
Abstract: This paper introduces colloidal computing as an
alternative to the classical view on computing systems in terms
of design feasibility, application adaptability and better energy-
performance trade-offs. In colloidal computing, simple
computational particles are dispersed into a communication
medium which is inexpensive, (perhaps) unreliable, yet
sufficiently fast. This type of clustering into computationally
intensive kernels with loose inter-particle communication, but
tight intra-particle communication is typical not only for the
underlying hardware, but also for the actual application which
runs on it. We believe that the colloidal model is appropriate to
describe the next generation of embedded systems. For these
systems, a significantly better design quality can be obtained
via run-time trade-offs and application-driven adaptability, as
opposed to classical systems where optimizations are sought in
a rather statical manner.

Keywords: Embedded systems, platform-based design,
asynchronous design, power dissipation, colloidal computing.

1. Introduction
With increasing levels of integration, many functional blocks
and modules can be put together on the same chip. However,
with growing die sizes and shrinking cycle times, clock skew, as
well as power consumption due to clock nets and buffers have
become major problems. To compensate severe clock skew, one
possible solution put forth is the Globally Asynchronous,
Locally Synchronous (GALS) design paradigm [14]. This
methodology relies on having synchronous blocks that
communicate asynchronously one to another, thus reducing the
need of a global clock and alleviating the clock skew and global
clock power problems.

It is our belief that this new design paradigm is an intrinsic
part of a more general model which supports local computation
and inexpensive communication among computational
elements. We call this the model of colloidal computing (MC2a):
simple computation particles are dispersed in a communication
medium which is inexpensive, (perhaps) unreliable, yet
sufficiently fast. This type of clustering into computationally
intensive kernels with loose inter-particle communication, but
tight intra-particle communication is typical not only for the
underlying hardware, but also for the actual application that
runs on it.

In this paper, we propose and discuss the applicability of
the MC2 - at both behavioral and microarchitectural levels - and

provide a different perspective to the classical view on
computing systems in terms of design feasibility, application
adaptability and better energy-performance trade-offs.
Specifically, by clustering the application into computation
intensive kernels, the mapping on application-specific platforms
can be done much more efficiently. The architecture can reflect
the natural application clustering, and include additional
constraints such as power consumption, clock skew or
manufacturability-driven die size constraints which are directly
related to the quality of the electronic design [2]. At an even
finer grain, different components (such as programmable
modules or core processors) can embed a colloidal model at the
architectural/microarchitectural level. What we have seen over
the years are examples of static aggregation of computational
resources, be it at application, architecture or microarchitecture
level. Static aggregation is thus the result of application or
architecture partitioning for achieving minimal communication
overhead and maintaining different quality metrics (such as
performance, energy or fault-tolerance) within certain limits.
However, it is our belief that, aggregation of computational
elements can also be done dynamically (or adaptively) at run
time. Specifically, for achieving high quality in modern
electronic systems, we need to move the “aggregation” process
at run time, by actively re-configuring the architecture and
application for better adaptability to the operating environment.

From a very abstract point of view, the behavior of
computing systems is essentially the result of interaction among
three fundamental entities: application, architecture and
communication (Fig.1). The interplay between hardware and
software with respect to these three entities determines the
overall operation of these systems under different design and/or
run-time constraints.

Fig.1 Fundamental entities in computing systems

In what follows, we intend to illustrate the fractal nature of
colloidal computing and discuss its implications at both system
and microarchitecture level. Our main goal is to point out some
interesting directions for research rather than present detailed
solutions to particular problems. To this end, we intend to
introduce, in an informal manner, a new model which is able to

a.Colloid [käl´oid] = a substance consisting of very tiny particles (1 nm and
1000 nm) suspended in a continuous medium, such as a liquid, a solid, or a
gaseous substance [1].

Application Architecture

Communication

Does Q = MC2?
(On the relationship between Quality in electronic design and the Model of Colloidal Computing)†

Radu Marculescu, Diana Marculescu

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

describe the next generation of embedded systems. For such
systems, a significantly better design quality is obtained via run-

 a
a.† This research was supported in part by Semiconductor Research
Corporation under grant 2001-HJ-898.

time trade-offs and application-driven adaptability as opposed
to the case where optimizations are sought in a statical manner.

2. Colloidal computing
Our proposed colloidal computing model supports local
computation and inexpensive communication among
computational elements. We call such a model colloidal
computing (MC2) by making an analogy to surface phenomena
in physical chemistry [1]: simple computational particles are
dispersed in a communication medium which is inexpensive,
(perhaps) unreliable, yet sufficiently fast (Fig.2). This type of
clustering into computation intensive kernels with loose inter-
particle communication, but tight intra-particle communication
is typical not only for the underlying hardware, but also for the
actual software application that runs on it.

Fig.2 Colloidal computing

We will show in the sequel how this model applies to different
hardware/software systems, exhibiting various trade-offs
between flexibility, complexity and performance. This claim is
supported by the following key observations:
• In the case of general purpose processor-based systems, the

view of a globally clocked, monolithic architecture has
started to change. As discussed in [3], one possible solution
to coping with the clock skew and process variation issues
is to switch from a single clock to multiple clock domains,
communicating or synchronizing only when they need to
exchange information. Even in the single-clocked high-end
cores, with increasing die sizes, clock skew management
becomes a challenging design problem. A possible solution
to this is to move some of this effort from design-time to
run-time, by allowing larger, but bounded clock skews,
managed by handshaking mechanisms [4,5]. We will show
that a typical pipelined core processor lends itself to a
“tight local computation/loose global communication”
design paradigm, in line with the proposed colloidal model.

• A large class of software applications is characterized by
high spatial and temporal locality. In fact, the set of media
processing applications are characterized by highly
computation intensive kernels that loosely communicate
one to another. Most applications exhibit a natural
clustering into computational kernels that compute locally
and communicate infrequently to exchange results. Such
kernels (typically associated with media or signal
processing applications) can thus be mapped on separate
computational particles that communicate loosely.

• The underlying hardware platform can be as simple as a
single-embedded processor-based system, or as complex as
a multiple-core system on the same chip. To be able to
achieve high integration and functionality on the same die,

communication has to be achieved via on-chip
communication networks instead of using a globally
synchronous clock for the entire chip. Thus, computation
has to be as localized as possible, with loose and
inexpensive communication among different blocks or tiles
on the same chip [6]. The architecture can reflect the
natural application clustering, or include additional
constraints such as manufacturability-driven die size
constraints, clock skew or power consumption.

We propose to apply MC2 to both application software and
underlying architecture. As it will be seen in the sequel, MC2

occurs in both hardware and software sides of the world, either
in the form of GALS platforms or cores, or in the form of
explicitly concurrent applications. Similar modeling at both
architectural or application levels, as well as the
microarchitectural level can be instrumental in the step of
mapping an application on a specific platform during the design
process.

Fig.3 Coalesced vs. aggregated resources

To show the specifics of the colloidal computing model,
some observations are in order. In case of unstable colloidal
suspensions, colloidal particles tend to coalesce or aggregate
together due to the Van der Waals and electrostatic forces
among them. Coalescing reduces surface area, whereas
aggregation keeps all particles together, without merging them.
Similarly, in the classical computing system, there is a clear
separation between computation and communication with the
outside world. The resources of a classic system are coalesced
together in a monolithic form (Fig.3a), as opposed to the case of
MC2 where useful work can be spread among many, small,
(perhaps) unreliable computational elements that are
dynamically aggregated depending on the needs (Fig.3b).

We point out that aggregation of computational particles
can be done statically at design time, or dynamically
(adaptively) at run time. The equivalent of electrostatic forces or
Van der Waals forces [1] in the computing world is given by the
naturally local computation inside computational kernels, as
well as the decoupling between them, be it at application,
architectural or microarchitectural levels. As an analogy, in case
of unstable colloids, a minimal energy configuration is achieved
via coalescing (e.g., oil in water) or aggregation (e.g., polymer
colloids). In MC2-based systems, a “stable” configuration is one
that achieves the required functionality, within prescribed limits
for performance, power and probability of failure. We propose
to employ aggregation (Fig.3b) (or dynamic connection) of
computational “particles” based on their state (i.e. functional or
not; idle or active) and their probability of failure so as to

Colloidal fluid:
solid/gaseous particles floating
in a liquid/gaseous media

Computation “particles”

Communication media

Colloidal fluid:
solid/gaseous particles floating
in a liquid/gaseous media

Computation “particles”

Communication media

 (a) (b)

Sequential Application

Memory

Cache

µP

App

App App App

App

M
µP

OS Implicit Explicit

Application
“computational particles”

Architecture
“computational particles”

Coalesced
resource

Resource
aggregation

Communication +
synchronization

Application mapping +
resource management

M
µP

M
µP M

µP

M
µP M

µP

Communication medium

Sequential Application

Memory

Cache

µP

App

App App App

App

M
µP
M
µP

OS ImplicitImplicit ExplicitExplicit

Application
“computational particles”

Architecture
“computational particles”

Coalesced
resource

Resource
aggregation

Communication +
synchronization

Application mapping +
resource management

M
µP
M
µP

M
µP
M
µP M

µP
M
µP

M
µP
M
µP M

µP
M
µP

Communication medium

achieve a required quality of service (QoS) (characterized by
performance, power and fault-tolerance). In addition, the
mapping of computational kernels to the computational
particles is also dynamically adaptable, depending on the needs.
The re-organization and re-mapping can be achieved by thin
middleware clients, sufficiently simple to achieve the required
goals without prohibitive overhead. Static aggregation is thus
the result of application or architecture partitioning for
achieving minimal communication overhead and maintaining
quality metrics (performance, energy or fault-tolerance) within
certain limits. On the other hand, dynamic (or adaptive)
aggregation is explicitly done on-the-fly whenever operating
conditions change (e.g., failure rate is too high or battery level is
too low), thus moving the application mapping and
communication architecture configuration process at run-time.

In the following, we discuss how the colloidal computing is
reflected in the current design methodology for general purpose
processor-based systems, as well as platform-based embedded
system design.

3. Classics: General purpose, processor-based
systems
Most modern processors nowadays rely on advanced
microarchitectural mechanisms to improve performance.
Typically, during each clock cycle, at least 3-4 instructions are
fetched in parallel and then executed in the processor pipeline.
To uncover more parallelism, the code is re-scheduled by
specialized hardware units that perform register renaming and
elimination of dependencies. To this end, we consider a typical
superscalar processor configuration as depicted in Fig.4.

The first stage corresponds to accessing the instruction
cache (I-cache) and the branch prediction hardware.
Sophisticated branch prediction mechanisms are usually
implemented in hardware so as to increase performance of
modern processors via branch direction speculation. Next, the
fetched instruction(s) are decoded and registers are renamed so
that the code becomes as free of dependencies as possible. The
configuration presented in Fig.4 includes also an instruction
window which holds instructions until they are ready to issue
and keeps track of existing dependencies. Finally, ready
instructions are executed or data cache (D-cache) is accessed
and results are written back to the register file for all committed
instructions.

Fig.4 A typical high-end processor pipeline

Most applications running on core processors (either high-
end, embedded or application specific) exhibit a wide range of
run-time profiles, both within and across applications. This is
mainly manifested via non-uniform resource usage, as well as
bursty communication patterns among various parts of the
pipeline. One such example is the case of an I-cache miss being

resolved, or of non-blocking D-cache misses. In the latter case,
for example, instructions may proceed normally through the
pipeline unless data dependencies are detected. In addition, if
there are instructions non-critical to the overall performance
(e.g., infrequent floating point operations in integer
applications), their execution may proceed at a lower speed
without significantly affecting performance.

The above discussion suggests that enough decoupling
exists among different pipeline stages of a high-end processor
so as to allow asynchrony among them either by managing
clock skew at run-time, or by simply using multiple clock
domains via locally generated clocks.

A possible monolithic, single clock vs. a partitioned,
multiple clock domain implementation is shown in Fig.5. In the
traditional superscalar out-of-order processor model shown in
Figure 5(a), the instruction flow consists of fetching instructions
from the instruction cache, using the branch predictor for
successive fetch addresses. The INT and FP dataflows consist of
issuing instructions out of the instruction window to the integer
and FP units and forwarding results to dependent instructions.
The memory dataflow consists of issuing loads to the D-cache
and forwarding data to dependent instructions. Introducing high
latencies in any of these three crucial flows has an impact on
processor’s performance and energy consumption.

Fig.5 Fully synchronous vs. multiple clock domain cores
However, it is worthwhile to note that detailed analysis of

the behavior of both the instruction flow and dataflow suggests
a partitioning, at least to some extent. To carry out the analysis,
the notion of correlation between two streams can be employed.
In general, if two hardware modules exchange information via a
buffer, the amount of synchronous communication between
them can be characterized by the correlation between the stream
produced by one and consumed by the other. This property can
be easier characterized via statistical measures applied on the
two streams. Specifically, we can employ the correlation
coefficient [7] of two random variables in order to characterize
the potential for decoupled behavior between the two. High
values (typically larger than 0.7) indicate high correlation
between produced and consumed items, whereas lower values
indicate average or low correlation, and thus higher potential for
globally asynchronous behavior.

In fact, such an analysis for a typical multimedia
application (e.g., MPEG-2 decoder) provides insights into the
existing potential for natural decoupling of different domains.
For instance, all important computational kernels of the MPEG-
2 decoder (Variable-Length Decoder - VLD, Inverse Discrete
Cosine Transform - IDCT, Motion Vector Unit - MV) exhibit

Instruction flow

Mem dataflowINT dataflow

FP dataflow

very low correlation for the integer dataflow in Fig.5
(correlation coefficient = 0.13 - 0.15) and almost no correlation
for the memory dataflow (correlation coefficient = 0.02 - 0.06).
The instruction flow shows high correlation (correlation
coefficient higher than 0.9), and thus is not a good candidate for
decoupling.

Multiple clock domain cores also come with additional
potential for power savings [8]. As shown in Fig.6, the total
clock power can be reduced by 35% in the case of GALS cores.
However, due to increased execution time and higher
speculation, the power consumed by the front-end increases
slightly, as does the power consumption for the D-cache and
execution core. Overall, average power is reduced by 15% for
the GALS design. In addition, the speed of these locally
synchronous blocks may be gracefully scaled down, while
running at a lower voltage, thus providing additional power
savings. It can be shown that up to 25% reduction in average
power consumption, with less than 15% performance penalty
can be achieved by employing fine grain voltage and clock
speed scaling. It should be pointed out that there are classes of
applications (e.g., FP applications, or applications with small
memory footprint) for which fine grain clock and voltage
scaling is more efficient than the fully synchronous, voltage
scaling scenario (in some cases, more than 15% better than the
single clocked system [8]).

Fig.6 Power consumption breakdown

This analysis shows that MC2 and its incarnation in
programmable cores as GALS microarchitecture can provide
better energy-performance trade-offs than could be discovered
otherwise. While many agree that a decentralized
microarchitecture, along with use of multiple computation
threads on the same core should be the target of future research
[3], there is no clear methodology on how the potential for
better quality or power-performance operating points can be
discovered. MC2 and stream correlation analysis provide a
starting point for such methodologies.

4. Platform-based design
Platform-based design is the most recent trend in the design
methodology of modern embedded systems [9]. A platform
represents a family of heterogeneous architectures that satisfy a
set of architectural constraints imposed to allow re-use of
hardware and software components. As such, the success of
platform-based design builds upon the ability of enabling design
re-use and significantly shortening the time-to-market.

We believe that, again, the MC2 applies to this new design
methodology. More precisely, from an application point of view,
the key issue is the automated partitioning of applications based
on system-level communication cost analysis. This is motivated

by the observation that, constraining a given application (e.g.
MPEG-2) with various input traces (e.g. MPEG-coded video
movies with very different scene changes) leads to very
different ‘clusterings’ of the probability distribution that
characterize the application itself. Tuning the target architecture
to this large spectrum of different probability distributions is the
most important development in obtaining efficient mappings
with respect to certain performance metrics. This idea is
illustrated in [10] which takes a formal approach toward
system-level analysis based on Stochastic Automata Networks
(SANs). Such a design methodology based on a set of formal
techniques for analysis is a critical issue for obtaining high-
quality designs since it helps to avoid lengthy profiling
simulations for predicting power and performance figures.
Considering, for instance, that 5 min. of compressed MPEG-2
video needs roughly 1.2 Gbits of input vectors to simulate, the
impact of having such a tool to evaluate power/performance
estimates becomes evident.

The entire process graph which corresponds to the MPEG-
2 application is modelled following the Producer-Consumer
paradigm (Fig.7). The decoder consists of VLD, IQ/IDCT, MV
units, and the associated buffers. To unravel the complete
concurrency of processes that describe the application, each
process is assumed to have its own space to run so there is no
competition for any computing resource. As shown in Fig.7, we
have local transitions (e.g. between produce(item) and
wait_buffer states in the Producer process (VLD), as well as
synchronization transitions between the two automata. During
the modeling steps, we model each of these units as processes,
and generate their corresponding SANs.

Once we have the SAN model, we can find out its steady-
state solution. This can be done by using numerical methods
that do not require the explicit construction of the global
descriptor but can work with the descriptor in its compact form.
This is a particular property of SANs which make them very
attractive since, due to the special structure resulting from the
tensor product, computation is significantly improved using
dynamic programming-like techniques. Once the steady-state
distribution is known, performance measures such as
throughput, utilization, average response time can be easily
derived.

Fig.7 The SAN model of the baseline unit of MPEG-2

The architecture modeling step starts with an abstract
specification of the platform and produces a SAN model that
reflects the behavior of that particular specification. We
construct a library of generic blocks that can be combined in a
bottom-up fashion to model sophisticated behaviors. The
generic building blocks model different types of resources in an
architecture, such as processors, communication resources, and
memory resources. Defining a complex architecture thus
becomes as easy as instantiating building blocks from a library

producer consumer

(1/Twrite)

 VLD

(λp=1/Tproduce)

 wait_buffer

 write

 IDCT/ IQ

(λc=1/Tconsume)

 wait_buffer

 read

(1/Tread)

[state(IDCT) ≠ read & [state(IQ) ≠ write &

0 1 2 3 n-1...

 & state(buffer) ≠ (n-1)] & state(buffer) ≠ 0]

buffer

(produce item) (consume item)

and interconnecting them. Compared to the laborious work of
writing fully functional architecture models (in Verilog/VHDL),
this can save a significant amount of time, and therefore enable
more exploration of alternative architectures.

Fig.8 Application mapping onto a single CPU platform
Finally, let assume that we want to decide how to configure

a platform which can work in four different ways: one which
has three identical CPUs operating at a generic clock frequency
f0 (then each process can run on its own processor) and another
three architectures where we can use only one physical CPU,
but have the freedom of choosing its speed among the values f0,
2f0, or 3f0. The mapping of our simple VLD-IDCT/IQ processes
in Fig.7 onto a platform with a single CPU is illustrated in Fig.8.
Because these processesb have to share now the same CPU,
some of the local transitions become synchronizing/functional
transitions (e.g. the local transitions with rates 1/Tproduce or 1/
Tconsume become synchronized). Moreover, some new states
(e.g. wait_CPU) have to be introduced to model the new syn-
chronization relationship.

We analyzed in [11] the overall system behavior and pre-
sented detailed results under various input traces. Most notably,
the average length of buffers associated to the MV and IDCT/IQ
units is very different from any worst-case prediction. Based
solely on performance figures, the best choice would be a single
CPU with speed 3f0.

From power dissipation perspective, the breakdown of
power-consumption is given in Fig.9. In this figure, Run 1 repre-
sents the ‘reference’ case where the CPU operates at frequency f0;
the second and the third runs represent the cases when the CPU
speed is 2f0 and 3f0, respectively. In each case, we indicated the
absolute values of power consumption that corresponds to active
and idle states of the CPU (CPUA and CPUI, respectively), as well
as the power dissipation due to the MV and IDCT/IQ buffers.

We can see that there is a large variation among the three
runs with respect to both the CPU-active power (the CPUA bar
in Fig.9), and the power dissipation in the buffers. Furthermore,
we can multiply these power values with the average buffer
length predicted by the SAN analysis, and get the power×delay
characterization of the system. This may be used to quickly

decide, for the given set of parameters, which is the best appli-
cation-architecture combination.

Fig.9 Power-consumption figures for f0, 2f0, and 3f0

We note that, with respect to the MC2 model, this mapping
corresponds to the coalesced resources case illustrated in
Fig.3(a). In a more general case, the mapping shown in Fig.8,
can be changed to accommodate multiple distributed processing
units which will correspond to aggregating processing resources
as in Fig.3(b). This will correspond to reaching a “stable state”
(e.g. lower power×delay product) when computational particles
move closer to each other due to, perhaps, the need for low
communication overhead.

5. Ahead: MC2 in action
What we have presented so far are two examples where MC2

comes into play via static aggregation of computational
particles, be it at application, architecture or microarchitecture
level. This is because the aggregation is the result of application
or architecture partitioning for achieving minimal
communication overhead and maintaining quality metrics (such
as performance, energy or fault-tolerance) within certain limits.
However, we can think about aggregation of computational
particles as being done dynamically at run time. In fact, it is our
belief that, for achieving better quality, we need to move the
“aggregation” process at run time, by actively re-configuring
the architecture and application for better adaptability to the
operating environment.

Fig. 10(a) shows the classic design flow used for most of
today’s electronic systems. The application is mapped onto an
architecture or platform (depending upon the type of system) so
as to optimize certain metrics of interest and achieve a certain
quality for the design. This is basically an iterative process
which refines both the application or architecture so as to satisfy
certain constraints. The actual mapping is fixed and the
resources can be shared, for example, in the form of core
processors running multiple processes at the same time.

However, in the view of upcoming Systems-on-Chip
(SoCs), which are in turn based on specialized on-chip
communication networks, a static mapping between application
kernels and hardware modules (programmable or not) may not
exploit all available trade-offs among various metrics of interest
(performance, energy, fault-tolerance). We believe that since on-
chip communication will most likely entail similar concepts or
techniques as real data networks [6], some of the issues
encountered will be the same (e.g. fault-tolerance and network
congestion management), while others will be specific to the

b. For simplicity, the second consumer process (for the MV unit) was not
explicitly represented in this figure.

(1/Twrite)

 VLD

 wait_buffer

 write

 IDCT/IQ

 wait_buffer

 read
(1/Tread)

[state(IDCT) ≠ read & [state(IQ) ≠ write &

0 1 2 3 n-1...

 & state(buffer) ≠ (n-1)] & state(buffer) ≠ 0]

buffer

 wait_CPU wait_CPU

[state(CPU) ≠
 ≠ idle]

[state(CPU) ≠
 ≠ idle]

CPU

producer consumer1

 MV

 consumer2(for the MV unit)

computation
particles

communication
medium

limited resources available on SoCs (e.g. power-performance
trade-off and management).

In our vision, some of the decisions related to
application mapping and communication have to be moved
at run-time, as shown in Fig.10(b). While the initial mapping
of the application onto the platform can reflect a particular
set of constraints, these may be changed on-the-fly,
depending on the operating conditions. We note that this is a
more aggressive approach than the on-chip power
management of resources (e.g. [12]) which does not consider
that application mapping can be changed, or communication
architecture reconfigured. In addition, our vision is
orthogonal and complementary to platform-based design by
moving the optimization and management of metrics other
than power consumption at run-time. The mapping and
reconfiguration process of the application onto the
underlying architecture is achieved via explicit mechanisms,
as opposed to classic computing systems where mapping and
resource management is done via implicit mechanisms. In
addition, fault and energy modeling and management
become intrinsic components for achieving certain levels of
quality of results or operational longevity. To this end, we
believe that the following issues extremely important for
MC2-based systems:

• Application modeling and partitioning
While these are anyway valid issues in system-level
design, the possibility of application re-mapping and/or
reconfiguration makes them more challenging.
Concurrency extraction becomes then the central issue and
providing formal support for efficient mapping onto a set
of architectural/communication resources is thus a must.

• Fault modeling and management

While it is recognized that on-chip communication is
subject to errors due to cross-talk, soft errors or
electromagnetic interference, the same holds for
computation. At the same time, non-zero failure rates can
appear in on-chip communication due to the interplay
between limited bandwidth and collision on shared
communication resources. It is thus mandatory to include
not only fault models for both computational particles and
communication medium, but also mechanisms for their
management. It is our belief that not only energy, but also

fault-tolerance (and consequently, any performance drop
due to non-zero failure of computation/communication)
should be managed at run-time as any other resource.
Energy, fault-tolerance and performance become the
driving forces that gear a given configuration towards a
stable state, via dynamic aggregation (as described next).

• Application mapping, remapping, migration, and
reconfiguration

Both architecture configuration and mapping of the
application on the computational particles are done
dynamically, at power-up and whenever the system
becomes “unstable” due to undesirable changes in the
operating environment (such as, high collision rate, non-
responsive nodes in the on-chip network, non-balanced on-
chip power density). The mapping of computational
kernels to the computational particles is also dynamically
adaptable, depending on the needs. While application
mapping is very much related to load balancing in real data
networks [13], the problem of migrating computational
kernels (not just nodes) from a given set of hardware
resources to another one is more challenging, given the
limited resources available for performing it. At the very
least, hardware modules should be able to save their state
and send it over the network to a redundant or spare
module able to take over the task. The amount of
redundancy (coupled with associated regularity at chip
level) plays an important part in achieving certain power-
performance trade-offs and has interesting implications in
design cost and manufacturing.

• Hierarchical management of (nano)resources

We believe that the re-organization and re-mapping should
be achieved by using thin middleware clients, sufficiently
simple to achieve the required goals without prohibitive
overhead. We also note that the dynamic aggregation
process can be applied on a tiered architecture, with local
vs. global or hardware vs. software management of
resources, including energy and fault-tolerance. While
Fig.3b shows a single level in this hierarchy, one can
consider nano, micro and macro levels for aggregating,
managing and reconfiguring resources (Fig.11). In such
cases, fault modeling and management, power conservation
and process/application migration or re-mapping have to be
approached differently, depending on the level in the
hierarchy.

Run

Build

ArchitectureApplication

Results OK?

Mapping &
Analysis

No No

Yes

Run

Build

ArchitectureApplication

Results OK?

Mapping &
Analysis

No No

Yes

(a) Classic design cycle

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

(b) Lifetime cycle of MC2-based systems

Fig.10 Classic vs. MC2 flow

Fig.11 Tiered architecture

6. Conclusion
It is generally agreed that the standard ASIC design flow cannot
cope with increased levels of integration and complexity of
today’s systems (hence the need for using GALS design
paradigms). It is also recognized that an increasingly important
segment of the market is dominated by application specific
systems that need tailored design solutions to continue the trend
of increasing QoS and power efficiency under given
performance constraints. Such applications (especially media
processing applications) lend themselves to a “tight local
computation/loose global communication” type of modeling.
The proposed colloidal model covers both the software and
hardware platform aspects in a unified framework in line with
the “tight local computation/loose global communication”
paradigm. We believe that such a model will deeply affect how
platform designers and IP-core providers think their design
flows and products to achieve higher quality and shorter design
cycles.

References

Local manager Local manager

Global manager

Local manager Local manager

Global manager

[1] Paul C. Hiemenz, Raj Rajagopalan. Principles of Colloid and

Surface Chemistry. Chapters 1 and 13, Marcel Dekker, 3rd Edition,
1992.

[2] W. Maly. IC design in high-cost nanometer-technologies era. In
Proc. ACM/IEEE Design Automation Conference, Las Vegas, NV,
June 2001.

[3] R. Ronen, A. Mendelson, K. Lai, L. Shih-Lien, F. Pollack, and J. P.
Shen. Coming Challenges in Architecture and Microarchitecture.
Proc. of the IEEE, March 2001.

[4] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing
systems with application to latency-insensitive protocols. Proc.
ACM/IEEE Design Automation Conference, Las Vegas, NV, June
2001.

[5] L. Carloni and A. Sangiovanni-Vincentelli. Performance analysis
and optimization of latency insensitive systems. Proc. ACM/IEEE
Design Automation Conference, Los Angeles, CA, June 2000.

[6] W. Dally and Brian Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. Proc. ACM/IEEE Design Automation
Conference, Los Angeles, CA, June 2000.

[7] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, McGraw--Hill, 1986.

[8] A. Iyer and D. Marculescu. Power Efficiency of Voltage Scaling in
Multiple Clock Multiple Voltage Cores. CMU-CSSI Technical
Report, 2001.

[9] R.E., Bryant et. al. Limitations and challenges of computer-aided
design technology for CMOS VLSI. Proc. of the IEEE, Vol.89,
No.3, March 2001.

[10] R. Marculescu, A. Nandi. Probabilistic Application Modeling for
System-Level Performance Analysis. In Proc. Design Automation
and Test in Europe, Munich, Germany, March 2001.

[11] A. Nandi, R. Marculescu. System-Level Power/Performance
Analysis for Embedded Systems Design. In Proc. ACM/IEEE
Design Automation Conference, Las Vegas, NV, June 2001.

[12] T. Simunic. Power Management for Netowks on Chip. Proc.
Design Automation and Test in Europe Conference, Paris, France,
Feb. 2002.

[13] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[14] D. M. Chapiro. Globally Asynchronous Locally Synchronous
Systems. Ph.D. thesis, Stanford University, 1984.

