

Circuit Reliability Analysis Using Symbolic Techniques
Natasa Miskov-Zivanov, Diana Marculescu

Department of Electrical and Computer Engineering
Carnegie Mellon University

{nmiskov,dianam}@ece.cmu.edu

Abstract - Due to the shrinking of feature size and significant
reduction in noise margins, nanoscale circuits have become more
susceptible to manufacturing defects, noise-related transient faults and
interference from radiation. Traditionally, soft errors have been a much
greater concern in memories than in logic circuits. However, as
technology continues to scale, logic circuits are becoming more
susceptible to soft errors than memories. To estimate the susceptibility
to errors in combinational logic, we propose the use of Binary Decision
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs) for
unified symbolic analysis of circuit reliability. We present a framework
that uses BDDs and ADDs and enables analysis of combinational
circuits reliability from different aspects: output susceptibility to error,
influence of individual gates on individual outputs and overall circuit
reliability, and the dependence of circuit reliability on glitch duration,
amplitude, and input patterns. This is demonstrated by the set of
experimental results, which show that the mean output error
susceptibility can vary from less then 0.1%, for large circuits and small
glitches, up to about 30% for very small circuits and large enough
glitches.

1. Introduction

 For the last few decades, the main factors driving the
design of digital systems have been cost, performance, and,
more recently, power consumption. However, with technology
scaling, reliable operation of digital systems is being severely
challenged, thus pointing to the use of fault-tolerance-driven
design methodologies, not only for mission critical applications
(medical, banking, traffic control, etc.), but also for regular,
mass-market applications [1].
 To allow for the efficient design of a system that can
tolerate faults, a first natural step includes understanding the
source of induced errors, but most importantly, their modeling
and analysis for the purpose of guiding the design process.
 A fault manifests itself as an incorrect state in the hardware
or software that is part of the system. Such faults can result from
physical defects, design flaws, or operator errors. According to
their source or duration, faults can be divided into permanent,
transient and intermittent faults.

• Permanent faults occur and remain stable until a repair is
undertaken (e.g., stuck-at-zero, stuck-at-one).

• Transient (external, soft, or SEU-Single Event Upset) faults
occur for a short period of time and then disappear (a bit
flip due to a transient physical phenomena, e.g., cosmic ray,
alpha particle). These faults can cause an error in the
system by changing the internal state, even though they last
only for a short time.

• Intermittent faults, after they first occur, usually exhibit a
relatively high occurrence rate and, eventually, tend to
become permanent [2].

 Manifestation of a fault is called an error, and the system-
level effect of an error is known as a failure. The principle of

fault-tolerance is to automatically surmount the effects of faults
by use of redundant components. Consequently, a fault-tolerant
system is one, which is capable of continued operation with
little or no performance degradation and without corruption of
data, in the presence of failure due to either internal or external
causes. However, not all faults lead to errors and not all errors
lead to failures.
 In this work, we address the first issue mentioned above –
that is, estimating the likelihood that a transient (physical) fault
will lead to an error. Our main goal is to allow for symbolic
modeling and efficient estimation of the soft error susceptibility
of a combinational logic circuit. This can be further used to
reduce the cost of applying various techniques for error
detection and correction.

1.1. Transient faults in current semiconductor technology
 The shrinking of feature size leads to the increase of the
amount of charge usually stored in circuit nodes. This increase,
together with the significant reduction in noise margins makes
circuits more susceptible to manufacturing defects, noise-related
transient faults and interference from radiation. When high-
energy neutrons or alpha particles hit the silicon bulk, they
create minority carriers, which, if collected by a p-n junction,
result in a current pulse of very short duration. A current pulse
that occurs as the result of the strike is often called a SEU
(single-event upset). These events may cause a bit flip in some
latch or memory element. Additionally, a SEU may occur in an
internal node of combinational logic and propagate to the latch.
If latched, it results in a soft error.
 Traditionally, soft errors have been of greater concern in
memories than in logic circuits, because of the small cell size of
memories and the nature of memory – a SEU can immediately
result in a soft error if it exceeds the critical charge stored in the
cell. In contrast to this, three factors prevented logic from
becoming more susceptible to soft errors:
1. Logical masking – to be latched, a SEU needs to be on the

sensitized path from the location where it originates to the
latch;

2. Electrical masking – a SEU needs to create a pulse that has a
duration and amplitude large enough to reach the latches. Due
to the electrical properties of the gates the pulse (glitch) is
passing through, it can be attenuated and even completely
masked before it reaches the latch;

3. Latching-window masking – if the pulse reaches the latch and
appears at its input “on time” (during this window),
depending on its amplitude and duration, it has a great
probability of being latched.

 However, as technology continues to scale, logic circuits
are becoming much more susceptible to soft errors. The trends
toward reduced logic depth reduce the attenuation when SEU is
propagating through the circuit. Smaller feature sizes and lower

voltage levels allow lower energy particles to cause SEUs.
Therefore, soft error failure rates in combinational logic are
expected to become very important in the future [3] and even
exceed soft error rates in memories.

1.2. Paper organization
 The rest of this paper is organized as follows. In Section 2
we give an overview of related work. Section 3 describes our
assumptions and the notations we use in the rest of the paper.
Section 4 presents in more detail the mathematical model that
lies behind our framework. In Section 5, we describe our
symbolic modeling methodology, while in Section 6 we
describe a practical method for determining circuit susceptibility
to soft errors. In Section 7, we report experimental results for a
set of common benchmarks. Finally, with Section 8 we conclude
our work and provide some directions for future work.

2. Related work

2.1. Transient fault analysis and modeling.
 Intensive research has been done so far in the area of
analysis and modeling transient faults [3-5,7-9]. However, for
estimating the likelihood of soft errors as the result of a SEU,
most of the previous work has relied on fault injection [1,6,7]
and simulation instead of the symbolic modeling of the
probability of soft errors. The results presented by Mohanram et
al. [1] show that soft error susceptibility of internal nodes in a
logic circuit can vary by at least one order of magnitude. Based
on this fact, the authors have applied concurrent error detection
(CED) techniques asymmetrically (targeting mostly the nodes
with high soft error susceptibility), which led to reduced cost.
 In [7], the authors give a mathematical model for analyzing
the propagation of a transient fault through a chain of
combinational gates. They verified that their model has 90%
average accuracy with respect to HSPICE simulation. However,
their work was focused on estimating electrical masking on the
sensitized path in the circuit, while logical and latching-window
masking were not included.
 Work by Zhao et al. [8], also stressed the importance of
analyzing the effect of internal glitches on the latched outputs of
the circuit. For electrical masking, the authors use noise
rejection curves and find the probability that noise will
propagate through the given node, without being completely
attenuated. Each node is analyzed separately, so their analysis
does not reflect the influence of the location of the node inside
the circuit on the observability of the noise at the latched output.
Moreover, for logical masking, the authors use path tracing,
which can become very inefficient for larger circuits.
 In [9], Zhang et al. present a methodology for soft error rate
analysis. This work focuses mostly on modeling the probability
that a single event transient is generated by a particle hit.
Electrical masking for each path is obtained from HSPICE
simulation, and logical masking is computed for each input
vector and each path separately, by flipping the logic value of
each node.
 Two more recent works on reliability evaluation have been
presented [10,11]. In [10], Dhillon et al. present an independent
computation of the three factors, logical, electrical, and latching-
window masking to find the soft-error tolerance of the circuit.
Work by Krishnaswamy et al. in [11] uses probabilistic transfer

matrices and their representation via Algebraic Decision
Diagrams. Each gate can be represented as a matrix where the
probability of each output value is explicit for each input
combination. Parallel compositions of gates are represented with
tensor products. However, the work presented in [11] focuses
only on logical masking effect of the circuit for given gate
output probabilities, without considering electrical and latching-
window masking.

2.2. Analysis of combinational circuits using BDDs and
ADDs
 In order to estimate the probability of errors in
combinational logic, our symbolic tool uses Binary Decision
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs), as
part of the CUDD package [12]. BDDs [13,14] provide an
efficient and canonical representation for Boolean functions. In
[15], a new type of BDD, called a MultiTerminal BDD
(MTBDD), was introduced. A MTBDD allows for multiple
terminal nodes in the canonical representation. Similar to
MTBDDs, ADDs [16] are presented as a class of symbolic
models and associated algorithms applicable not only to
arithmetic, but also to many algebraic structures. For example,
these decision diagrams were applied to symbolic timing
analysis in [17]. In that work, the authors present RESTA, a
robust and extendable timing analysis tool that addresses three
main goals: considers both internally and externally specified
input constraints, handles a wide range of circuit structures and
have a robust underlying framework. This application has
shown ADDs to be practical and efficient, while providing quite
accurate results.

2.3. Paper contribution
 There are some important differences between our model
and those in [8-11]. In comparison to [8-10], where latching-
window, electrical and logical masking are analyzed separately
and assumed independent, our approach provides a unified
treatment of these three factors, while including their joint
dependency on input patterns and circuit topology. In most of
the previous work, information about electrical masking is
obtained by simulation [9], while information about logical
masking is obtained by path tracing [8-10]. In our work, by
using BDDs and ADDs, this information is instead implicitly
included inside the decision diagrams, and therefore allows for
efficient concurrent computation of output error susceptibility
due to hits on various internal nodes. In the case of reconvergent
glitches (that is, glitches arriving at the same gate or latched
output from the same source on two or more different sensitized
logical paths), the problem of merging the glitches needs to be
addressed. In [8], a similar problem for several different noise
sources is solved by shifting the noise rejection curve. The
authors in [9] approximate the case of reconvergent glitches
with the worst case, and claim that in most cases this does not
affect the accuracy significantly. Our approach to this problem
is different from these two and is explained in more detail in
Section 5. Finally, while [11] provides a symbolic method for
circuit reliability, it does not include the additional joint impact
of electrical and latching window masking and presents logical
masking only.

F

 ….
 ….
 ….
 ….
 ….

Combinational
logic

L
a
t
c
h
e
s

L
a
t
c
h
e
s

.

.

.

.

.

.

.

.

G

G’

3. Assumptions and notations

 We show in Figure 1 an example of a target circuit we are
analyzing, including the combinational logic, as well as its input
and output latches. We estimate the probability that a pulse or
glitch, occurring due to some transient physical phenomenon at
an internal gate G of the circuit, will result in an error at output
F. In our framework, we capture all gate-output combinations,
i.e., we determine the probability of a soft error at any output
due to a fault originating at any internal gate.

Figure 1. A target combinational circuit with input and output
latches.

Figure 2. A glitch at the (a) output of initial gate G, (b) input and
output of gate G’ on sensitized path, and (c) circuit output F.

 Figure 2 shows the propagation of the glitch, that is, the
shape at the output of gate G where it occurs (Figure 2a), at the
input and output of a gate G’ on the sensitized path between gate
G and latched output F (Figure 2b), and at the output F (Figure
2c).
 At the output of gate G, the glitch has initial duration dinit,
and initial amplitude ainit. The duration at the output of the gate
is always measured at switching threshold voltage (VS) [18] of
downstream gate, therefore, according to Figure 2:
 12 ttdinit −= (1)
The propagation of a glitch through an internal gate G’ (Vs’) is
shown in Figure 2b. At the input of gate G’, the glitch has
amplitude ain and duration din, and the output amplitude aout and
duration dout. Durations din and dout are in this case measured at
the switching threshold voltage of gate G’ [18]. However, for all
output neighbors of gate G’, dout will be recomputed according
to their switching thresholds. Propagation delay of gate G’ is
tprop. To find out if the glitch propagates through gate G’, and to
compute the new amplitude and duration, we use the

methodology from [7], as explained in Section 4. Finally, at the
latched output F, the glitch has amplitude A and duration D.
Switching threshold voltage of the latch, at which D is
measured, is VS,latch. Since there is a delay from gate G to output
F (T2), the time when the glitch becomes larger than VS,latch is t1’,
and when it becomes lower than VS,latch is t2’:
 112 ' ttT −= (2)
 '' 12 ttD −= (3)
The duration D, as well as the amplitude A, can have different
values at output F, depending on the various sensitized paths,
from G to F. The set of different values of duration D for
various sensitized paths is denoted by {Dk}. The delay T2
depends on the sensitized path (i.e., on the gate delays on that
path) from gate G to output F, while the delay from input latches
to gate G (T1) depends on the path from inputs to gate G.
However, in our model, when computing latching window
masking, we assume the worst case in which the latching
window probability is maximized, as it will be seen next.
 Since we are interested in the propagation of a glitch in the
time interval between two rising edges of the clock signal, we
can take [0, Tclk] as the interval of observation. For a signal to be
latched, it needs to be stable during the setup time tsetup before
the rising edge of the clock, and hold time thold after the rising
edge of the clock. In other words, it needs to be stable inside
interval [Tclk-tsetup, Tclk+thold].

4. Mathematical description of the model

 This section describes the conditions that are needed for a
transient glitch at the output of an internal gate to be propagated
to the output and latched, such that a soft error is registered. We
detail the interdependency between conditions for logical,
electrical, and window masking, and describe their joint model.

4.1. Necessary conditions
 To this end, we define the following events:

E – a glitch originating at gate G is latched at output F;
A – the amplitude of a glitch at the output is larger than the

switching threshold of the latch (in case when correct
output value is “0”) or smaller than the switching
threshold (in case when the correct output value is “1”);

D – the duration of a glitch at the output is larger than the sum
of setup and hold time of the latch;

T – the glitch appears at the output on time to be latched (i.e.,
it satisfies the setup time and hold time conditions when
the rising edge of the clock occurs).

It is clear that for event E to happen, the other three events need
to occur:
 E = A ∩ D ∩ T (4)
 In this model, logical and electrical masking are implicitly
included in A and D, while latching window masking is included
in T. As mentioned in Section 3, the switching threshold of the
latch at output F is VS,latch. To satisfy the latching condition, the
time at which the glitch reaches VS,latch (t1’) must satisfy:

setupclk tTt −<'1
 (5)

In addition, the time when the glitch becomes less than VS,latch
(t2’) must satisfy:

t

output
input

t

t tprop dout

 t1 t2

 V

ainit

VS

V

 V

 A
 VS,latch

(a)

 (b)
 ain
 VS’
 amin

(c)

 t1’ t2’

T2

 holdclk tTt +>'2 (6)
with duration D of the glitch at output F given by equation (3).
Thus, we can write the condition which allows a glitch
occurring at gate G to be latched, as:
),(221 TtTDTtTt setupclkholdclk −−−−+∈ (7)

More formally, one can express the three events as follows:
A: A > VS,latch (when correct output value is “0”) or
 A < VS,latch (when correct output value is “1”)
D: D > tsetup+ thold
T: t1 ∈ (Tclk + thold −T2 −D, Tclk −tsetup −T2)
Therefore, the probability of event E can be written as:
 P(E) = P(A ∩ D ∩ T) = P(T | A ∩ D) · P(A ∩ D) (8)
As seen in Figure 2c, D is satisfied only if A is satisfied, that is,
only if the amplitude of the glitch is larger than the switching
threshold, the duration can be different from zero, then :

 D ⊂ A (9)
and thus:
 A ∩ D = D (10)
which implies:
P(E) = P(T | D) · P(D) =

=+>∩−−−−+∈)),((221 holdsetupsetupclkholdclk ttDTtTDTtTtP

==∩−−−−+∈))(),((221 U
k

ksetupclkholdclk DDTtTDTtTtP

∑ =⋅=−−−−+∈
k

kksetupclkholdclk DDPDDTtTDTtTtP))()|),(((221

 (11)
where {Dk} is the set of possible glitch durations, along various
sensitized paths.
 We assume that t1 is uniformly distributed in the interval
(T1, T1+Tclk-dinit). Thus, in the worst case when, for a given
glitch duration Dk, the interval (Tclk + thold −T2 −D, Tclk −tsetup −T2)
lies inside it, the probability of event T at the output is:

==−−−−+∈)|),((221 ksetupclkholdclk DDTtTDTtTtP

initclk

holdsetupk

dT
ttD

−
+−)((12)

4.2. The attenuation model
 From previous equations we can see that, to determine the
probability of event E, it is necessary to find out what are the
possible values for duration, {Dk}, and determine the
probabilities associated with those values. Another issue is
finding the correct values for amplitude at the output. To find
these values, we use the method proposed in [7]. Figure 2 shows
how the glitch propagates from the output of gate G to the
output of a gate G’, which is assumed to be part of the sensitized
path from G to a generic output F.
 As claimed in [7], when the glitch propagates to the input
of gate G’, depending on the relation between the duration din of
the glitch and the propagation time of the gate G’, tprop, there are
three possible options:

- if din ≤ tprop, then the glitch will not propagate through the
gate (it is masked);

- if tprop < din ≤ 2tprop, then the glitch will propagate, but the
amplitude and the duration will be smaller at the output of a
gate (it is attenuated);

- if 2tprop < din, then the glitch will not be attenuated and it
will be propagated as is.
As it can be seen, the amplitude and the duration of the

glitch at the output of the gate through which the glitch
propagates depend on the input glitch duration, amplitude, and
propagation delay of gate G’. However, if the output glitch
amplitude aout is not larger than the threshold for the
downstream gate, then it can be assumed that the glitch does not
propagate at all. As in [7], we assume the following: when the
output voltage has a “1” logic value (Vdd), and a glitch affects
the input, the output minimum value is:










−
⋅+⋅

−
−==

0
' 12

2

12
min VTVT

VTV
V
a

VTVT
V

V

Va dd

S

indd

dd

out

2

21

1

'/

'/

'/

VTVa

VTVaVT

VTVa

Sin

Sin

Sin

>

<<

<

 (13)
Similarly, when the output voltage has a “0” logic value (0) and
a glitch affects the input, the output maximum value is:










−
⋅−⋅

−
==

dd

dd

S

indd
out

V
VTVT

VTV
V
a

VTVT
VVa

12

1

12
max '

0

2

21

1

'/

'/

'/

VTVa

VTVaVT

VTVa

Sin

Sin

Sin

>

<<

<

 (14)
where VT1 and VT2 are the thresholds that divide the interval in
which ain/VS’ can take values, into three parts. These thresholds
are functions of the glitch duration, normalized with respect to
the gate propagation delay tprop. The curve obtained from
simulation can be approximated by the following equations:

 b
t
dc

t
dc

t
dcVT

prop

in

prop

in

prop

in +









+










+=

3

3

2

211
 (15)

 ''''
3

3

2

212 b
t
dc

t
dc

t
dcVT

prop

in

prop

in

prop

in +









+










+= (16)

Coefficients ci, ci’ and b, b’ are determined as in [7] by fitting
the equations with results obtained by HSPICE simulations of a
simple inverter chain. This attenuation model has been shown to
have the average accuracy of 90% when compared to HSPICE.
The regions where the model gives less accurate results are
around VT1 and VT2, but these regions are not of interest, since
the glitch certainly does not propagate, or it propagates without
attenuation.

5. The symbolic modeling framework

 To find the probability of event E (as described in Section
4.1.), we need to find the possible values for the duration and
amplitude of a glitch at the generic output F. To determine the
probability of having a glitch of duration Dk at that output, we
use BDDs and ADDs. Our algorithm is described in the
following.

5.1. ADD creation
 ADDs are created starting with the first node in topological
order. Duration and amplitude ADD are the same, except for the
values stored in the terminal nodes. Terminal node “0”
represents combinations of inputs that logically mask the glitch,

and all the cases when the glitch becomes too short or too
attenuated to be propagated, i.e., all cases when glitch is
electrically masked. The values on the other terminal nodes will
depend on the paths through which the glitch propagates.

Figure 3. The main algorithm.

 The initial ADD for each gate is built for the glitch
originating at that gate. It consists of only one terminal node for
all possible input patterns – initial duration or amplitude value.
Those ADDs are passed to all fanout gates, which use them for
creating new ADDs based on their own attenuation model.
 Let us now assume that gates G and G’ are internal gates on
the sensitized path through which the glitch propagates to the
output F. To create new ADDs for gate G’, we use propagated
ADDs from gate G (which will propagate the initial glitch
amplitude and duration ADDs, but also ADDs that it has built
with respect to ADDs passed from its fanin gates), and
sensitization BDDs. Since the glitch propagates only if it is on a
sensitized path, we need to create sensitization BDDs to find out
for which input patterns the path between gates G and G’ is
sensitized. Thus, to build new ADDs for gate G’, we use an
ADD received from its input neighbor G, and a sensitization
BDD, that represents the function f=∂G’/∂G. Only for the cases
that end up in the terminal node “1” in the sensitization BDD,
and a node different then “0” in the ADDs, we calculate new
values for duration and amplitude. All other cases represent
either logically or electrically masked values. Starting with the
first node in the topologically sorted list, we create ADDs and
BDDs at each node, but they are destroyed as soon as they are
not needed. Moreover, some of the current ADDs become “0”
due to masking effects, so those ADDs are also removed. When
the final node in the circuit is reached, only the ADDs for output
F are needed.
 Each of these ADDs represents a pair gate-output, where
gate is the one where glitch appears and output is the one for
which we determine the probability of error susceptibility. The

terminal nodes for these ADDs represent the final duration or
amplitude of a glitch at the output. In addition to them, we also
keep track of a list of delays that are computed in parallel with
creating ADDs. The delays are used for cases when glitches
from reconvergent paths are merged.
 To show how our method works, Figure 5 presents ADDs
that are built on paths 1→5 and 2→3→5 of the ISCAS’85
benchmark C17 (Figure 4). Figure 5a shows sensitization BDDs
for paths 1→5 and 2→3→5, while Figures 5b and 5c represent
initial and propagated duration ADDs for glitches originating at
gate 2 (2 steps) and gates 1 and 3 (one step for each). As it can
be seen from Figure 3, the algorithm for creating ADDs is linear
in the number of gates and number of inputs, while the
algorithm for computing probabilities is linear in number of
gates and number of outputs.
 In the next section, we explain how glitches arriving on
reconvergent paths are merged.

Figure 4. An example circuit (C17).

Figure 5. (a) Sensitization BDDs for paths 1→5 and 2→3→5, (b)
duration ADDs for the propagation of glitch originating at gate 2,
and (c) duration ADDs for glitches originating at gates 1 and 3.

5.2. Reconvergent glitches
 We define a function mergeADDs, which is used to find
and merge all ADDs that represent reconvergent glitches. For

createAllADDs {
 set technology parameters;
 parse input netlist;
 create gate node list;
 for each gate in gate_node_list
 build neighbors list;
 sort gates topologically;
 for each gate in sorted_gate_node_list) {
 create output BDD;
 find reconvergent paths;
 merge ADDs;
 create sensitization BDDs;
 create duration and amplitude ADDs;
 remove zero ADDs;
 pass all ADDs to output neighbors;
 }
}

findProbabilities {
 set probabilities for inputs;
 for each output of the circuit
 for each gate
 compute the probability of error;
}

1

3

1 0

0
0

1

1

∂G5/∂G3

3

4

0 1

0
0

1

1

2
1

0

∂G5/∂G1

2

0 D23

0 1

ADD2->3

3

D235 0

0 1

2
1

0

ADD2->3->5

2

1
1 0

0 1

1

3

D35 0

0
0

1

1

ADD3->5

3

4

0 D15

0
0

1

1

2
1

0

ADD1->5

ADD2

D2

ADD1

D1

ADD3

D3

(a)

(b)

(c)

2

0 1

0

∂G3/∂G2

1

1

4

5

2

3

6

1

2

3
4

5

6

7

8

9

10

11

example, in the case of benchmark C17, we can see that the
output of gate 2 goes to gates 3 and 4, and that the outputs of
these gates (3 and 4) are inputs to gate 6. Thus, a glitch
occurring at the output of the gate 2 can propagate through two
paths (through gates 3 and 4) to gate 6. In this case, depending
on the values on the circuit inputs, different superposition of the
two glitches arriving to the inputs of the gate 6 can occur.
Therefore, when building ADDs for duration and amplitude, we
need to know whether such situations occur, in order to compute
the correct values. The pseudocode for the function that merges
reconvergent glitches is given in Figure 6.

Figure 6. The algorithm for mergeADDs function.

 In more detail, from the list of all reconvergent paths
arriving to that gate, we analyze separately groups of paths that
originate at the same gate. For the paths with the same start gate,
and their corresponding ADDs (i.e., glitches), we build a quasi
sensitization BDD, that is, a BDD where the zero node
represents all the cases where at least one of other inputs (that
do not carry a glitch) is controlling, and one where neither one
of them is controlling. This BDD can reduce ADD size, so that
we analyze only cases where glitches affect output of the gate.
Next, we find the cases where inputs that carry glitches mask
each other. Not all reconvergent glitches occur for all input
patterns, and there are situations where one of the glitches
appears at the gate input, but at least one of the others is
logically masked. Moreover, if this input is set to a controlling
value, then the existing glitch will also be masked. Thus, we
need to mask all these cases in the ADDs for the reconvergent
paths. When masking is done, the only input combinations that
lead to non-zero terminal nodes in ADDs are those that allow
glitches to affect the output of a gate. Each ADD has a delay
associated with it, so the list of reconvergent paths is sorted
according to their delays. From the sorted list, we take pairs of
ADDs and merge them, as shown in Figure 6. When merging
ADDs, four possible situations can occur, as shown in Figure 7.

 Two inputs (that carry reconvergent glitches) that are to be
merged can be: both controlling, both non-controlling, or first
can be controlling, second non-controlling and vice versa. It is
easy to conclude from Figure 7 that, in some cases, the resulting
glitch is the same as one of the original two – we just need to
keep that one and mask those cases in ADDs of the other one.
The same should be done when a new glitch starts at the same
time as one of the original two, except that in this case the
corresponding value in duration ADD is changed. There are also
situations when glitches mask each other or when one glitch is
changed (attenuated), the other one is removed, and a new one
appears. Since the new glitch has a new delay, we cannot merge
it into neither one of the ADDs, but we need to create a new
ADD with the new corresponding delay. If the two resulting
glitches are close enough to each other, we can assume they are
merged into a single long glitch (worst-case approximation). As
it can be seen by direct inspection, the algorithm for merging
ADDs on reconvergent paths is linear in the number of outputs,
number of gates, and number of reconvergent paths in the
circuit.

Figure 7. Possible combinations of reconvergent glitches (in1 and
in2 are inputs, inr is the effective glitch)

6. Probability computation

 Since different combinations of “0”s and “1”s can occur at
the inputs of a given combinational circuit, we set various
values for the probability of each input being “1.” We use these
probabilities to find the error susceptibility for each output of
the combinational logic.
 When all ADDs for a given circuit are built, the error
susceptibility for each output due to an error at the output of any
gate in the circuit can be computed. We use equation (11) to
compute these probabilities. For a generic output Fj and a gate
Gi we build all ADDs representing the duration and amplitude of
a glitch starting at the output of gate Gi and propagating to
output Fj. Given the probability of “1” for each input, we
compute the probability that the glitch duration D at the output

mergeADDs() {
 for each gate {
 create its list of reconvergent paths;
 create quasi sensitization BDD;
 find mutual masking;
 mask reconvergent ADDs;
 sort list according to delays;
 for (i=1 to list size-1) {
 for (j=i+1 to list size) {
 case {
 (value[i] is controlling and value[j] is controlling):
 merge both controlling;
 (value[i] is non- controlling and value[j] is non-controlling):
 merge both non-controlling;
 (value[i] is non-controlling and value[j] is controlling):
 merge non-controlling controlling;
 (value[i] is controlling and value[j] is non-controlling)
 merge controlling non-controlling;
 }
 update list;
 }
 }
 }
}

Both inputs non-controlling
in1

in2

inr

in1

in2

inr

First input non-controlling, second controlling

in1

in2

inr

Both inputs controlling

First input controlling, second non-controlling
in1

in2

inr

is Dk, and the corresponding latching probability for this specific
duration value as in equation (12). To analyze error
susceptibility of a given combinational logic circuit, we assume
a discrete set of test glitches of different initial duration dinit, and
we use randomly generated input probability distributions. We
analyze each circuit from two aspects: reliability of its outputs
when faults occur inside the circuit, and influence of individual
gates error on outputs. For each output Fj and dinit, we find mean
error susceptibility as the probability of output Fj failing due to
errors in the internal gates as:
mean error susceptibility (Fj) =
(∑all Gi probability of Fj failing if Gi fails)/
(#gates · #prob. distributions) (17)
 For each gate Gi and dinit, we find minimum, maximum,
average and median error susceptibility over all outputs Fj that
are affected by a glitch occurring at the output of gate Gi. Mean
error impact for gate Gi is computed as:
mean error impact (Gi) =
(∑all Fj probability of Fj failing if Gi fails)/
(#outputs · #prob. distributions) (18)
 For each input probability distribution used, we also find
the number of gates that do not affect any of the outputs.

7. Experimental results

 In this section, we compare the results of our symbolic
framework for eight combinational circuits, given different
glitch durations and different sets of input probabilities. The
technology used is 70nm, Berkeley Predictive Technology
Model [19,20]. The clock cycle period (Tclk) used is 250ps, and
setup (tsetup) and hold (thold) times for the latches are assumed to
be 15ps each. Vdd is assumed to be 1V, and for simplicity, all
switching threshold voltages, gate threshold (VS’, and VS), and
latch threshold VS,latch are assumed to be Vdd/2. The delay of an
inverter in the given technology is determined by simulating a
ring oscillator in HSPICE and found to be 10.2ps. The delays
for other gates are found by using logical and electrical effort
methodology [21]. The benchmark circuits are chosen from
ISCAS’85 and mcnc’91 suites. Our symbolic modeling
framework is implemented in C++, and run on a 3GHz Pentium
4 workstation running Linux.
 We have compared glitch durations and delays (obtained
using our symbolic framework) at the outputs of circuits C17
and circ, with results from HSPICE simulations for several
initial glitch durations. Existing terminal nodes in output
duration ADDs in our framework, as expected, match exactly
the results of HSPICE simulations in case of logical masking.
The electrical masking results also show a good approximation.
In most cases, our framework captures reconvergent and merged
glitches as well as HSPICE, the only discrepancies coming from
the approximate delay and attenuation models used by the
symbolic framework.
 The results for one small benchmark 5xp1 (116 gates) and
one larger benchmark, C1908 (384 gates) are presented in
Figure 8. We divide interval [0,1] of possible error impact into
ten subintervals. For each benchmark, each error impact
interval, and various input probability distributions, we show the
number of gates that have minimum, maximum, mean or
median error impact in those intervals. We present this

dependence in case of three different initial glitch durations. For
the small glitch that has duration of 50ps, all error impact values
are in the range from 0 to 0.4. The gates that influence outputs
are just the output gates, and their fanin gates. In case of a larger
circuit, there is a significant number of gates that do not have
any impact on output error. However, in case of a 125ps long
glitch, it might not propagate to the output due to logical
masking, or it will not be latched due to latching window
masking. Since the glitch is very long even at the output, there is
a considerable number of gates that will almost certainly have
an impact on output error.
 In Table 1 we show the experimental results for several
benchmarks of varying complexity. We present minimum,
maximum, average and median output error susceptibility for all
benchmarks, as well as the associated run time. As it can be seen
from the results, the mean error susceptibility decreases with the
circuit complexity, due to more probable electrical and logical
masking. The results also show that median value is usually
closer to the minimum. Therefore, we can conclude that most of
the outputs have small error susceptibility, but in the case of
large glitches (Figure 8), almost all gates have an impact on
output failure.

Table 1. Minimum, maximum, average and median circuit error
susceptibility computed as in equation (17), for several benchmarks.

8. Conclusion and future work

 In this paper, we present a symbolic modeling methodology
and associated framework for efficient estimation of the soft
error susceptibility of a combinational logic circuit. We have
demonstrated the efficiency of our framework by applying it on
a subset of ISCAS’85 and mcnc’91 benchmarks of various
complexities. The framework allows for the analysis of
reliability of combinational circuits from various aspects: output
susceptibility to error, influence of individual gates on

mean error susceptibility
Bench. no.

gates
no.
PIs

no.
POs glitch size

min max average median

run time
(s)

small 0.00106 0.01003 0.00468 0.00381 0.10
medium 0.02659 0.04471 0.07187 0.07403 0.20 z4ml 45 7 4

large 0.10836 0.31161 0.20181 0.19364 0.28
small 0.00060 0.00185 0.00067 0.00060 2.61

medium 0.00574 0.04162 0.02084 0.02053 11.30 add16 80 33 17
large 0.01900 0.11867 0.08414 0.08725 11.35
small 0.00041 0.00643 0.00291 0.00224 0.30

medium 0.00254 0.04193 0.01960 0.01592 0.30 5xp1 116 7 10
large 0.00655 0.10108 0.04765 0.03765 0.35
small 0.00035 0.00035 0.00035 0.00035 0.60

medium 0.01199 0.01199 0.01199 0.01199 1.25 9symml 145 9 1
large 0.03394 0.03394 0.03394 0.03394 1.40
small 0.00027 0.00113 0.00057 0.00027 4.76

medium 0.00152 0.00528 0.00293 0.00174 4.90 C499 352 41 32
large 0.00652 0.02368 0.01131 0.009215 174.00
small 0.00025 0.00119 0.00044 0.00025 20

medium 0.0015 0.01089 0.00375 0.00184 176.00 C1908 384 33 25
large 0.00519 0.03906 0.01483 0.00622 672.00
small 0.00010 0.00049 0.00021 0.00017 3.00

medium 0.00041 0.00167 0.00087 0.00085 3.50 duke2 469 22 29
large 0.00118 0.00462 0.00247 0.00241 4.43
small 0.00007 0.00018 0.00009 0.00007 5.00

medium 0.00027 0.01656 0.00469 0.00330 20.10 alu4 560 14 8
large 0.00246 0.04267 0.01593 0.01201 32.30

individual outputs and overall circuit reliability, and the
dependence of the circuit reliability on glitch duration,
amplitude, and input patterns.
 An area of future research is the use of more accurate
model for latching window masking, by taking into account all
possible values of propagation delays on the sensitized paths.

5xp1 - 50

0
20
40
60
80

100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

5xp1 - 80

0
20
40
60
80

100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

5xp1 - 125

0
20
40
60
80

100
120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

C1908 - 50

0
50

100
150
200
250
300
350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

C1908 - 80

0

50
100

150

200
250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

C1908 - 125

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error im pact

nu
m

be
r o

f
ga

te
s

min
max
average
median

Figure 8. Mean error impact for a small benchmark (5xp1 – top
three charts) and a large benchmark (C1908 – bottom three charts)
computed as in equation (18) for three glitch durations.

References
[1] K. Mohanram and N. A. Touba. Cost-Effective Approach for Reducing

Soft Error Failure Rate in Logic Circuits. In Proc. of International
Test Conference (ITC), pp. 893-901, 2003.

[2] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni.
Threshold-Based Mechanisms to Discriminate Transient from
Intermittent Faults, In IEEE Transactions on Computers, Vol.49, No.3,
pp. 230-245, March 2000.

[3] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. In Proc. of International Conference on
Dependable Systems and Networks, pp. 389-398, 2002.

[4] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. On Latching
Probability of Particle Induced Transients in Combinational Networks.
In Proc. of Fault-Tolerant Computing Symposium, pp. 340-349, 1994.

[5] J. F. Ziegler et al. IBM experiments in Soft Fails in Computer
Electronics (1978-1994). In IBM Journal of Research and
Development, Vol 40, pp. 3-18, 1996.

[6] M. P. Baze and S. P. Buchner. Attenuation of Single Event Induced
Pulses in CMOS Combinational Logic. In IEEE Transaction on
Nuclear Science, Vol. 44, No. 6, pp. 2217-2223, December 1997.

[7] M. Omana, G. Papasso, D. Rossi, and C. Metra. A Model for Transient
Fault Propagation in Combinatorial Logic. In Proc. of the 9th IEEE
International On-Line Testing Symposium, IOLTS’03, pp. 111-115,
July 2003.

[8] C. Zhao, X. Bai, and S. Dey. A Scalable Soft Spot Analysis
Methodology for Noise Effects in Nano-meter Circuits. In Proc. of
ACM/IEEE Design Automation Conference (DAC), pp. 894-899, June
2004.

[9] M. Zhang and N. R. Shanbhag. A Soft Error rate Analysis (SERA)
Methodology. In Proc. of ACM/IEEE International Conference on
Computer Aided Design (ICCAD), pp. 111-118, 2004.

[10] Y. S. Dhillon, A. U. Diril, and A. Chatterjee. Soft-Error Tolerance
Analysis and Optimization of Nanometer Circuits. In Proc. of Design,
Automation and Test in Europe (DATE), pp. 288-293, March 2005.

[11] S. Krishnaswamy, G. F. Viamonte, I. L. Markov, and J. P. Hayes.
Accurate Reliability Evaluation and Enhancement via Probabilistic
Transfer Matrices. In Proc. of Design, Automation and Test in Europe
(DATE), pp. 282-287, March 2005.

[12] F. Somenzi. CUDD: The CU decision diagram package.
http://vlsi.colorado.edu/fabio/CUDD.

[13] R. E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. In IEEE Transaction on Computers, C-35-8, pp. 677-
691, August 1986.

[14] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation
of a BDD Package. In Proc. of 27th ACM/IEEE Design Automation
Conference (DAC), pp. 40-45, 1990.

[15] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang.
Spectral Transforms for Large Boolean Functions with Applications to
Technology Mapping. In Proc of ACM/IEEE Design Automation
Conference (DAC), pp. 54-60, June 1993.

[16] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.
Pardo, F. Somenzi. Algebraic Decision Diagrams and Their
Applications. In Proc. of ACM/IEEE International Conference on
Computer Aided Design (ICCAD), pp. 188-191, November 1993.

[17] K. Nepal, H. Song, and R. I. Bahar. RESTA: A Robust and Extendable
Symbolic Timing Analysis Tool. In Proc. of Great Lakes Symposium
on VLSI (GLSVLSI), April 2004.

[18] J. M. Rabaey, A. Chandrakasan, B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2003.

[19] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New
paradigm of predictive MOSFET and interconnect modeling for early
circuit design. In Proc. of IEEE Custom Integrated Circuits
Conference (CICC), pp. 201-204, June 2000.

[20] Berkeley Predictive Technology Model (BPTM): http://www-
device.eecs.berkeley.edu/~ptm.

[21] I. Sutherland, B. Sproull and D. Harris. Logical Effort: Designing
FastCMOS Circuits. Morgan Kaufmann Publishers, Inc., pp.5-15, 63-
73, 1999.

