gate to be propagated 
to the output and latched, such that a soft error is registered. We 
detail the interdependency between conditions for logical, 
electrical, and window masking, and describe their joint model. 
 
4.1. Necessary conditions 
 To this end, we define the following events: 

E – a glitch originating at gate G is latched at output F; 
A – the amplitude of a glitch at the output is larger than the 

switching threshold of the latch (in case when correct 
output value is “0”) or smaller than the switching 
threshold (in case when the correct output value is “1”); 

D – the duration of a glitch at the output is larger than the sum 
of setup and hold time of the latch;  

T – the glitch appears at the output on time to be latched (i.e., 
it satisfies the setup time and hold time conditions when 
the rising edge of the clock occurs). 

It is clear that for event E to happen, the other three events need 
to occur: 
                                            E = A ∩ D ∩ T                                     (4) 
 In this model, logical and electrical masking are implicitly 
included in A and D, while latching window masking is included 
in T. As mentioned in Section 3, the switching threshold of the 
latch at output F is VS,latch. To satisfy the latching condition, the 
time at which the glitch reaches VS,latch (t1’) must satisfy:  
                                          

setupclk tTt −<'1
                                 (5) 

In addition, the time when the glitch becomes less than VS,latch 
(t2’) must satisfy:  
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                                          holdclk tTt +>'2                                  (6) 
with duration D of the glitch at output F given by equation (3). 
Thus, we can write the condition which allows a glitch 
occurring at gate G to be latched, as: 
                     ),( 221 TtTDTtTt setupclkholdclk −−−−+∈                (7) 

More formally, one can express the three events as follows: 
A: A > VS,latch (when correct output value is “0”) or 
     A < VS,latch (when correct output value is “1”) 
D: D > tsetup+ thold 
T:  t1 ∈ (Tclk + thold −T2 −D, Tclk −tsetup −T2) 
Therefore, the probability of event E can be written as: 
         P(E) = P(A ∩ D ∩ T) = P(T | A ∩ D) · P(A ∩ D)             (8) 
As seen in Figure 2c, D is satisfied only if A is satisfied, that is, 
only if the amplitude of the glitch is larger than the switching 
threshold, the duration can be different from zero, then : 

                               D ⊂ A                                              (9) 
and thus:  
                                        A ∩ D = D                                        (10)  
which implies: 
P(E) = P(T | D) · P(D) =  

=+>∩−−−−+∈ )),(( 221 holdsetupsetupclkholdclk ttDTtTDTtTtP                                                       

==∩−−−−+∈ ))(),(( 221 U
k

ksetupclkholdclk DDTtTDTtTtP                                                 

∑ =⋅=−−−−+∈
k

kksetupclkholdclk DDPDDTtTDTtTtP ))()|),((( 221

                                                                                                 (11) 
where {Dk} is the set of possible glitch durations, along various 
sensitized paths. 
 We assume that t1 is uniformly distributed in the interval 
(T1, T1+Tclk-dinit). Thus, in the worst case when, for a given 
glitch duration Dk, the interval (Tclk + thold −T2 −D, Tclk −tsetup −T2) 
lies inside it, the probability of event T at the output is:  

==−−−−+∈ )|),(( 221 ksetupclkholdclk DDTtTDTtTtP                     

initclk

holdsetupk

dT
ttD

−
+− )(                                                                       (12) 

 
4.2. The attenuation model 
 From previous equations we can see that, to determine the 
probability of event E, it is necessary to find out what are the 
possible values for duration, {Dk}, and determine the 
probabilities associated with those values. Another issue is 
finding the correct values for amplitude at the output. To find 
these values, we use the method proposed in [7]. Figure 2 shows 
how the glitch propagates from the output of gate G to the 
output of a gate G’, which is assumed to be part of the sensitized 
path from G to a generic output F.  
 As  claimed in [7], when the glitch propagates to the input 
of gate G’, depending on the relation between the duration din of 
the glitch and the propagation time of the gate G’, tprop, there are 
three possible options: 

- if din ≤ tprop, then the glitch will not propagate through the 
gate (it is masked); 

- if tprop < din ≤ 2tprop, then the glitch will propagate, but the 
amplitude and the duration will be smaller at the output of a 
gate (it is attenuated); 

- if 2tprop < din, then the glitch will not be attenuated and it 
will be propagated as is. 
As it can be seen, the amplitude and the duration of the 

glitch at the output of the gate through which the glitch 
propagates depend on the input glitch duration, amplitude, and 
propagation delay of gate G’. However, if the output glitch 
amplitude aout is not larger than the threshold for the 
downstream gate, then it can be assumed that the glitch does not 
propagate at all. As in [7], we assume the following: when the 
output voltage has a “1” logic value (Vdd), and a glitch affects 
the input, the output minimum value is: 
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Similarly, when the output voltage has a “0” logic value (0) and 
a glitch affects the input, the output maximum value is: 
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                              (14) 
where VT1 and VT2 are the thresholds that divide the interval in 
which ain/VS’ can take values, into three parts. These thresholds 
are functions of the glitch duration, normalized with respect to 
the gate propagation delay tprop. The curve obtained from 
simulation can be approximated by the following equations: 
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Coefficients ci, ci’ and b, b’ are determined as in [7] by fitting 
the equations with results obtained by HSPICE simulations of a 
simple inverter chain. This attenuation model has been shown to 
have the average accuracy of 90% when compared to HSPICE. 
The regions where the model gives less accurate results are 
around VT1 and VT2, but these regions are not of interest, since 
the glitch certainly does not propagate, or it  propagates without 
attenuation. 
 
5. The symbolic modeling framework 
 
 To find the probability of event E (as described in Section 
4.1.), we need to find the possible values for the duration and 
amplitude of a glitch at the generic output F. To determine the 
probability of having a glitch of duration Dk at that output, we 
use BDDs and ADDs. Our algorithm is described in the 
following. 
 
5.1. ADD creation 
 ADDs are created starting with the first node in topological 
order. Duration and amplitude ADD are the same, except for the 
values stored in the terminal nodes. Terminal node “0” 
represents combinations of inputs that logically mask the glitch, 



   
 

and all the cases when the glitch becomes too short or too 
attenuated to be propagated, i.e., all cases when glitch is 
electrically masked. The values on the other terminal nodes will 
depend on the paths through which the glitch propagates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. The main algorithm. 
 
 The initial ADD for each gate is built for the glitch 
originating at that gate. It consists of only one terminal node for 
all possible input patterns – initial duration or amplitude value. 
Those ADDs are passed to all fanout gates, which use them for 
creating new ADDs based on their own attenuation model. 
 Let us now assume that gates G and G’ are internal gates on 
the sensitized path through which the glitch propagates to the 
output F. To create new ADDs for gate G’, we use propagated 
ADDs from gate G (which will propagate the initial glitch 
amplitude and duration ADDs, but also ADDs that it has built 
with respect to ADDs passed from its fanin gates), and 
sensitization BDDs. Since the glitch propagates only if it is on a 
sensitized path, we need to create sensitization BDDs to find out 
for which input patterns the path between gates G and G’ is 
sensitized. Thus, to build new ADDs for gate G’, we use an 
ADD received from its input neighbor G, and a sensitization 
BDD, that represents the function f=∂G’/∂G. Only for the cases 
that end up in the terminal node “1” in the sensitization BDD, 
and a node different then “0” in the ADDs, we calculate new 
values for duration and amplitude. All other cases represent 
either logically or electrically masked values. Starting with the 
first node in the topologically sorted list, we create ADDs and 
BDDs at each node, but they are destroyed as soon as they are 
not needed. Moreover, some of the current ADDs become “0” 
due to masking effects, so those ADDs are also removed. When 
the final node in the circuit is reached, only the ADDs for output 
F are needed. 
 Each of these ADDs represents a pair gate-output, where 
gate is the one where glitch appears and output is the one for 
which we determine the probability of error susceptibility. The 

terminal nodes for these ADDs represent the final duration or 
amplitude of a glitch at the output. In addition to them, we also 
keep track of a list of delays that are computed in parallel with 
creating ADDs. The delays are used for cases when glitches 
from reconvergent paths are merged. 
 To show how our method works, Figure 5 presents ADDs 
that are built on paths 1→5 and 2→3→5 of the ISCAS’85 
benchmark C17 (Figure 4). Figure 5a shows sensitization BDDs 
for paths 1→5 and 2→3→5, while Figures 5b and 5c represent 
initial and propagated duration ADDs for glitches originating at 
gate 2 (2 steps) and gates 1 and 3 (one step for each). As it can 
be seen from Figure 3, the algorithm for creating ADDs is linear 
in  the number of gates and number of inputs, while the 
algorithm for computing probabilities is linear in number of 
gates and number of outputs. 
 In the next section, we explain how glitches arriving on 
reconvergent paths are merged.  
 
 
 
 
 
 
 

Figure 4. An example circuit (C17). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) Sensitization BDDs for paths 1→5 and 2→3→5, (b) 
duration ADDs for the propagation of glitch originating at gate 2, 
and (c) duration ADDs for glitches originating at gates 1 and 3. 
 
5.2. Reconvergent glitches 
 We define a function mergeADDs, which is used to find 
and merge all ADDs that represent reconvergent glitches. For 

createAllADDs { 
    set technology parameters; 
    parse input netlist; 
    create gate node list; 
    for each gate in gate_node_list 
       build neighbors list; 
    sort gates topologically; 
    for each gate in sorted_gate_node_list) { 
       create output BDD; 
       find reconvergent paths; 
       merge ADDs; 
       create sensitization BDDs; 
       create duration and amplitude ADDs; 
       remove zero ADDs; 
       pass all ADDs to output neighbors; 
    } 
} 
 
findProbabilities { 
   set probabilities for inputs; 
   for each output of the circuit 
       for each gate  
            compute the probability of error; 
} 
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example, in the case of benchmark C17, we can see that the 
output of gate 2 goes to gates 3 and 4, and that the outputs of 
these gates (3 and 4) are inputs to gate 6. Thus, a glitch 
occurring at the output of the gate 2 can propagate through two 
paths (through gates 3 and 4) to gate 6. In this case, depending 
on the values on the circuit inputs, different superposition of the 
two glitches arriving to the inputs of the gate 6 can occur. 
Therefore, when building ADDs for duration and amplitude, we 
need to know whether such situations occur, in order to compute 
the correct values. The pseudocode for the function that merges 
reconvergent glitches is given in Figure 6.  
 
  
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The algorithm for mergeADDs function. 
  
 In more detail, from the list of all reconvergent paths 
arriving to that gate, we analyze separately groups of paths that 
originate at the same gate. For the paths with the same start gate, 
and their corresponding ADDs (i.e., glitches), we build a quasi 
sensitization BDD, that is, a BDD where the zero node 
represents all the cases where at least one of other inputs (that 
do not carry a glitch) is controlling, and one where neither one 
of them is controlling. This BDD can reduce ADD size, so that 
we analyze only cases where glitches affect output of the gate. 
Next, we find the cases where inputs that carry glitches mask 
each other. Not all reconvergent glitches occur for all input 
patterns, and there are situations where one of the glitches 
appears at the gate input, but at least one of the others is 
logically masked. Moreover, if this input is set to a controlling 
value, then the existing glitch will also be masked. Thus, we 
need to mask all these cases in the ADDs for the reconvergent 
paths. When masking is done, the only input combinations that 
lead to non-zero terminal nodes in ADDs are those that allow 
glitches to affect the output of a gate. Each ADD has a delay 
associated with it, so the list of reconvergent paths is sorted 
according to their delays. From the sorted list, we take pairs of 
ADDs and merge them, as shown in Figure 6. When merging 
ADDs, four possible situations can occur, as shown in Figure 7.   

 Two inputs (that carry reconvergent glitches) that are to be 
merged can be: both controlling, both non-controlling, or first 
can be controlling, second non-controlling and vice versa. It is 
easy to conclude from Figure 7 that, in some cases, the resulting 
glitch is the same as one of the original two – we just need to 
keep that one and mask those cases in ADDs of the other one. 
The same should be done when a new glitch starts at the same 
time as one of the original two, except that in this case the 
corresponding value in duration ADD is changed. There are also 
situations when glitches mask each other or when one glitch is 
changed (attenuated), the other one is removed, and a new one 
appears. Since the new glitch has a new delay, we cannot merge 
it into neither one of the ADDs, but we need to create a new 
ADD with the new corresponding delay. If the two resulting 
glitches are close enough to each other, we can assume they are 
merged into a single long glitch (worst-case approximation). As 
it can be seen by direct inspection, the algorithm for merging 
ADDs on reconvergent paths is linear in the number of outputs, 
number of gates, and number of reconvergent paths in the 
circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Possible combinations of reconvergent glitches (in1 and 
in2 are inputs, inr is the effective glitch) 
 
6. Probability computation 
 
 Since different combinations of “0”s and “1”s can occur at 
the inputs of a given combinational circuit, we set various 
values for the probability of each input being “1.” We use these 
probabilities to find the error susceptibility for each output of 
the combinational logic.  
 When all ADDs for a given circuit are built, the error 
susceptibility for each output due to an error at the output of any 
gate in the circuit can be computed. We use equation (11) to 
compute these probabilities. For a generic output Fj and a gate 
Gi we build all ADDs representing the duration and amplitude of 
a glitch starting at the output of gate Gi and propagating to 
output Fj. Given the probability of “1” for each input, we 
compute the probability that the glitch duration D at the output 

mergeADDs() { 
    for each gate { 
       create its list of reconvergent paths; 
       create quasi sensitization BDD; 
       find mutual masking; 
       mask reconvergent ADDs; 
       sort list according to delays; 
       for (i=1 to list size-1) { 
           for (j=i+1 to list size) { 
              case { 
                (value[i] is controlling and value[j] is controlling): 
                       merge both controlling; 
                (value[i] is non- controlling and value[j] is non-controlling): 
                        merge both non-controlling; 
                (value[i] is non-controlling and value[j] is controlling): 
                        merge non-controlling controlling; 
                 (value[i] is controlling and value[j] is non-controlling) 
                        merge controlling non-controlling; 
               } 
               update list; 
           } 
       } 
    } 
} 

Both inputs non-controlling 
in1 
 
in2 
 
inr 

in1 
 
in2 
 
inr 

First input non-controlling, second controlling

in1 
 
in2 
 
inr 

Both inputs controlling 

First input controlling, second non-controlling
in1 
  
in2    
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is Dk, and the corresponding latching probability for this specific 
duration value as in equation (12). To analyze error 
susceptibility of a given combinational logic circuit, we assume 
a discrete set of test glitches of different initial duration dinit, and 
we use randomly generated input probability distributions. We 
analyze each circuit from two aspects: reliability of its outputs 
when faults occur inside the circuit, and influence of individual 
gates error on outputs. For each output Fj and dinit, we find mean 
error susceptibility as the probability of output Fj failing due to 
errors in the internal gates as:   
mean error susceptibility (Fj) =  
(∑all Gi  probability of Fj failing if Gi fails)/ 
(#gates · #prob. distributions)                                                 (17) 
 For each gate Gi and dinit, we find minimum, maximum, 
average and median error susceptibility over all outputs Fj that 
are affected by a glitch occurring at the output of gate Gi. Mean 
error impact for gate Gi is computed as: 
mean error impact (Gi) =  
(∑all Fj probability of Fj failing if Gi fails)/ 
(#outputs · #prob. distributions)                                              (18) 
 For each input probability distribution used, we also find 
the number of gates that do not affect any of the outputs. 
 
7. Experimental results  
 
 In this section, we compare the results of our symbolic 
framework for eight combinational circuits, given different 
glitch durations and different sets of input probabilities. The 
technology used is 70nm, Berkeley Predictive Technology 
Model [19,20]. The clock cycle period (Tclk) used is 250ps, and 
setup (tsetup) and hold (thold) times for the latches are assumed to 
be 15ps each. Vdd is assumed to be 1V, and for simplicity, all 
switching threshold voltages, gate threshold (VS’, and VS), and 
latch threshold VS,latch are assumed to be Vdd/2. The delay of an 
inverter in the given technology is determined by simulating a 
ring oscillator in HSPICE and found to be 10.2ps. The delays 
for other gates are found by using logical and electrical effort 
methodology [21]. The benchmark circuits are chosen from 
ISCAS’85 and mcnc’91 suites. Our symbolic modeling 
framework is implemented in C++, and run on a 3GHz Pentium 
4 workstation running Linux.   
 We have compared glitch durations and delays (obtained 
using our symbolic framework) at the outputs of circuits C17 
and circ, with results from HSPICE simulations for several 
initial glitch durations. Existing terminal nodes in output 
duration ADDs in our framework, as expected, match exactly 
the results of HSPICE simulations in case of logical masking. 
The electrical masking results also show a good approximation. 
In most cases, our framework captures reconvergent and merged 
glitches as well as HSPICE, the only discrepancies coming from 
the approximate delay and attenuation models used by the 
symbolic framework. 
 The results for one small benchmark 5xp1 (116 gates) and 
one larger benchmark, C1908 (384 gates) are presented in 
Figure 8.  We divide interval [0,1] of possible error impact into 
ten subintervals. For each benchmark, each error impact 
interval, and various input probability distributions, we show the 
number of gates that have minimum, maximum, mean or 
median error impact in those intervals. We present this 

dependence in case of three different initial glitch durations. For 
the small glitch that has duration of 50ps, all error impact values 
are in the range from 0 to 0.4. The gates that influence outputs 
are just the output gates, and their fanin gates. In case of a larger 
circuit, there is a significant number of gates that do not have 
any impact on output error. However, in case of a 125ps long 
glitch, it might not propagate to the output due to logical 
masking, or it will not be latched due to latching window 
masking. Since the glitch is very long even at the output, there is 
a considerable number of gates that will almost certainly have 
an impact on output error. 
 In Table 1 we show the experimental results for several 
benchmarks of varying complexity. We present minimum, 
maximum, average and median output error susceptibility for all 
benchmarks, as well as the associated run time. As it can be seen 
from the results, the mean error susceptibility decreases with the 
circuit complexity, due to more probable electrical and logical 
masking. The results also show that median value is usually 
closer to the minimum. Therefore, we can conclude that most of 
the outputs have small error susceptibility, but in the case of 
large glitches (Figure 8), almost all gates have an impact on 
output failure. 
 
Table 1. Minimum, maximum, average and median circuit error 
susceptibility computed as in equation (17), for several benchmarks. 
 

 
 

8. Conclusion and future work 
 
 In this paper, we present a symbolic modeling methodology 
and associated framework for efficient estimation of the soft 
error susceptibility of a combinational logic circuit. We have 
demonstrated the efficiency of our framework by applying it on 
a subset of ISCAS’85 and mcnc’91 benchmarks of various 
complexities. The framework allows for the analysis of 
reliability of combinational circuits from various aspects: output 
susceptibility to error, influence of individual gates on 

mean error susceptibility 
Bench. no. 

gates
no. 
PIs 

no. 
POs glitch size

min max average median 

run time 
(s) 

small 0.00106 0.01003 0.00468 0.00381 0.10 
medium 0.02659 0.04471 0.07187 0.07403 0.20 z4ml 45 7 4 

large 0.10836 0.31161 0.20181 0.19364 0.28 
small 0.00060 0.00185 0.00067 0.00060 2.61 

medium 0.00574 0.04162 0.02084 0.02053 11.30 add16 80 33 17 
large 0.01900 0.11867 0.08414 0.08725 11.35 
small 0.00041 0.00643 0.00291 0.00224 0.30 

medium 0.00254 0.04193 0.01960 0.01592 0.30 5xp1 116 7 10 
large 0.00655 0.10108 0.04765 0.03765 0.35 
small 0.00035 0.00035 0.00035 0.00035 0.60 

medium 0.01199 0.01199 0.01199 0.01199 1.25 9symml 145 9 1 
large 0.03394 0.03394 0.03394 0.03394 1.40 
small 0.00027 0.00113 0.00057 0.00027 4.76 

medium 0.00152 0.00528 0.00293 0.00174 4.90 C499 352 41 32 
large 0.00652 0.02368 0.01131 0.009215 174.00 
small 0.00025 0.00119 0.00044 0.00025 20 

medium 0.0015 0.01089 0.00375 0.00184 176.00 C1908 384 33 25 
large 0.00519 0.03906 0.01483 0.00622 672.00 
small 0.00010 0.00049 0.00021 0.00017 3.00 

medium 0.00041 0.00167 0.00087 0.00085 3.50 duke2 469 22 29 
large 0.00118 0.00462 0.00247 0.00241 4.43 
small 0.00007 0.00018 0.00009 0.00007 5.00 

medium 0.00027 0.01656 0.00469 0.00330 20.10 alu4 560 14 8 
large 0.00246 0.04267 0.01593 0.01201 32.30 



   
 

individual outputs and overall circuit reliability, and the 
dependence of the circuit reliability on glitch duration, 
amplitude, and input patterns. 
 An area of future research is the use of more accurate 
model for latching window masking, by taking into account all 
possible values of propagation delays on the sensitized paths. 
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Figure 8. Mean error impact for a small benchmark (5xp1 – top 
three charts) and a large benchmark (C1908 – bottom three charts) 
computed as in equation (18) for three glitch durations. 
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