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Abstract— 3D Integrated Circuits (ICs) have been re-
cently proposed as a solution to the increasing wire delay
concerns in scaled technologies. At the same time, technol-
ogy scaling leads to increasing variability in manufacturing
process parameters, making it imperative to quantify the
impact of these variations on performance. In this work,
we take, to the best of our knowledge, the first step to-
wards formally modeling the impact of process vari-
ations on the clock frequency of fully-synchronous
(FS) 3D ICs. The proposed analytical models demon-
strate theoretically and experimentally that 3D designs
behave very differently under the impact of process
variations as compared to equivalent 2D designs. In
particular, for the same number of critical paths, we show
that a 3D design is always less likely to meet a pre-defined
frequency target compared to its 2D counterpart. Further-
more, as opposed to models for 2D ICs, the 3D models
need to accurately account for not only within-die (WID)
critical paths, i.e., paths that lie entirely within one of the
die layers, but also D2D critical paths that use through-
silicon vias (TSVs) to span across multiple dies in the 3D
stack. Finally, we show, theoretically and experimentally,
that the mapping of critical paths to the die layers of a
3D IC can also affect the timing yield of a design, while
the mapping issue does not arise in the 2D case since there
is only a single die layer in a 2D IC. The accuracy of the
proposed models is experimentally verified and found to be
in excellent agreement with detailed SPICE and gate-level
Monte Carlo (MC) simulations.

Keywords— Statistical timing analysis, 3D Integrated
Circuits (ICs)

I. Introduction

Wire delay has been shown to be an increasing fraction
of gate delay with technology scaling, making it difficult to
cross the length of a die in a single clock cycle [11]. 3D IC
technology is a promising solution to the growing wire de-
lay problem and is being aggressively pursued in industry
[9] and academia [6], [2], [12]. While there exist numerous
flavors of 3D IC technology, in this work, we concentrate
primarily on stacked-die 3D integration. In this technology,
each device layer is manufactured separately using a con-
ventional 2D fabrication process and the planar (i.e., 2D)
dies are subsequently stacked and bonded vertically on top
of each other to realize a 3D IC. Wires can cross from one
layer in the stack to another using die-to-die interconnects
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called through-silicon vias (TSVs). 3D integration is there-
fore able to significantly reduce the average and worst-case
wirelength of a conventional 2D design, thereby alleviating
the performance impact of slow global interconnects.

Along with wire delay, the increase in manufacturing pro-
cess variations (PVs) is another major cause for concern
in scaled technologies, since it leads to variations in the
performance and power characteristics of fabricated dies.
Moreover, process variations manifest themselves as both
die-to-die (D2D) variations that affect each die differently
but all transistors on a particular die in the same way,
and within-die (WID) variations that affect each transistor
on every die differently. From a performance perspective,
there has been significant amount of prior work to accu-
rately and efficiently model the impact of PVs on the cy-
cle time (or clock frequency) of fully-synchronous 2D ICs.
While a number of authors have proposed so called Sta-
tistical Static Timing Analysis (SSTA) algorithms to com-
pute the process variation driven distribution of the maxi-
mum critical path delay for specific designs, [3] introduced
the generic critical path (GCP) model that encapsulates
the low-level implementation details of a circuit using two
high-level parameters (the number of critical paths in the
circuit and the number of stages per critical path), which
are then used to compute the maximum critical path delay
distribution. The authors use the proposed model to ana-
lyze the impact of technology scaling and increased design
complexity on the mean and variance of critical path delay.
Moreover, the GCP model has since been widely used in
a number of studies at the micro-architecture and system-
level to efficiently characterize process variations without
having to resort to time consuming circuit level timing sta-
tistical simulation or analysis [14], [15], [13].

Unfortunately, for a number of reasons that will be made
clear later in the paper, the GCP model introduced by
[3] cannot be simply extended for the case of 3D ICs.
Therefore, we introduce for the first time, a generic crit-
ical path model for 3D ICs (3D-GCP) that allows us to
analytically characterize the impact of process variations
on the cycle time distribution for fully-synchronous 3D
systems. The proposed models provide the following ad-
vantages: (1) they allow for efficient characterization of
the impact of increased design complexity, increased in-
tegration complexity (i.e., more die layers) and increased
magnitude of process variations on the maximum criti-
cal path delay distribution of 3D ICs; (2) they serve as
efficient high-level process variation models that can be
used at the micro-architecture and system level design
abstraction; and (3) they serve to theoretically motivate



and explain variability-aware, design time optimization ap-
proaches that are unique to the 3D IC design flow. The
first two advantages are analogous to those provided by
the original GCP model to 2D circuits, while the third is
specific to the case of 3D ICs and arises from gate/module
to die layer mapping flexibility that exists in 3D designs.

II. Related Work

Performance analysis of 3D ICs in terms of improvement
in timing characteristics has been studied extensively be-
fore. [6] and [2] study the change in the wirelength distri-
bution, and implicitly the increase in clock frequency, ob-
tained by moving from a 2D to a 3D implementation. On
a related note, [12] studies the improvement in system per-
formance metrics such as latency and throughput obtained
by reducing the average number of hops between modules
using a 3D network-on-chip (NoC). However, none of these
works have investigated the role of process variations on
performance, which is the focus of our work.

Over the last few years, the analysis of impact of pro-
cess variations on cycle time and frequency for 2D circuits
has been the focus of extensive research. We point the in-
terested reader to a comprehensive tutorial paper on this
subject [7]. While some of the previously proposed SSTA
algorithms could potentially be adapted to handle the case
of 3D ICs, the goal of this work is more aligned with the
high-level GCP model introduced by [3]. However, com-
pared to our work, [3] focuses exclusively on conventional
2D circuits, which as we will show, cannot be trivially ex-
tended for the case of 3D ICs. Finally, the only other work
to look at variations for 3D ICs [8] makes use of Monte
Carlo simulations and has a very different goal, variability-
aware post fabrication assembly strategies, compared to
our work.

III. Preliminaries and Assumptions

We begin by introducing the mathematical notation and
assumptions about fully-synchronous 2D and 3D designs
that we make in this work. Before introducing the pro-
posed model for 3D systems, we will first briefly review
the high-level GCP model proposed by [3] to study the im-
pact of process variations for 2D systems. In particular,
[3] assumes that a generic 2D circuit can be fully charac-
terized, from a timing perspective, by Ncp critical paths,
where each path consists of a chain of ncp two-input NAND
gates. Furthermore, the D2D component of process vari-
ations is modeled using a single random variable (RV) G
and the uncorrelated WID component is modeled using a
set of independent and identically distributed (iid) RVs Lij
(1 ≤ i ≤ Ncp,1 ≤ j ≤ ncp) that represent the impact of
WID random variations on gate j of critical path i. The
maximum deviation in delay for a fully-synchronous 2D

Fig. 1. (a) Conventional 2D IC with two critical paths (b) 3D IC
with two WID critical paths, and one D2D critical path. The TSV
is shown in red. Note that as a matter of convention, the WID and
D2D critical paths are numbered separately.

design, ∆T 2D
max, can therefore be written as:

∆T 2D
max = max

1≤i≤Ncp
(
ncp∑
j=1

α(G+ Lij))

= max
1≤i≤Ncp

(ncpαG+
ncp∑
j=1

αLij) (1)

where α is the sensitivity of the gate delay to process
variations. Now, assuming that variations in process pa-
rameters are normally distributed [3], i.e., G ∼ N(0, σG)
and Lij ∼ N(0, σL), we can write the probability that
∆T 2D

max ≤ τ as:

Pr{∆T 2D
max ≤ τ} = F∆T 2D

max
(τ) = fG(

τ

αncp
)∗(FL(

τ

α
√
ncp

)Ncp)

(2)
where ∗ represents the convolution operation, and fX()
and FX() represent the probability density function (pdf )
and cumulative distribution function (cdf ) of RV X respec-
tively.

To model 3D systems, we assume, without any loss of
generality, a system consisting of L die layers1 stacked on
top of each other. Connections between die layers are ac-
complished using through-silicon vias (TSVs). As shown
in Figure 1(b), the critical paths in such a system can be
classified as either:

• Within-die (WID) Critical Paths, i.e., paths that lie
fully in one of the L die layers. The total number of WID
critical paths in the system is represented as NWID

cp , with
layer i containing N i

cp paths (
∑L
i=1N

i
cp = NWID

cp ). Each
WID critical path is assumed to consist of nWID

cp gates.
Finally, without loss of generality, the mapping function
m() maps each WID critical path to one of the L device
layers.
• Die-to-die (D2D) Critical Paths, i.e., critical paths
that use TSVs to cross from one die layer to another. The
total number of D2D critical paths in the system is repre-
sented as ND2D

cp . Each D2D critical path consists of nD2D
cp

1Not to be confused with Lij that denote the uncorrelated WID
RVs.



gates, where the number of gates that lie in layer i is given
by nicp (nD2D

cp =
∑L
i=1 n

i
cp).

Figure 1(b) shows an example of a 3D system with two
layers (L = 2), two WID critical paths (NWID

cp = 2, N1
cp =

1, N2
cp = 1) consisting of three stages (nWID

cp = 3) and
one D2D critical path (ND2D

cp = 1) consisting also of three
stages (nD2D

cp = 3, n1
cp = 1, n2

cp = 2). We note that while all
the results that follow will be based on this canonical model
for the critical paths in a 3D circuit, more complicated
models (for example, one in which the number of stages
for a WID critical path vary from one layer to another)
can be analyzed using simple extensions of the proposed
methodology.

As opposed to 2D systems where there is a single RV
representing D2D variations, each layer in a 3D system
has a different D2D variation component. We therefore
define, for each layer i in the 3D system, a RV Gi (1 ≤
i ≤ L) that corresponds to the impact of D2D variations
in that layer. Furthermore, for homogeneous stacked-die
3D systems in which each die is fabricated in the same
process technology, the RVs Gi and Gj (i 6= j) can be
assumed to be independent and identically distributed (iid)
RVs. On the other hand, for heterogeneous integration, the
D2D RVs of two layers fabricated in different processes may
not be identically distributed, although they would still be
independent. While the proposed framework can handle
both cases, in the rest of the paper, we will focus specifically
on the former case of homogeneous integration. Finally, the
random WID component of process variation is modeled
by RVs Lij and L′ij that represent variations in the process
parameters of gate j in the ith WID and D2D critical path
respectively. For illustration, the example 3D circuit in
Figure 1(b) has been annotated with its corresponding D2D
and WID RVs.

Under these assumptions, we can now write the varia-
tion in the critical path delay of the ith WID critical path,
∆TWID

i , as:

∆TWID
i = nWID

cp αGm(i) +
nWID
cp∑
j=1

αLij , 1 ≤ i ≤ NWID
cp (3)

and the variation in the critical path delay of the ith D2D
critical path, ∆TD2D

i , as:

∆TD2D
i =

L∑
j=1

βnjcpGj +
nD2D
cp∑
j=1

βL′ij , 1 ≤ i ≤ ND2D
cp (4)

where, as before, α and β represent the sensitivity of a gate
in a WID and a D2D critical path to process variations re-
spectively. Note that in general, the sensitivities of WID
and D2D paths to process variations can be different due
to the differences in the electrical properties of wires and
TSVs. In the experimental results section, we provide a
detailed SPICE based characterization of these values. Fi-
nally, the maximum deviation in critical path delay for a

3D system ∆T 3D
max can simply be written as:

∆T 3D
max = max

1≤i≤NWID
cp ,1≤j≤ND2D

cp

(∆TWID
i ,∆TD2D

j ) (5)

IV. 3D-GCP Variability Model

Having described the canonical structure of a 3D cir-
cuit in terms of a few high-level parameters, we would
now like to derive analytical expressions for the cdf of the
maximum deviation in critical path delay, ∆T 3D

max in terms
of these parameters. However, compared the conventional
GCP model, the increase in model complexity for the 3D
case is immediately clear. In particular, instead of only
two parameters that were used to describe a 2D circuit,
the canonical model for a 3D circuit has 2L + 3 parame-
ters. In addition, as opposed to a single component of D2D
variations, each layer of a 3D design has its own RV cor-
responding to D2D variations. Finally, the introduction of
D2D critical paths, which have very different timing char-
acteristics under process variations as compared to WID
paths, adds another degree of complexity.

To reduce the complexity, we adopt a constructive ap-
proach towards developing the 3D-GCP model - we begin
with analyzing 3D designs that consist of only WID criti-
cal paths and provide exact analytical expressions for the
same. Next we introduce D2D critical paths in the sys-
tem, which makes the computation of an exact analytical
expression for the cdf of ∆T 3D

max intractable. We therefore
derive analytical stochastic lower and upper bounds on the
cdf of ∆T 3D

max. As we will show in the experimental re-
sults, the derived bounds are, in practice, extremely tight
and provide close approximations of the actual cdf.

A. Modeling WID Critical Paths

For a design that consists only of WID critical paths,
i.e., ND2D

cp = 0, we can re-write ∆T 3D
max from Equation 3

and Equation 5 as:

∆T 3D
max = max

1≤i≤NWID
cp

(nWID
cp αGm(i) +

nWID
cp∑
j=1

αLij) (6)

By noticing that the maximum critical path deviation for
each layer in the 3D system is independent of every other
layer, we can write the cdf of ∆T 3D

max, F∆T 3D
max

(τ), as:

F∆T 3D
max

(τ) =
L∏
i=1

fG(
τ

αnWID
cp

) ∗ (FL(
τ

α
√
nWID
cp

)N
i
cp) (7)

Note that Equation 7 is the most general form of the ana-
lytical cdf for 3D ICs with only WID critical paths, i.e., it
makes no assumption about how critical paths are mapped
to die layers. To make the relationship between the cdf
and the number of device layers L clearer, we examine the
specific case in which the WID critical paths are evenly di-

vided between the device layers, i.e., N i
cp = NWID

cp

L . Under
this assumption, we can write F∆T 3D

max
(τ) as:

F∆T 3D
max

(τ) = [fG(
τ

αnWID
cp

) ∗ (FL(
τ

α
√
nWID
cp

)
NWID
cp
L )]L (8)



From this equation, it is clear that besides the exponential
dependence of the cdf on the number of critical paths in
the system, the cdf is also exponentially dependent on the
number of layers, L, in the system. Furthermore, while
D2D variations only impact the variance of the maximum
critical path delay for 2D circuits [3], in the 3D case, both
the mean and the variance are impacted by D2D variations.

A.1 2D Vs. 3D

While the analytical results help to intuitively under-
stand the difference between 2D and 3D circuits from a
timing variability perspective, we now try to theoretically
explore the difference between the two. Indeed, we
prove that for the same number of total critical paths,
and assuming the 3D circuit has no D2D critical paths,
a 2D circuit is always more likely to meet a
given timing specification τ than a 3D circuit, i.e.,
Pr{∆T 2D

max ≤ τ} ≥ Pr{∆T 3D
max ≤ τ} . The proof is based

on the following result on comparing the maximum of
multivariate Gaussian random vectors:

Theorem 1: Given two Gaussian Random Vectors X and
Y of cardinality N such that E(Xi) = E(Yi) = 0 (1 ≤ i ≤
N), E(X2

i ) = E(Y 2
i ) (1 ≤ i ≤ N), and

E(XiXj) ≥ E(YiYj),∀i 6= j (9)

then max(Y ) ≥st max(X).
Proof: A detailed proof of this theorem can be found

in [1], and is not repeated here for clarity of exposition.

We note that the ≥st symbol refers to a stochastic
inequality : A ≥st B implies that Pr{A ≤ τ} ≤ Pr{B ≤
τ},∀τ ∈ R. Using this result, we now prove formally the
relationship between 2D and 3D circuits.

Theorem 2: If (a) the number of critical paths for a 2D
circuit is the same as the total number of WID critical
paths for a 3D circuit, i.e., N2D

cp = NWID
cp , (b) the num-

ber of stages for the 2D and 3D circuit are the same, i.e.,
n2D
cp = nWID

cp and (c) the 3D circuit has zero D2D paths,
i.e., ND2D

cp = 0; then ∆T 3D
max ≥st ∆T 2D

max.
Proof: Let ∆T 2D

max = max1≤i≤N (∆T 2D
i ) and

∆T 3D
max = max1≤i≤N (∆T 3D

i ). From Equation 1 and Equa-
tion 3, we can see that E(∆T 2D

i
2) = E(∆T 3D

i
2). Further-

more:

E(∆T 2D
i ∆T 2D

j ) = E(∆T 3D
i ∆T 3D

j ),∀i, j : m(i) = m(j) (10)

E(∆T 2D
i ∆T 2D

j ) > E(∆T 3D
i ∆T 3D

j ),∀i, j : m(i) 6= m(j) (11)

Therefore, using the result from Theorem 1, this implies
that ∆T 3D

max ≥st ∆T 2D
max.

Significance: The number of critical paths in a design is a
useful proxy for design complexity [3]. From this perspec-
tive, Theorem 2 implies that a 3D system is always worse
impacted by process variations than a 2D design with the

same design complexity. Therefore, while the theorem es-
tablishes process variations to be a potentially even greater
cause for concern in 3D circuits, it should not, in general,
be used to compare a specific 2D circuit with its equivalent
3D implementation, since a gate-level 3D place-and-route
process may alter the number of critical paths in the design
[6].

A.2 Mapping of WID Critical Paths

Mapping of gates or modules in a design to die layers is
an important step in the physical design flow for 3D ICs
that affects both the final wirelength histogram [6] and the
temperature profile [5] of the design. From Equation 7,
we can see that the mapping of critical paths to die lay-
ers also affects the cdf of maximum critical path delay -
i.e., for the same number of total critical paths, different
mappings of critical paths to die layers can produce dif-
ferent results. Indeed, we prove theoretically that, for a
design with only WID critical paths, the worst case impact
of process variations on critical path delay occurs when the
critical paths are evenly divided between the die layers, i.e.,

N i
cp = NWID

cp

L ,∀i ∈ [1, L]. Before describing the proof, we
first define some useful notation. To explicitly consider the
relationship between the cdf and the mapping of critical
paths, we let F∆T 3D

max
(τ) = Rτ (N1

cp, N
2
cp, . . . , N

L
cp), where

from Equation 7 we can see that:

Rτ (N1
cp, N

2
cp, . . . , N

L
cp) =

L∏
i=1

rτ (N i
cp) (12)

rτ (N) = fG(
τ

αnWID
cp

) ∗ (FL(
τ

α
√
nWID
cp

)N ) (13)

Theorem 3: For a 3D system with L layers, NWID
cp crit-

ical paths, and zero D2D critical paths, Pr{T 3D
max ≤ τ} is

minimized for any value of τ when N i
cp = NWID

cp

L ,∀i ∈ [1, L].
Proof: We begin by defining a function

Qτ (N1
cp, N

2
cp, . . . , N

L
cp) = loge(Rτ (N1

cp, N
2
cp, . . . , N

L
cp)).

Now consider the following optimization problem:

minQτ (N1
cp, N

2
cp, . . . , N

L
cp) (14)

subject to:

L∑
i=1

N i
cp = NWID

cp (15)

N i
cp ≥ 0,∀i ∈ [1, L] (16)

Since the log() function is strictly monotonic, Rτ
and Qτ achieve their minimum values at the same
point. Furthermore, we observe that the function
Qτ (N1

cp, N
2
cp, . . . , N

L
cp) =

∑L
i log(rτ (N i

cp)) is convex be-
cause: (a) rτ (N) can be shown to be log-convex2, and
therefore, log(rτ (N)) is convex; and (b) the sum of con-
vex functions is convex [4].

2A function f : R → R is said to be log-convex if log(f) is convex.



Fig. 2. Overview of results presented in Section 4-A

Now, we pick any point S1 = {N1
cp, N

2
cp, . . . , N

L
cp} in the

feasible region and define a set θ = {S1, S2, . . . , SL!} that
consists of all possible permutations of S1. Furthermore,
we define point S∗ as:

S∗ =
1
L!

L!∑
i=1

Si = {
NWID
cp

L
,
NWID
cp

L
, . . . ,

NWID
cp

L
} (17)

Finally since Qτ (N1
cp, N

2
cp, . . . , N

L
cp) is convex, we know

that Qτ (S∗) ≤
∑L!
i=1Qτ (Si)

L! [4]. Since Qτ (Si) = Qτ (Sj)
(1 ≤ i, j ≤ L!), we can restate this inequality as Qτ (S∗) ≤
Qτ (S1), where S1 can be any point in the feasible region of
the optimization problem. In fact, barring the degenerate
cases in which either σL = 0 or σG = 0, the convexity of the
objective function implies that S∗ is a point of unique min-
ima in the feasible region, in other words, Qτ (S∗) < Qτ (S1)
∀S1 6= S∗. Therefore, Rτ (S∗) < Rτ (S1) ∀S1 6= S∗

Significance: Theorem 3 demonstrates that a mapping so-
lution that is unaware of the interaction between the map-
ping of critical paths to die layers and process variations
may result in a sub-optimal design - in other words, it in-
troduces critical path mapping as an important element of
the variability-aware design space for 3D ICs.

A.3 Summary of Results

The results presented so far are summarized in Figure
2, which compares the cdf of maximum critical path delay
for three cases: (a) a 2D design with four critical paths,
(b) a 3D design with the same number of WID critical
paths as the 2D design, with an uneven mapping of paths
to die layers; in this case, the first layer has three paths
and the second has one, and (c) a 3D design with the same
number of WID critical paths as the 2D design, with criti-
cal paths evenly divided between die layers; i.e., with each
layer having two critical paths. Based on the Theorem 2
and Theorem 3, we can conclude that the 3D design with
an even mapping of paths, i.e., case (c), will always have
the least likelihood of meeting a specified timing constraint,
τ , while an equivalent 2D design, i.e., case (a), will have

the highest likelihood of meeting timing constraints. This
can be observed graphically in Figure 2.

B. Modeling WID+D2D Paths

We now consider the most general case in which N3D
cp >

0, i.e., a 3D system with both WID and D2D critical paths.
Unfortunately, in the general case, it is not possible to
obtain a closed-form analytical expression for the cdf of
∆T 3D

max due to the correlations between the ∆TD2D
i and

∆TWID
j terms in Equation 5. In particular we can see

that:
E(∆TWID

i ∆TD2D
j ) = αβnm(i)

cp σ2
G ≥ 0 (18)

Instead of providing exact analytical expressions for
the cdf, we therefore concentrate on computing provable
stochastic lower bounds and upper bounds on ∆T 3D

max.

B.1 Stochastic Lower Bound

The lower bound on ∆T 3D
max can be obtained by simply

ignoring the impact of D2D critical paths on the maximum
delay variation. Let ∆TLBmax be the RV that stochastically
lower bounds ∆T 3D

max. We therefore write:

∆TLBmax = max
1≤i≤NWID

cp

(∆TWID
i ) (19)

We now prove formally that the RV TLBmax is indeed a guar-
anteed lower bound on the actual critical path delay dis-
tribution.

Theorem 4: ∆TLBmax ≤st ∆T 3D
max, i.e., Pr{∆TLBmax ≤ τ} ≥

Pr{∆T 3D
max ≤ τ} ∀τ ∈ R.

Proof: For any two random variables, X and Y ,
Pr{X,Y } = Pr{X}Pr{Y/X} ≤ Pr{X}. Therefore it fol-
lows that Pr{max(∆TWID

i ) ≤ τ} ≥ Pr{max(∆TWID
i ) ≤

τ,max(∆TD2D
i ) ≤ τ}.

While ignoring the D2D critical paths may seem to be
a loose lower bound, we show experimentally that this is
indeed not the case. Intuitively, this is because the path
delay of a D2D critical path involves a summation over
the D2D RVs Gi, which reduces the standard deviation of
delay of a D2D path with respect to a WID path, hence
reducing the probability that a D2D path will be the speed
limiting path of the design. In fact, this intuition can be
proved formally:

Theorem 5: If nD2D
cp = nWID

cp , ND2D
cp = NWID

cp and α =
β, then probability that a WID critical path is the speed
limiting path in the design is greater than the probability
that a D2D path is the speed limiting path in the design,
i.e., Pr{max(∆TWID

i ) ≥ max(∆TD2D
i )} ≥ 0.5

Proof: We first define new RVs ∆TWID,S
i (1 ≤ i ≤

NWID
cp ) as follows:

∆TWID,S
i = nWID

cp αG1 +
nWID
cp∑
j=1

αLij , 1 ≤ i ≤ NWID
cp (20)



Comparing this definition with Equation 3, it is clear that
max(∆TWID,S

i ) ≤ max(∆TWID
i ), where the inequality is

deterministically true, i.e., it is true for any realization of
the RVs. Therefore, we can write:

Pr{max(∆TWID
i ) ≥ max(∆TD2D

i )} ≥
Pr{max(∆TWID,S

i ) ≥ max(∆TD2D
i )} (21)

Now, we can write the RV Z = {max(∆TWID,S
i ) −

max(∆TD2D
i )} as:

Z = α{nWID
cp G1 −

L∑
j=1

njcpGj +

max(Lij)−max(L′ij)} (22)

In the above expression, nWID
cp G1 −

∑L
j=1 n

j
cpGj is zero

mean normal RV, and is therefore also symmetric about the
ori- gin. Furthermore, max(Lij) and max(L′ij) are iid RVs
and therefore max(Lij)−max(L′ij) is a zero mean RV sym-
metric about the origin. Finally, since the sum of two zero
mean symmetric RVs is also zero mean and symmetric, we
know that the RV Z is zero mean and symmetric. There-
fore,

Pr{max(∆TWID,S
i ) ≥ max(∆TD2D

i )} = 0.5 (23)

Equation 21 and Equation 23 together complete the desired
proof.

Significance: Theorem 5 shows that, assuming all other
things being equal, i.e., for a system with the same number
of WID and D2D paths and the same number of stages, a
D2D path is always less likely to be the speed constraining
path in the system as compared to a WID path. This
is, as mentioned before, because of the averaging affect
on a D2D path of crossing multiple die layers. From a
design perspective, the result suggests allocating as many
critical paths as possible as D2D paths as a strategy to
mitigate the impact of process variations on performance,
unless the sensitivity of a D2D path to PVs is significantly
greater than that of a WID path (β >> α). We note that
our results suggest that for typical interconnect and TSV
dimensions, β ≈ α.

B.2 Stochastic Upper Bound

Let ∆TUBmax be the RV that corresponds to the provable
upper bound on ∆T 3D

max. We will first provide the expres-
sion for ∆TUBmax before explaining its physical significance.
In particular we can write:

∆TUBmax = max(max
i

(∆TWID
i ),max

i
(TD2D,UB
i )) (24)

where

∆TD2D,UB
i =

L∑
j=1

βnjcpG
′
j +

nD2D
cp∑
j=1

βL′ij (25)

and G′j (1 ≤ j ≤ L) are newly introduced RVs such that
G′j and Gj are iid ∀j ∈ [1, L].

The physical significance of the upper bound can be un-
derstood by setting

∑L
j=1 βn

j
cpG

′
j = GL+1. In particular,

the upper bound corresponds to a 3D system in which an
additional dummy die layer L+ 1 has been introduced and
to which all the D2D critical paths in the system have been
allocated.

Theorem 6: ∆TUBmax ≥st ∆T 3D
max

Proof: The proof follows directly from Theo-
rem 1 by observing that E(∆TWID

i ∆TD2D
j ) > 0 from

Equation 18, while E(∆TWID
i ∆TD2D,UB

j ) = 0. There-
fore, E(∆TWID

i ∆TD2D,UB
j ) ≤ E(∆TWID

i ∆TD2D
j ) (i ∈

[1, NWID
cp ], j ∈ [1, ND2D

cp ]) while all other elements of the
two co-variance matrices remain unchanged.

From Equation 24 and Equation 25, we can now write
an analytical expression for the cdf of ∆TUBmax as:

F∆TUBmax
(τ) = [

L∏
i=1

fG(
τ

s1
)∗(FL(

τ

s2
)N

i
cp)][fG(

τ

s3
)∗(FL(

τ

s4
)N

D2D
cp )]

(26)

where s1 = αnWID
cp , s2 = α

√
nWID
cp , s3 = β

∑L
i=1(nicp)

2

and s4 = β
√
nD2D
cp .

B.3 Summary of Results

For the generic case of 3D systems with both WID and
D2D critical paths, we observed that it is difficult to obtain
a precise analytical expression for the cdf of the maximum
critical path delay. Therefore, we derive theoretically guar-
anteed lower and upper bounds on the desired cdf, in other
words, for any timing constraint τ , we provide a lower and
an upper bound on the probability of meeting that con-
straint. Finally, to compare the relative impact of D2D
and WID paths on the maximum critical path delay distri-
bution, we show in Theorem 5 that all other things being
equal, WID paths are more likely to be the speed-limiting
path in a system than D2D paths.

Having described in detail the proposed models for 3D
ICs with only WID critical paths and then for the more
general case, we now present our experimental results that
validate and demonstrate the effectiveness of the proposed
3D-GCP framework.

V. Experimental Results

We now present our experimental results that first val-
idate the proposed models against detailed SPICE-based
Monte-Carlo simulation and then investigate the applica-
tion of the models to characterize the impact of variations
on 3D designs.

A. SPICE-based Validation

To comprehensively test the accuracy of the proposed
models, we compare the cdfs obtained from the analyt-



Fig. 3. (a) SPICE models for WID and D2D paths. Maximum
critical path delay cdfs for (b) a two layer design, and (c) a four layer
design.

TABLE I

Parameters for 3D Designs in Figure 3

Design NWID
cp : {N i

cp} nWID
cp nD2D

cp : {nicp}
2 Layer 100 : {50, 50} 6 6 : {3, 3}
4 Layer 100 : {25, 25, 25, 25} 6 6 : {1, 2, 2, 1}

ical expressions with Monte Carlo simulations on input
SPICE models of the canonical 3D circuits. In keeping
with the methodology described by [3], each critical path
in the SPICE netlist is modeled as a chain of two-input
NAND gates in a 90 nm PTM technology. Furthermore,
wire (via) delays are inserted between gates that lie in the
same layer (cross die layers) using a standard π model as
shown in Figure 3(a). The RC parameters associated with
the wire models are computed using the average dimensions
for Metal 2 wires reported in [16], while vias are assumed
to be 1.2µm×1.2µm, with a 2.4µm pitch and 20µm length
as reported in [9]. Furthermore, to equalize the nominal
delay of the D2D and WID critical paths, the gate widths
of the D2D critical paths are sized up. We observed that
in practice, the additional delay introduced by a TSV with
the given parameters is only slightly larger than the de-
lay of a regular interconnect, requiring the gates on a D2D
path to be sized up by 10% for a 2 layer design and 30% for
a four layer design. Finally, variations in process param-
eters are modeled by introducing both D2D and random
WID variations in gate length, each with a σ of 5% of the
nominal value.

Under these assumptions, we modeled two 3D systems
with parameters as shown in Table I and performed 500
runs of Monte Carlo simulations in SPICE to determine the
maximum critical path delay distribution for each design.

We note that we were restricted to relatively small circuits
due to the prohibitive run-time and memory requirements
of larger designs. Finally, using the models proposed in
this paper, we computed the cdfs corresponding to the an-
alytical lower and upper bounds for each design. The ob-
tained cdfs for the two designs are shown in Figure 3(b) and
(c). It is clear that in both cases, the stochastic lower and
upper bounds are in excellent agreement with the SPICE
results. Furthermore, the upper bound behaves ideally for
both cases, i.e., always predicts a lower yield than predicted
by the SPICE-based cdf for any cycle time constraint, while
the lower bound behaves ideally for all but high yield values
(> 80%). The non-ideality arises because of two reasons:
(1) The assumption made in the original GCP model about
gate delays being linearly dependent on process variations
parameters (also used in our model) is not perfectly accu-
rate, although prior results and the results from Figure 3
indicate that this is still a good approximation, and (b) the
cdf obtained from SPICE simulations itself has some inher-
ent error since it is obtained from Monte Carlo simulations.
Nonetheless, given the complexity of the SPICE transistor
models, we believe that the results in Figure 3 demonstrate
the effectiveness of the proposed methodology.

B. Design Space Exploration

Having validated the accuracy of the proposed models,
we now use the models to explore the impact of various de-
sign decisions on the cdf of maximum critical path delay of
3D ICs and also verify experimentally, some of the theoret-
ical results shown before. We begin by analyzing designs
that consist of only WID critical paths and then look at
the general case of designs with both D2D and WID critical
paths.

B.1 WID Critical Paths Only

For all the results that follow, process variations are mod-
eled by introducing both D2D and WID variations in the
gate length parameter with a total standard deviation of
10% of the mean [7], though we note that our framework is
general and can handle other sources of variation as well.
The parameter γ = σ2

G

σ2
tot

represents the contribution of D2D
variations to total variations. Finally, to reflect the design
complexity in 90nm technology, we choose total number of
critical paths in the all the designs that we evaluate to be
1, 000, as suggested by [3].

We begin by looking at the impact of increasing the num-
ber of die layers in a 3D IC for the same number of total
WID critical paths. In Figure 4(a), we plot the percent-
age increase in the mean of maximum critical path delay
with increasing number of die layers and for three values
of γ = {0.25, 0.5, 0.75}. From the figure, we can see that
for the medium and high values of γ, i.e., when D2D varia-
tions have moderate to high contributions to total variabil-
ity, increasing the number of device layers has a significant
impact on the mean critical path delay. For example, for
γ = 0.5 the mean delay increases by 9.5% when going from
a 2D design to a six layer design. On the other hand, when



Fig. 4. (a)Impact of number of die layers on maximum critical path
delay (b) cdf of maximum critical path delay for three different WID
critical path to die mappings.

WID variations dominate, we observe that the impact is
less pronounced. This result confirms our prediction from
Theorem 2, i.e., in all cases we see that the 3D designs are
worse than their equivalent 2D counterparts from a vari-
ability perspective.

Figure 4(b) shows the impact of different WID critical
path to die-layer mapping on the cdf of maximum critical
path delay. As proven in Theorem 3, we can see that the
mapping in which the 1, 000 critical paths are equally split
between the four layers, i.e., {250, 250, 250, 250}, stochas-
tically upper bounds the other two mappings. In par-
ticular, the design with equally split paths provides only
36% yield at the 50% yield point of the best design, i.e.,
{950, 17, 17, 16} in which 95% of the critical paths lie in a
single layer. We note that this is not an arbitrary design
point - [10] have shown that up to 95% of the critical paths
of a typical microprocessor lie in the cache arrays - from
this perspective, the best design would correspond to a case
in which the caches are implemented in one layer and the
logic in the rest. We point out that while the 2D and 3D
GCP models do not explicitly model timing variations for
memory structures, [10] have shown that from a variation
perspective, memory arrays can be equivalently modeled
using chains of logic gates as well.

B.2 WID+D2D Paths

We now analyze the accuracy of the proposed stochastic
upper and lower bounds for the more general case of 3D ICs
with both D2D and WID critical paths. While previously
we used SPICE based Monte Carlo simulations to obtain
the actual cdf for small designs, we now use gate-level MC
simulations (using sensitivity information extracted from
SPICE) so as to analyze larger systems. Figure 5(a) shows
the impact on mean critical path delay (relative to the nom-
inal delay) of varying the fraction of D2D paths in the sys-
tem from 20% to 80% for L = {2, 4, 6}. Also shown are the
corresponding mean values obtained from the computed
stochastic lower and upper bounds. We observe that ex-
cept for the upper bound for the two layer design, all the
other bounds are extremely tight.

We note that these results confirm the intuition devel-
oped from Theorem 5, i.e., as the fraction of D2D critical

Fig. 5. (a) Mean of the maximum critical path delay distribution as a
function of the fraction of D2D critical paths in the system. The lower
bounds, actual values and upper bounds are given by circle, square
and triangle markers respectively. (b) cdf of maximum critical path
delay for D2D paths {10%, 50%, 90%} of total number of paths.

paths in the design increases, the mean of the critical path
delay distribution improves. Finally, in Figure 5(b), we plot
the actual cdfs of maximum critical path delay for three
cases, i.e., when D2D paths make up {10%, 50%, 90%} of
the total critical paths in the design. While it is clear from
the figure that the 90% D2D paths case has significantly
higher timing yield than the 10% and 50% cases, we note
that the 90% case would come with an associated overhead
in terms of the number of TSVs required to implement the
design.

VI. Conclusion and Future Work

In this paper, we present 3D-GCP, a high-level analytical
model for the impact of process variations on stacked-die
3D ICs, that takes as input a canonical description of a 3D
circuit encapsulated within a few parameters. Using this
model we are able to provide an exact analytical expression
for the cdf of maximum critical path delay for 3D circuits
with only WID critical paths and guaranteed stochastic
lower and upper bounds for circuits with both D2D and
WID paths. The model is validated against SPICE based
Monte Carlo simulations and demonstrated to be in ex-
cellent agreement with SPICE results. Furthermore, us-
ing this model, we prove theoretically that a 3D circuit
is always less likely to meet a specified frequency target
compared to a 2D design with the same number of critical
paths. Finally, we show, theoretically and experimentally,
that the mapping of critical paths to die layers and the
ratio of WID to D2D critical paths in the design can both
have an impact on the timing yield of the design.

As future work, we plan to look in to variability miti-
gation techniques for 3D ICs, both using variability-aware
design time mapping of critical paths and variability-aware
post-fabrication assembly techniques.
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