
Post-Floorplanning Power/Ground Ring Synthesis for
Multiple-Supply-Voltage Designs ∗

Wan-Ping Lee
Graduate Institute of

Electronics Engineering
National Taiwan University

Taipei 10617, Taiwan
planet@eda.ee.ntu.edu.tw

Diana Marculescu
Electrical and Computer

Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
dianam@ece.cmu.edu

Yao-Wen Chang
Department of Electrical

Engineering
National Taiwan University

Taipei 10617, Taiwan
ywchang@cc.ee.ntu.edu.tw

ABSTRACT
The multiple-supply voltage (MSV) design style has been exten-
sively applied to mitigate dynamic-power consumption. The MSV
design paradigm, however, brings many crucial challenges, espe-
cially in the power-ring synthesis. Unlike the previous works that
form the power rings as the enclosing bounding boxes of voltage
islands, we enable power rings alignment to the outer boundaries
of voltage islands. With this new formulation, the power-ring
estimation becomes more accurate during floorplanning, and the
power-ring synthesis is more practical after floorplanning. In this
paper, we first propose a linear-time voltage-island power-ring
search algorithm to identify the power rings of voltage islands and
then present a linear-time optimal power-ring corner-patching al-
gorithm to minimize the number of corners in the power rings by
using post-floorplanning whitespaces. Experimental results first
demonstrate that reducing corners in power rings significantly
mitigates IR drop, and then show that the proposed algorithm can
reduce the number of corners by 33% on average for the GSRC
floorplan benchmarks. In particular, the total running time for
the 16 GSRC benchmarks is less than one second on an AMD-64
machine with a 2.2 GHz CPU and 8 GB memory.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
VLSI, Physical Design, Floorplanning, Multiple-Supply Voltage
Design

1. INTRODUCTION
Performance-constrained low-power design has been studied

extensively in the literature. Among existing techniques, the

∗This work was supported in part by TSMC and NSC of Tai-
wan under Grant No’s. NSC 96-2752-E-002-008-PAE, NSC
96-2628-E-002-248-MY3, NSC 96-2628-E-002-249-MY3, and
NSC 96-2221-E-002-245.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’09, March 29–April 1, 2009, San Diego, California, USA.
Copyright 2009 ACM 978-1-60558-449-2/09/03 ...$5.00.

multiple-supply voltage (MSV) design style [13] provides an effec-
tive way for dynamic-power reduction. Generally, dynamic-power
consumption can be computed by

Pdynamic = k · Cload · V 2

dd · f,

where k is the circuit switching rate, Cload is the loading capac-
itance, Vdd is the supply voltage, and f is the clock frequency.
The dynamic-power consumption is proportional to the square of
Vdd, implying that lowering supply voltages can effectively reduce
dynamic-power consumption.

While dynamic-power consumption is mitigated by the MSV
technique, the MSV design style induces several crucial challenges
for power-ring synthesis. In this work, to make the MSV designs
more flexible and more practical, we allow one or several blocks
to form a voltage island; in other words, each supply voltage may
have several physical independent voltage islands whose power
rings are naturally independent. As a result, this method provides
much higher flexibility, but dramatically increases the complexity
of the power-ring synthesis.

To reduce the complexity of the power-ring synthesis, previ-
ous works defined the power rings as consisting of the bounding
boxes of the voltage islands. However, treating the problem this
way is perhaps over simplistic; an example is shown in Section 2.
Therefore, a more practical methodology for MSV power-ring syn-
thesis is desired. In this paper, we propose a power-ring synthesis
methodology that first identifies the power rings that align to the
outer boundaries of voltage islands and then adjusts the power
rings for fewer corners while fixing the positions of the blocks (at
the floorplanning packing or post-floorplanning stages). Further-
more, the proposed methodology is proven to take linear time
when employing a hash-table based algorithm. Due to its effi-
ciency, our methodology can be applied to post-floorplan MSV
design as well as MSV-aware floorplan synthesis.

MSV systems have been applied at various design stages such
as the floorplanning stage [3, 4, 5, 7, 10], the post-floorplanning
stage [9], the placement stage [8], or the post-placement stage [1,
14, 15]. Most of these works do not consider power-network
synthesis or consider it by rough models, e.g., the bounding-
box power-ring formulation. However, such an approach might
be over simplistic for power-ring estimation during floorplanning
and could be impractical for power-ring synthesis at the post-
floorplanning stage. In contrast, our outer-boundary formulation
is amenable to being employed in the floorplanning and post-
floorplanning stages because of its accuracy and practicality. Sec-
tion 2 gives an example to compare the two power-ring formula-
tions, the traditional bounding-box formulation and our outer-
boundary one.

In addition to the aforementioned novel methodology of power
rings for voltage islands, we summarize our major contributions
as follows:

• To the best of our knowledge, this is the first work propos-
ing power-ring alignment to the outer boundaries of voltage
islands. Compared with previous works that approximate
power rings by the bounding boxes of voltage islands, our
methodology is more realistic.

• A linear-time voltage-island power-ring (contour) search al-
gorithm is presented. When using a hash-table approach,
the proposed algorithm takes only linear time on average
to search for a power ring.

• A linear-time optimal power-ring corner-patching algorithm
is presented. While power rings are aligned to the outer
boundaries of voltage islands, there may be multiple cor-
ners for each power ring. This implies that a significant
number of vias would be introduced in the power rings,
which is definitely not desirable. Therefore, it is impor-
tant to minimize the number of corners in the power rings
by patching the whitespaces in the given floorplan into the
circuit blocks and make power rings more regular. We em-
pirically validate this undesired effect of the corners on IR
drops.

• Experimental results demonstrate that reducing corners in
power rings significantly mitigates IR drop, and show that
the proposed algorithm can reduce the number of corners
by 33% on average for the GSRC floorplan benchmarks.
The total running time for the 16 GSRC circuits is less
than one second on an AMD-64 machine with a 2.2 GHz
CPU and 8 GB memory.

• Since the proposed algorithms are computationally efficient,
they are amenable to being embedded into MSV floorplan-
ners to achieve better MSV floorplans. In addition, they
can also be applied for synthesizing the power rings during
the post-floorplanning stage.

The remainder of this paper is organized as follows. Section 2
discusses the advantages of the outer-boundary formulation for
MSV designs. Section 3 formulates the power-ring synthesis and
adjusting problem for MSV designs. Section 4 describes our pro-
posed methodology for the addressed problem. Section 5 shows
the experimental results, and Section 6 concludes this paper.

2. COMPARISONS OF POWER-RING
FORMULATIONS

We first introduce the bounding-box formulation and our outer-
boundary one. Take Figure 1 for example, in which the given
floorplan contains five circuit blocks operating at two specific
supply voltages, three blocks in the left voltage island and two
in the right one, and the interconnection wires among the blocks
are shown. Figures 1(a) and (b) employ the bounding-box for-
mulation for power-ring estimation while Figures 1(c) and (d)
adopt our outer-boundary formulation. The bounding-box for-
mulation estimates and forms power rings as enclosing bounding
boxes of voltage islands, as shown in Figures 1(a) and (b); our
outer-boundary formulation, in contrast, searches power rings by
aligning the outer boundaries of voltage islands and then makes
the power rings more regular by patching whitespace into voltage
islands, e.g., w1 and w2 as shown in Figure 1(c).

Compared with our outer-boundary formulation, the bounding-
box one might underestimate the complexity of the power-ring
synthesis during floorplanning and/or post-floorplanning, and thus
might mislead MSV-aware floorplanning and/or post-floorplanning
optimization. The floorplan in Figure 1(b) is more preferable than
that in Figure 1(a) if the bounding-box formulation is employed,
because they both have the same cost of the power-ring synthe-
sis, but the floorplan in Figure 1(b) has shorter wirelength. As
a matter of fact, however, the cost/complexity of the power-ring
synthesis for the floorplan in Figure 1(b) is underestimated due
to the overlap between the two voltage islands. The overlap be-
tween two voltage islands implies that the power lines for different
supply voltages need to be interleaved in the overlapped region,
widening the power-line pitch and thus increasing IR drop. In
contrast, our outer-boundary formulation can capture the cost of
the power-ring synthesis more accurately, as shown in Figures 1(c)
and (d). Although the floorplan in Figure 1(d) has shorter wire-
length, its power cost (e.g., IR drop) and power-ring complexity
could be higher due to the larger number of corners in the power
rings. Note that to reduce the number of corners and thus make
the power rings more regular, our outer-boundary formulation

(c) (d)

(a) (b)

power rings

power rings

w1

w3

w4

w2

Figure 1: Comparison between the bounding-box and

outer-boundary formulations. The given floorplan con-

tains five circuit blocks operating at two specific supply

voltages, three blocks in the left voltage island and two

in the right one, and the wires interconnecting the blocks

are shown. (a) and (b) employ the bounding-box formu-

lation for power-ring evaluation while (c) and (d) adopt

the outer-boundary one. In (c) and (d), w1, w2, w3, and

w4 are patched to the voltage islands to make the power

rings more regular.

patches whitespaces into voltage islands, as shown in Figure 1(c),
which might lead to a better MSV floorplan solution.

In addition, the power meshes for voltage islands in industrial
designs are usually not regarded as the enclosing bounding boxes
of the voltage islands if there are overlapping regions in the bound-
ing boxes. To avoid widening the power-line pitch and save more
power-network resource, the power ring for a voltage island is
typically aligned to the outline of the voltage island. Hence, our
outer-boundary formulation is more realistic and more suitable
for MSV designs than the bounding-box one.

3. PROBLEM FORMULATION
To achieve better power-ring synthesis for MSV designs, our

objective is to identify the power rings and then reduce the num-
ber of corners for each power ring, while keeping all circuits blocks
fixed (during the floorplanning packing or the post-floorplanning
stages). In this problem, an MSV floorplan is given, in which cir-
cuit blocks occupy specified physical spaces and operate at spec-
ified supply voltages, as shown in Figure 2(a).

We formally define a voltage island, a power ring, and a corner
as follows, and also illustrate them by the examples shown in
Figure 2(b).

Definition 1. (Voltage Island) A voltage island character-
ized by a supply voltage consists of a set of blocks that operate at
the specified supply voltage and are adjacent to at least one other
block in the set.

Definition 2. (Power Ring of a Voltage Island) A power
ring for a voltage island is the contour (outer boundary) of the
voltage island.

Since the input is a floorplan consisting of rectangular blocks, a
power ring of a voltage island is composed of a set of vertical
and horizontal segments that enclose the associated blocks in the
voltage island.

Definition 3. (Corner of a Power ring) A corner in a
power ring is a point connecting consecutive vertical and hori-
zontal segments of the power ring.

(a) (c)

voltage islands

power ringscorners

(b)

power rings

Figure 2: An example problem. (a) Inputs: a floorplan with five blocks operating at specified supply voltages. (b)

Definitions: voltage islands, power rings, and corners, as defined in Definitions 1–3. (c) Objective: Identify voltage

islands and minimize the number of corners for each power ring. The original numbers of corners of these two power

rings are 10 and 6, respectively. After applying the proposed algorithm, the numbers of corners reduce to 6 and 4,

respectively.

We define the power-ring synthesis and adjustment problem as
follows (see also Figure 2 for an illustration).

Problem 1. (Problem: Power-Ring Synthesis (PRS))
Inputs: a floorplan consisting of rectangular circuit blocks oper-
ating at the specified supply voltages
Objective: identify the power ring for each voltage island and
distribute whitespace to minimize the number of corners of the
power rings, i.e.,

min Σn
i=1

ci, (1)

where n is the number of power rings and ci is the number of
corners of power ring i.

4. OUR OPTIMAL ALGORITHMS
To deal with the addressed problem, a two-phase framework is

proposed. The framework can produce the optimal solution; in
other words, the number of corners in each power ring is mini-
mized while all power rings do not overlap with each other (by
patching floorplan whitespaces). In the first phase, a voltage-
island contour search algorithm is applied to identify voltage
islands and their corresponding power rings, as shown in Fig-
ure 2(b). In the second phase, a corner-patching algorithm is
used to minimize the number of corners by patching whitespaces,
as shown in Figure 2(c).

4.1 Voltage-Island Contour Search Algorithm
Given a floorplan consisting of rectangular circuit blocks, we

first apply a depth-first search (DFS) to identify blocks belonging
to each voltage island. Moreover, for each voltage island, we
construct two hash tables Hx and Hy corresponding to the x and
y coordinates of points defining the blocks, as shown in Figure 3.
The first element in Hx links points p11 and p8 since they have
the smallest x coordinate; the first element in Hy links points p1

and p2 since they have the smallest y coordinate.
Then, given a voltage island, finding its power ring is a contour

search problem. Two straightforward, but incorrect methods are
illustrated in Figure 4. In Figure 4(a), we search the contour by
examining the edge positions. If the edges overlap no other edges,
they are assumed to be the contour edges. This method, however,
cannot distinguish the edges of inner holes, which neither over-
lap any edges nor are contour edges of the voltage island; conse-
quently, the method might not produce correct results. As shown
in Figure 4(a), the lightly shaded segments are not parts of the
contour, but the method might fail to identify them. As shown
in Figure 4(b), the second method tries to search the contour by
line sweeping. The algorithm tests if an edge is a contour segment
when the scanning line sweeps the edge. This method, however,
might not correctly determine the contour segments while sweep-
ing an edge. In Figure 4(b), the heavily shaded segments of the
sweeping line are parts of contour edges while the lightly shaded
one is not. Since these two straightforward methods are incorrect,

p1

p4

p6p7p8

p10

p9

p11

p2

p3
p5

Hy

Hx

Figure 3: For each voltage island, construct two hash

tables Hx and Hy to sort the x and y coordinates of points

defining the blocks.

w

(a) (b)

Figure 4: (a) Contour search by examining edge over-

lap. (b) Contour search by line sweeping. These two

methods might not search the contour correctly. The

lightly shaded segments might be mistakenly considered

as parts of the contour. Here, w indicates a sweeping

line.

it is therefore desirable to find a correct and efficient method to
tackle the contour search problem. We apply the concept of the
contour traversal sequence, inspired by the previous work [11], to
develop our algorithm.

4.1.1 Properties of Contour Traversal Sequences
As mentioned before, a contour is composed of a set of vertical

and horizontal outer segments. If we trace the respective verti-
cal and horizontal segments counterclockwise from the starting
segments with the smallest x and y coordinates, the traversal se-
quences S∗

x and S∗

y would be obtained. Note that in this paper
when we say counterclockwise traversal, we mean the traversal

y1

y3y5
y2

y4

(b)(a)

x1

x2

x3

x4

x5

Sx
*=<x1,x2,x3,x4,x5,x1>

Sx =<x2,x3,x4,x5,x1,x2>

Sy
*=<y1,y2,y3,y4,y5,y1>

Sy =<y1,y2,y3,y4,y5,y1>

Figure 5: (a) S∗

x =< x1, x2, x3, x4, x5, x1 >, and an ex-

ample Sx =< x2, x3, x4, x5, x1, x2 >. The lightly shaded

segments are horizontal inversions, as defined in Defini-

tion 4. (b) S∗

y =< y1, y2, y3, y4, y5, y1 >, and an example

Sy =< y1, y2, y3, y4, y5, y1 > The heavily shaded segment is

a horizontal inversion, as defined in Definition 4.

begins counterclockwise; In Figure 5, for example,

S∗

x =< x1, x2, x3, x4, x5, x1 >,

and

S∗

y =< y1, y2, y3, y4, y5, y1 >,

in which x1 and y1 are the respective segments with the smallest
x and y coordinates. Without loss of generality, the traversal
sequences start and end at the same segment.

We have the property for S∗

x and S∗

y as follows:

Lemma 1. (Property of S∗

x and S∗

y) S∗

x and S∗

y start with
increasing subsequences and must end with decreasing ones. Moveover,
S∗

x and S∗

y are composed of alternate increasing and decreasing
traversal subsequences.

In Figure 5(a), for example, S∗

x begins in an increasing subse-
quence < x1, x2, x3 >, followed by a decreasing one < x3, x4 >,
followed by an increasing one < x4, x5 >, and finally ends in a
decreasing one < x5, x1 >.

Here, we also introduce the traversal sequences Sx and Sy to
relax the constraint in the definitions of S∗

x and S∗

y that the traver-
sals start at the segments with the smallest x and y coordinates;
that is, treating Sx and Sy as circular lists, they have the same
orders as those of S∗

x and S∗

y , respectively, but might start with
different segments. Obviously, Sx and Sy are also composed of al-
ternate increasing and decreasing traversal subsequences, but may
not start and end with increasing and decreasing subsequences
since they may start in the middle of subsequences. In Figure
5(a), for example, Sx starts at x2 which is in the middle of the
first increasing subsequence in S∗

x, and thus Sx starts and ends
in the increasing subsequences. Note that S∗

x and S∗

y are unique,
but Sx and Sy are not.

Next, we define an inversion as follows, which is the key to our
contour-traversal strategy.

Definition 4. (Vertical and Horizontal Inversion) A hor-
izontal (vertical) inversion occurs when Sx (Sy) changes from
increasing to decreasing or from decreasing to increasing.

In Figure 5, for example, horizontal and vertical inversions oc-
cur in {(x3, x4), (x4, x5), (x5, x1), (x1, x2)} and {(y4, y5)} respec-
tively, giving that Sx =< x2, x3, x4, x5, x1, x2 > and Sy =<
y1, y2, y3, y4, y5, y1 >.

Lemma 2. (Property of inversion) To determine an inver-
sion, at least three consecutive contour segments are required.

Subsequently, our contour-traversal strategy is presented in Ta-
ble 1. In this table, the direction pair dσ , which is presented by

islandisland

(a) (b)

RU DR
vertical

inversion
RU UL

horizontal

inversion

'
'

Figure 6: An example switching of direction pair RU .

The shaded segments are vertical and horizontal inver-

sions. Assume that the current direction pair is RU . If

the traversal meets vertical and horizontal inversions, the

direction pair would be changed to DR and UL, respec-

tively.

a tuple consisting of a major (the first letter) and a minor (the
second letter) directions where point σ denotes the possible di-
rections of the succeeding point. Here, U , D, L, and R denote
respective up, down, left, and right directions, and the direction
pairs without and with parentheses are for the counterclockwise
and clockwise traversals, respectively. According to dσ , succeed-
ing point σ′ will be found, and then according to the inversion
after σ′, dσ′ will be set. Then, we repeatedly search succeeding
points in the contour and set their direction pairs until coming
back to the starting point. Following this strategy, we can tra-
verse the contour correctly.

Theorem 1. (Correctness of direction-pair switch) The
contour-traversal strategy listed in Table 1 is correct.

Proof 1. The switching of the direction pair RU is proven
here while others can be proven in the same way. Note that we
prove by the properties (increasing and decreasing) of traversal
sequences Sx and Sy. Given that point σ′ is succeeding to point
σ whose direction pair dσ is RU , we prove that dσ′ is set to
RU , DR, and UL according to the inversion after σ′. dσ =
RU implies that Sx and Sy are increasing. Consider a vertical
inversion. Sy changes to decreasing, but Sx is still increasing,
and thus dσ′ may be set to DR or RD. However, it is impossible
to set dσ′ to RD; otherwise, the following traversal may enter
the voltage island and lead to an incorrect traversal, as shown in
the dashed line in Figure 6(a). Consider a horizontal inversion.
In this case, Sx changes to decreasing, but Sy is still increasing,
and thus dσ′ may be set to UL or LU . However, it is impossible
to set dσ′ to LU ; otherwise, the following traversal might enter
the voltage island and lead to an incorrect traversal, as shown in
the dashed line in Figure 6(b). The switching of other direction
pairs can also be proven in the same way.

Corollary 1. If a traversal of a contour is started wth the
RU direction and at the point with the smallest y coordinate (if
there are multiple points point with the smallest y coordinate,
choose the one with the smallest x coordinate), the direction pairs
enclosed between parentheses in Table 1 would NOT appear. In
other words, in Table 1, the ways of switching for the direction
pairs without and with parentheses are independent.

4.1.2 Contour Search Algorithm
Based on the properties of traversal sequences and our proposed

contour-traversal strategy, we develop our voltage-island contour
search algorithm, as illustrated in Figure 7. In the following, we
detail the algorithm step by step.

Table 1: The contour-traversal strategy. Each direction

pair is composed of a major (the first letter) and a minor

(the second letter) directions. Point σ′ is succeeding to

point σ in a contour, and its direction pair dσ′ can be

determined by dσ and the inversions after point σ′. The

direction pairs without and with parentheses are for the

counterclockwise and clockwise traversals, respectively.
dσ′

dσ no inversion vertical inversion horizontal inversion
RU/(RD) RU/(RD) DR/(UR) UL/(DL)
LD/(LU) LD/(LU) UL/(DL) DR/(UR)
UL/(UR) UL/(UR) LD/(RD) RU/(LU)
DR/(DL) DR/(DL) RU/(LU) LD/(RD)

U: up; D: down; L: left; R: right.

S1: Find beginning

point

S2: Set d = RU

S3: Search succeeding

point '

S4: Check inversion

S5: Set d
'

S6: Set = '
Set d = d

'

S7: Is the

beginning point?

Done

Yes

No

Figure 7: Flow of the voltage-island power-ring search

algorithm.

• Steps 1 and 2: Initializing the traversal
The traversal starts at the point σ with the smallest y coordi-

nate (if there are multiple points with the smallest y coordinate,
choose the one with the smallest x coordinate) and initially set
dσ = RU . It can be seen that the starting point σ is the first
element in Hy , as shown in Figure 3.

Setting dσ = RU is correct. Since σ is the first element in
Hy , it is impossible to make dσ related to directions L and D.
In addition, we traverse the contour in counterclockwise manner.
Hence, R is set as the major direction while U is the minor one;
if we set U as the major direction, then the traversal is done
clockwise.
• Step 3: Searching the succeeding point

In the traversal, the succeeding point σ′ must be in the major
or minor direction specified in dσ .

Lemma 3. Given the point σ and its direction pair dσ, the
succeeding point in the contour (denoted by σ′) must exist in the
major or minor direction specified in dσ.

Lemma 3 and the hash-table implementation show that finding
the succeeding point in the contour takes constant time on average
since searching in hash tables takes constant time on average [2].
• Step 4: Checking the inversion after σ′

This is the core step of the algorithm. After obtaining point
σ′, we check the inversion after σ′ and then set the direction pair
dσ′ in the next step.

To check the inversion after σ′, we should be given the succeed-
ing point of σ′. We, however, cannot determine the succeeding
point of σ′ before determining the inversion after σ′. Although
we do not know where the succeeding point of σ′ is, we can still
guess and then verify it (three times at most).

For a clearer presentation, the point succeeding σ′ is denoted
by σ′′, and the directions from σ to σ′ and from σ′ to σ′′ are
denoted by Dσ→σ′ and Dσ′

→σ′′ , respectively. Since the traversal

m

M

i

m

Mi

(a) (b)

point

point '

major direction minor direction

d =RU

Figure 8: An example of checking the inversion after

σ. (a) Dσ→σ′ is in the major direction. It is obvious

that σ′′

i is the point succeeding σ′, and the vertical in-

version occurs. (b) Dσ→σ′ is in the minor direction. In

this case, only if σ′′

M
and σ′′

m do not exist, σ′′

i could be

the succeeding point to σ′, and the horizontal inversion

occurs.

is in the coordinate system (each time we have four directions:
up, down, left, and right), σ′′ may come from three directions,
except Dσ→σ′ . Those three directions are further classified as
major, minor, and inversive directions. Hence, we extend σ′′ to
a set {σ′′

M
, σ′′

m, σ′′

i } to specify the positions of σ′′. It should be
noted that at least one in {σ′′

M
, σ′′

m σ′′

i } exists.

Lemma 4. (Inversion Detection) The inversion can be de-
tected in the following two situations.

1. Dσ→σ′ is in the major direction of dσ, and σ′′

i exists.

2. Dσ→σ′ is in the minor direction of dσ, and σ′′

i exists but
neither σ′′

M
nor σ′′

m does.

Proof 2. According to Lemma 2, we need three segments to
determine an inversion, but here we are given dσ and thus know
the states of Sx and Sy; so we do not need the first two segments
for determining the states of Sx and Sy. Now, we use Figure
8 for a clear illustration, in which dσ is set to RU . Note that
because the traversal is counterclockwise, the voltage island occu-
pies the region above the segment connecting σ and σ′ in Figure
8 (a) and the region on the left of the segment connecting σ and
σ′ in Figure 8 (b). In Figure 8(a), Dσ→σ′ is in the major di-
rection, and σ′′

M
, σ′′

m, and σ′′

i are detected. It is obvious that σ′′

i
is the point succeeding σ′, and the vertical inversion occurs. In
Figure 8(b), Dσ→σ′ is in the minor direction, and σ′′

M
, σ′′

m, and
σ′′

i are detected. In this case, only if σ′′

M
and σ′′

m do not exist, σ′′

i
could be the succeeding point to σ′, and the horizontal inversion
occurs.

• Step 5: Setting dσ′

We have been given dσ and the inversion after σ′. According
to Table 1, we set dσ′ .
• Step 6: Confirming the current segment

The segment connecting points σ and σ′ has been confirmed
as a contour segment. We let σ = σ′ and dσ = dσ′ to repeatedly
search succeeding points in the contour.
• Step 7: Determining the termination

If σ is not the starting point, we repeatedly find succeeding
points until coming back to the starting point. If σ is the starting
point, the algorithm terminates, and the contour is composed of
the points which have been set as point σ.

4.1.3 An Example of Contour Search Algorithm
In Figure 9(a), we search the contour starting at point p1 which

is the first element in Hy and set dp1 = RU . Then, we search
point p2 as the succeeding point in the major direction R speci-
fied by dp1 . We check the inversion after p2, but no inversion is
detected. Hence, we set dp2 to RU according to Table 1. Next,
since p2 is not the starting point, we go back to the third step
and repeatedly find the succeeding point.

P t h d bl j i t P t h i l j i tPatch double joints

(Definition 5)

Update contours

Patch single joints

(Definition 6)

Update contoursUpdate contours

Any adjustable

Update contours

Any adjustable

double joints? single joints?

D e

NO

YES YES

NO

Done

Figure 10: Power-ring corner-patching flow.

In Figure 9(b), due to the page limitation, we skip the de-
scription of the third step which has been presented in the afore-
mentioned example. In the fourth step, an inversion after p3 is
detected because dp2→p3 is in the minor direction of dp2 , and σ′′

i
(p5) exists but neither σ′′

M
nor σ′′

m does (the horizontal inversion
is detected), as described in the second situation in Lemma 4.
Then, according to Table 1, dp3 is set to UL. Again, since p3 is
not the starting point, we go back to the third step and repeatedly
find the succeeding point.

In Figure 9(c), in the fourth step, no inversion is detected and
thus dp5 is set to UL. Similarly, since p5 is not the starting point,
we go back to the third step and repeatedly find the succeeding
points. The algorithm would terminate when we come back to
p1.

4.2 Corner-Patching Algorithm
After searching the power ring (contour) of each voltage island,

we try to minimize the number of corners (see Definition 3) for
the via reduction in the power rings by patching whitespaces into
circuit blocks. It should be noted that the resulting power rings
will not overlap, because we use only whitespaces for patching to
minimize the via count. See Figure 10 for the corner-patching
algorithm flow.

We first introduce single and double joints defined in Defini-
tions 5 and 6 and illustrated in Figure 11.

Definition 5. (Double joint in a contour) If we individu-

ally extend vertical and horizontal contour segments of a voltage
island, a double joint is a rectangle which is not part of the volt-
age island and is enclosed by one extended and three original

segments.

Definition 6. (Single joint in a contour) If we simul-

taneously extend vertical and horizontal contour segments of a
voltage island, a single joint is a rectangle which is not part of the
voltage island and is enclosed by two extended and two original

segments.

Moreover, single and double joints may be filled by whitespace.
In Figure 12(a), for example, suppose that double joint d1 in
the left voltage island has been filled. Consequently, two single
joints individually exist in the two voltage islands. Single joint
s1 associated with the right voltage island could be filled up by a
complete whitespace; however, the single joint associated with the
left voltage island cannot be filled because there is no complete
whitespace that can fill the single joint. The complete whitespace
for the single joint associated with the left voltage island is shown
by the oblique-line region in Figure 12(b).

Now, we show the optimality of the corner-patching algorithm.
We shall first show the correctness of the algorithm flow and then
show the optimality of the algorithm.

Lemma 5. (Correctness of the corner-patching algorithm
flow) It is impossible that filling single joints would induce double
joints.

double joint

single joint

(a) (b)

Figure 11: (a) An example double joint. Extending the

vertical contour segments, we have a double joint on the

right-hand side of the voltage island. (b) An example

single joint. Extending the vertical and horizontal seg-

ments, we have a single joint on the left-hand side of the

voltage island.

single joints

(a) (b)

d1

s1

d1

Figure 12: (a) There is no complete whitespace that

can fill the single joint associated with the left voltage

island; meanwhile there is a complete whitespace that

can fill single joint s1 associated with the right voltage

island. (b) The complete whitespace for the single joint

associated with the left voltage island is shown by the

oblique-line region.

We now present our corner-patching algorithm. We search dou-
ble joints starting at the point with the smallest y coordinate (if
there are multiple points with the smallest y coordinate, choose
the one with the smallest x coordinate). Double joints exist in the
four situations illustrated in Figure 13(a). Therefore, each time
we scan three contour segments to verify if a double joint exists.
If we detect a double joint, we immediately try to fill the double
joint. If the double joint can be filled, we update the contour and
detect new double joints locally; after patching a double joint,
new double joints may be induced. If the double joint cannot be
filled, we process the next double joint. After filling all adjustable
double joints, we try to search and fill single joints which exist
in the four situations illustrated in Figure 13(b). The algorithm
terminates when all adjustable single joints are filled. We have
the optimality claim as follows:

Theorem 2. (Optimality of the corner-patching algo-
rithm) Given a contour, the corner-patching algorithm mini-
mizes the number of corners in the contour by patching whitespaces.

Proof 3. We first fill all double joints, if any. Then, we fill
all single joints, if any. According to Lemma 5, after filling sin-
gle joints, we do not have any new double joints for filling. It
implies that we impossibly make any changes to make the cur-
rent situation better, and thus the current solution is optimal.
Therefore, the optimality of the corner-patching algorithm holds.

5. EXPERIMENTAL RESULTS
We conducted two experiments in this section. Section 5.1 val-

idates the corner effect in power rings on IR drop, and Section 5.2
presents the experimental results from our algorithms.

p3

(b)

p1

dp1
: RU

p2

p3

p2

dp2
: RU

p5 P3

dp3
: UL

(c)

p5

(a)

p6

p4

point

point '

point M"/ m"/ i"

searched contour

inversion

Figure 9: (a) The counterclockwise traversal begins at p1 whose direction pair dp1 is set to RU . p2 is found
in the major direction specified by dp1 , and dp2 is set to RU because no inversion is detected. (b) p3 is found
in the minor direction specified by dp2 , and dp3 is set to UL because the horizontal inversion is detected, as
described in the second situation in Lemma 4. (c) p5 is found in the minor direction specified by dp3 , and dp5

is set to UL because no inversion is detected.

(a) (b)

Figure 13: (a) Four situations in which double joints

exist. (b) Four situations in which single joints exist.

5.1 Corner Effect Validation

d2

s2

s3

d1

d3

(a) (b)

p1

p2

p3

p4

s1

Figure 14: Layout of the r2000 soc circuit. (a) Three

double and three single joints are placed in the power

ring, and four power pads are attached in the four bound-

aries of the chip. (b) Three double and three single joints

are filled.

The corners in a power ring induce vias and increase IR drop.
To justify this claim, we tested various numbers of corners in
a power ring, and then individually evaluated the IR drop by
Cadence SOC Encounter v6.2. We took the r2000 soc circuit from
Opencores [12] and synthesized it by Synopsys Design Compiler
v2007.12 with the TSMC 0.18µm technology. The circuit layout
contain three double and three single joints in its power ring, and
the four power pads are attached to the four boundaries of the
chip.

Table 2 reports the experimental results. Column“power pads”
gives the power pads we used, and columns“3d3s”, “2d3s”, “1d3s”,

Table 2: Comparison of IR drops in the power rings

containing various numbers of double and single joints.

The power rings are shown in Figure 14.

power pads 3d3s 2d3s 1d3s 0d3s 0d2s 0d1s 0d0s

p1 15.456 15.440 13.895 13.769 13.455 13.417 13.39

p1–p2 5.363 5.343 4.643 4.520 2.723 2.667 2.665

p1–p3 2.871 2.852 2.447 2.403 1.736 1.716 1.714

p1–p4 1.631 1.626 1.593 1.586 1.177 1.163 1.075

“0d3s”, “0d2s”, “0d1s”, and“0d0s” give the IR drops for d1, d2, d3,
s1, s2, and s3 being filled one by one. It is obvious from Table
2 that minimizing the number of corners can significantly reduce
IR drop.

5.2 Corner Number Minimization by
Whitespace Patching

Our algorithms was implemented in the C++ programming
language and experimented on a workstation with an AMD-64 2.2
GHz CPU and 8 GB memory running Linux. The benchmark cir-
cuits are taken from the GSRC floorplanning benchmarks. Other
assumptions in our experiments are listed below. Note that the
efficiency and correctness of our algorithms are not affected by
these assumptions.

• Four available supply voltages are used in the benchmarks
and are randomly assigned to blocks. Note that previous
works have shown that two or three supply voltages are
sufficient for practical circuit designs [6].

• The positions of blocks are fixed, and they are given in the
original benchmarks; that is, our algorithm is applied at
the post-floorplanning stage.

Table 3 reports our experimental results. Column “#islands”
gives the numbers of the voltage islands, and columns “origi-
nal,” “after double-joint patching,” and “after single-joint patch-
ing” give the numbers of corners before and after patching double
and single joints. The experimental results show that our algo-
rithm can reduce the number of corners by 33% on average. In
addition, the total running time for the 16 GSRC circuits is less
than one second. For the biggest benchmark circuit n300 that
contains 300 blocks, 57 voltage islands, and 862 corners, our al-
gorithm can reduce 298 corners in only 0.06 seconds. The results
show that the proposed algorithms are efficient and effective.

Figure 15 shows the resulting layouts of n30b and n50b. Fig-
ures 15(a) and (d) show that our contour search algorithm can
search the power rings aligning to the outer boundaries of the
voltage islands correctly. Figures 15(b) and (e) show that our
double-joints patching algorithm can fill the double joints and
reduce the number of corners from 94 and 140 to 80 and 110 (re-
duced by 14 and 30), respectively. Figures 15(c) and (f) show
that our single-joint patching algorithm can fill the corners and
further reduce the corners from 80 and 110 to 62 and 88 (reduced
by 18 and 22), respectively.

(a) (b) (c)

(d) (e) (f)

double joint single joint

Figure 15: The layouts of n30b and n50b. The power rings are shown by the bold lines. (a) and (d) show that our

algorithm can search the power rings (contour) of the voltage islands correctly. (b) and (e) show the results after

patching double joints. (c) and (f) show the results after patching single joints.

Table 3: Comparison of the number of corners before

and after patching corners.

after after
Bench- #islands original, double-joint single-joint runtime
mark ψo patching, ψd patching, ψs (sec.)

n10 3 34 26 22 <0.01

n10b 3 28 26 20 <0.01

n10c 3 30 26 20 <0.01

n30 7 82 68 58 <0.01

n30b 9 94 80 62 <0.01

n30c 8 94 78 68 <0.01

n50 14 156 132 106 <0.01

n50b 10 140 110 88 <0.01

n50c 14 162 138 120 <0.01

n100 20 284 218 194 <0.01

n100b 17 290 220 174 0.01

n100c 20 292 218 186 0.01

n200 40 566 452 388 0.02

n200b 45 588 472 408 0.02

n200c 41 592 466 408 0.02

n300 57 862 670 564 0.06

average: ψd or ψs/ψo 0.79 0.67

6. CONCLUSION
In this paper, we have introduced a post-floorplanning power-

ring synthesis and adjustment algorithm. The proposed algorithm
enables power ring alignment to the outer boundaries of voltage
islands. This is a novel idea of the power-ring synthesis for MSV
designs. Further, the proposed algorithm is adaptable to be em-
bedded in MSV floorplanners because of its efficiency. Of course,
it is also can be employed to synthesize the power rings after
floorplanning.

7. REFERENCES
[1] R. Ching, E. Young, K. Leung, and C. Chu, “Post-Placement

Voltage Island Generation,” in Proc. ICCAD, pp. 641–646,
2006.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to Algorithm, 2nd Edition,” pp. 228, 2001.

[3] Y. Cai, B. Liu, J. Shi, Q. Zhou, X. Hong, “Power Delivery
Aware Floorplanning for Voltage Island Designs,” in Proc.

ISQED, pp. 350–355, 2007.

[4] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu,
“Architecting Voltage Islands in Core-Based System-on-a-Chip
Designs,” in Proc. ISLPED, pp. 180–185, 2004.

[5] W.-L. Hung, G.M. Link, Yuan Xie, N. Vijaykrishnan, N.
Dhanwada, and J. Corner, “Temperature-Aware Voltage Islands
Architetecting in System-on-Chip Designs,” in Proc. ICCD, pp.
689–694, 2005.

[6] M. Hamada, Y. Ootaguro, and T. Kuroda, “Utilizing Surplus
Timing for Power Reduction,” in Proc. CICC, pp. 89–92, 2001.

[7] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “Voltage Island Aware
Floorplanning for Power and Timing Optimization,” Proc.

ICCAD, pp. 389–394, 2006.

[8] B. Liu, Y. Cai, Q. Zhou, and X. Hong, “Power Driven
Placement with Layout Aware Supply Voltage Assignment for
Voltage Island Generation in Dual-Vdd Designs,” in Proc.

ASPDAC, pp. 582–587, 2006.

[9] W.-K. Mak, and J.-W. Chen, “Voltage Island Generation under
Performance Requirement for SoC Designs,” in Proc.

ASP-DAC, pp. 798–803, 2007.

[10] Q. Ma and Evangeline F. Y. Young, “VoltageIsland-Driven
Floorplanning,” in Proc. ICCAD, pp. 644–649, 2007.

[11] S. Nahar and S. Sarni, “Fast Algorithm for Polygon
Decomposition,” in IEEE TCAD, vol. 7, no. 4, pp. 473—483,
1988.

[12] Opencores, http://www.opencores.com

[13] K. Usami and M. Horowitz, “Clustered Voltage Scaling
Technique for Low-Power Design,” in Proc. ISLPED, pp. 3–8,
1995.

[14] H. Wu, I.-M. Liu, M. Wong, and Y. Wang, “Post-Placement
Voltage Island Generation under Performance Requirement,” in
Proc. ICCAD, pp. 309–316, 2005.

[15] H. Wu, M. Wong, and I.-M. Liu, “Timing-Constrained and
Voltage-Island-Aware Voltage Assignment,” in Proc. DAC, pp.
429–432, 2006.

