
Analysis of Dynamic Voltage/Frequency Scaling in
Chip-Multiprocessors

Sebastian Herbert
Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

sherbert@ece.cmu.edu

Diana Marculescu
Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

dianam@ece.cmu.edu

ABSTRACT
Fine-grained dynamic voltage/frequency scaling (DVFS) de-
monstrates great promise for improving the energy-efficiency
of chip-multiprocessors (CMPs), which have emerged as a
popular way for designers to exploit growing transistor bud-
gets. We examine the tradeoffs involved in the choice of
both DVFS control scheme and method by which the pro-
cessor is partitioned into voltage/frequency islands (VFIs).
We simulate real multithreaded commercial and scientific
workloads, demonstrating the large real-world potential of
DVFS for CMPs. Contrary to the conventional wisdom, we
find that the benefits of per-core DVFS are not necessarily
large enough to overcome the complexity of having many
independent VFIs per chip.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies

General Terms
Design, Performance

Keywords
Dynamic voltage/frequency scaling, chip-multiprocessor

1. INTRODUCTION

1.1 Overview and Related Work
Challenged with finding ways to use an ever-growing tran-

sistor budget, microarchitects have begun to find that the
traditional methods of creating a more powerful out-of-order
core have become less attractive. However, the chip-mul-
tiprocessor (CMP) offers an attractive solution. Multiple
cores are replicated on a single die, resulting in little to no

This research has been supported in part by Semiconductor
Research Corporation contract No. 2005-HJ-1314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’07, August 27–29, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-709-4/07/0008 ...$5.00.

increase in local power density and potentially linear scaling
of performance for multithreaded workloads.

CMPs are particularly well-suited to being implemented
as systems composed of multiple independently-clocked volt-
age/frequency islands (VFIs). The division of a CMP into
cores and shared cache provides a natural granularity for the
VFI partitioning, such that the performance cost of using
the VFI organization is negligible. However, significant im-
provements in energy-efficiency are enabled by fine-grained
dynamic voltage/frequency scaling (DVFS).

There have been few studies on DVFS for CMPs, and
almost all have assumed per-core DVFS [6][7]. However,
commercial designs have traditionally used full-chip DVFS,
only recently making the move to per-core frequency (but
not voltage) scaling with Advanced Micro Devices’ quad-
core Opteron [5]. It is also no longer the case that only
full-chip DVFS is available, which has been assumed else-
where [8]. While using a small number of independently-
clocked cores has been shown to be tractable by example, it
is unclear that per-core DVFS will be complexity-effective
as the number of cores per chip continues to scale upward.

1.2 Paper Contributions
Prior studies have been limited to using small bench-

mark sets such as SPEC2000 for their performance evalu-
ations [6][7]. However, these represent a very limited us-
age scenario, so it is unclear how effective the proposed
schemes would be in real-world deployments. We run real
multithreaded commercial and scientific workloads on a full-
system simulator, showing that the energy-efficiency gains
for such workloads are significantly larger than those that
have previously been demonstrated. Li and Mart́ınez evalu-
ated some parallel applications [8], but not commercial ones.
Moreover, they performed optimization at the level of well-
defined parallel regions, so their methodology is not extensi-
ble to many commercial application classes that lack these.

This paper makes several key contributions:

• We have created a significant amount of infrastructure
to support our experiments, including an integrated
performance/power/thermal simulator for both fully-
synchronous and VFI CMPs capable of running real
multithreaded operating systems and applications.

• We demonstrate the energy-efficiency gains that can
be achieved on real workloads by adding fine-grained
DVFS to a CMP, with the best design achieving an av-
erage energy/throughput2 reduction of 38.2% relative

38

to the fully-synchronous baseline with no voltage or
frequency scaling. By varying the DVFS control algo-
rithm while keeping other parameters fixed, we provide
a fair comparison of previously proposed schemes.

• We provide analyses of DVFS performance for several
application classes (web server, online transaction pro-
cessing, decision support systems, and scientific).

• We demonstrate that the benefits offered by doing
DVFS at the core granularity rather than on clusters
of cores are typically small and likely not worth the
increased design complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our hardware design, while Section 3 de-
scribes the infrastructure we use to simulate it. Sections 4
and 5 detail the DVFS algorithms and VFI configurations
evaluated, respectively. Section 6 presents our experimental
methodology and Section 7 our results. Section 8 concludes.

2. HARDWARE DESIGN
The starting point for our VFI-CMP design is a fully-

synchronous CMP composed of 16 out-of-order cores. Its
Piranha-style cache hierarchy [1] consists of private L1s and
a logically shared L2 organized as 16 independent banks. We
divide the processor into two, five, or 17 VFIs. One contains
the L2 and memory interface, while the cores are split evenly
among the remaining VFIs. As we are interested in isolating
the effects of the partitioning of cores into VFIs, the memory
domain operates at a fixed voltage and frequency.

Because the VFI interface logic is only required at the
core-to-L2 interfaces, the VFI partitioning results in negligi-
ble performance loss due to the relative infrequency and long
latency of L2 accesses. To perform interdomain communica-
tion, we use asynchronous, level-converting FIFO queues [4].
As long as the FIFO is neither full nor empty, the cell to be
used for the next read differs from that to be used for the
next write, allowing the two to proceed in parallel.

As in previous VFI studies [9], we assume that each clock
domain uses a clock multiplier to create its local clock signal
from that produced by a single, global PLL. Each domain
also contains its own voltage regulator, allowing extremely
fast transitions between voltage levels. Given the small gap
between Vdd and Vth in modern technologies, our 45 nm
design uses a relatively limited set of five evenly-spaced VF
levels. Vdd can be reduced from the nominal value of 1.0 V to
0.6 V, with frequency decreasing from 4.0 GHz to 1.9 GHz.
We assume that transitions can only be made between ad-
jacent levels.

3. SIMULATION INFRASTRUCTURE
We use the Flexus CMPFlex.OoO simulator, which adds

a detailed timing model to Virtutech Simics. Flexus is a full-
system simulator which runs real workloads and operating
systems and models all components of a computer system.

We added a hybrid instruction-/microarchitecture-level
Wattch-like [2] dynamic power model to Flexus. We use the
static power model proposed by Butts and Sohi [3], which
uses a nominal leakage value along with estimates of the
number of transistors (scaled by some design-dependent fac-
tors) in each microarchitectural structure. We model the de-
pendence of subthreshold leakage on both temperature and
threshold voltage, which is itself a function of temperature.

Un Tdown

Un > Tup and
Ln Lmax

Un < Tdown
and Ln Lmin

Un Tup
and Ln = Lmin

Un > Tup

Un Tdown
and Ln = LmaxUn < Tdown

Tdown Un Tup
and Ln Lmax

Un Tup

Tdown Un Tup
and Ln Lmin

Tdown Un Tup

Un > Tup

Un < Tdown Un > Tup

Un < Tdown
Un < Tdown

Un Tdown
AH / -

S /
L1=Lmax

AL / -

MU /
Ln+1=Ln+1NM / -MD /

Ln+1=Ln-1

Figure 1: FSM for Threshold controller, also used
for PI

We use the HotSpot thermal simulation package [11], with
our floorplan consisting of a ring of 16 cores around central
L2 cache banks. To account for the feedback loop between
leakage power and temperature, we iterate simulations until
power and temperature values converge, feeding the output
steady-state temperatures of one run back in as the initial
temperatures of the next.

We created a simulator for the VFI design outlined in
Section 2. Each domain has a power model for its clock net-
work that is based on its physical size and number of pipeline
registers. We added a FifoQueue component to Flexus to
model the latency penalty of crossing a VFI boundary.

4. DVFS ALGORITHMS

4.1 Threshold

We consider several DVFS control algorithms. Threshold
is a simple threshold-based algorithm based on that pro-
posed by Talpes and Marculescu [12]. A VFI’s utilization
over an interval, computed as the number of non-spin in-
structions retired divided by the number of retire slots, is
compared to a pair of thresholds at the end of each inter-
val. If it is higher (lower) than the up (down) threshold
Tup (Tdown), the VFI’s voltage and frequency are increased
(decreased). While a VFI’s utilization remains in the target
range [Tdown, Tup], its voltage and frequency are unchanged.

The FSM for the controller is shown in Figure 1; the states
are Start (S), At Highest (AH), At Lowest (AL), Move Down

(MD), Move Up (MU), and No Move (NM). Un is the utilization
and Ln is the VF level for interval n.

4.2 PI

PI is a control-theoretic technique using a proportional-
integral controller, first proposed for single-core multiple-
clock-domain processors by Wu et al. [15]. A distributed
version for CMPs was proposed by Juang et al. [7], but their
experimental context differs from ours. They investigated
small benchmarks and kernels with lightweight threads on
a multicore ARM derivative, while we examine real work-
loads with much larger threads on a high-performance mi-
croprocessor. Their distributed scheme requires the setting
of per-thread load factors either by the compiler or through
hand analysis. However, our workloads are extremely com-
plex and their source code is not generally freely available.

39

E/T2
n > E/T2

n-1

E/T2
n > E/T2

n-1H = 0 and Ln = Lmin

H = 0 and Ln = Lmax

H = 0 and
Ln Lmin

H = 0 and
Ln Lmax

H > 0

H > 0

E/T2
n > E/T2

n-1

E/T2
n > E/T2

n-1

E/T2
n E/T2

n-1
and Ln Lmin

E/T2
n E/T2

n-1
and Ln Lmax

E/T2
n E/T2

n-1
and Ln = Lmin

E/T2
n E/T2

n-1
and Ln = Lmax

E/T2
n E/T2

n-1

E/T2
n E/T2

n-1

SHU /
Ln+1=Ln+1,

H=N
AL / - HU /

H=H-1

S /
L1=Lmax

MU /
Ln+1=Ln+1

AH / -
SHD /

Ln+1=Ln-1,
H=N

HD /
H=H-1

MD /
Ln+1=Ln-1

Figure 2: FSM for Greedy controller

Our threads also tend to interact less strongly than those of
small, aggressively-multithreaded benchmarks and kernels.
Thus, we use per-VFI PI controllers for the utilization, com-
puted the same way as for Threshold.

The FSM for PI is the same as the one for Threshold,
shown in Figure 1. Un is replaced with fn+1, the target fre-
quency for the next interval computed by the PI controller.
We want to raise (lower) the VF level if the next higher
(lower) level’s frequency is closer to fn+1 than the current

one’s. Thus, Tup is replaced with f(Ln)+f(Ln+1)
2

and Tdown

with f(Ln)+f(Ln−1)
2

. The function f(L) gives the frequency
that results when running at level L (∞ for L > Lmax and

−∞ for L < Lmin), so f(Ln)+f(Ln+1)
2

is the midpoint of the
frequencies at the current level and the one above.

4.3 Greedy

Greedy is an adaptation of the Greedy-search method [9],
which attempts to find the operating point with minimum
energy/throughput2 on the bathtub-shaped E/T2 vs. VF
level curve. Because our threads are generally loosely cou-
pled and we do not scale the speed of the memory domain,
we do not require the precise interleaving of search and hold
phases. Instead, each VFI’s controller operates indepen-
dently. Each VFI contains a counter for the number of non-
NOP instructions retired, and we assume a mechanism to
measure static and dynamic energy consumption as in [9].

For each interval, we compare the E/T2 value over that
interval with that over the previous one. If E/T2 has de-
creased, the VFI makes another transition in the same di-
rection as the last one, if possible. If E/T2 has increased,
the VFI makes a transition in the opposite direction of the
last one and then holds that level for the next N intervals.
Thus, the general behavior is that the controller will perform
a search in one direction D1 until it overshoots the optimal
level, then move back to the optimal level and hold. At the
end of the hold phase, exploration continues in direction D2.
When the VFI is within a relatively steady execution phase,
it will spend 2N out of 2N +2 intervals at the optimal level
and two intervals within a single level of the optimal one.

The FSM for Greedy is shown in Figure 2; in addition
to the states from the Threshold controller it has the states
Start Hold on Down (SHD), Start Hold on Up (SHU), Hold
on Down (HD), and Hold on Up (HU). Once again, Ln is the
VF level used for interval n. Like the other controllers, it
spends the first interval at the highest VF level. However, it
then unconditionally begins exploring the lower levels. The
hold counter H is used to support the hold phase.

Parameter Value
Baseline frequency 4.0 GHz
Technology 45 nm node
Nominal voltages VDD = 1.0 V, VTH = 0.151 V
DVFS Interval 12.5 µs (50,000 cycles at 4.0 GHz)
L1-I/D caches 64 KB, 64 B blocks, 2-way SA,

2-cycle load-to-use, LRU, 4 R/W
L2 cache 16 MB, 64 B blocks, 16-way SA,

20-cycle hit time, LRU, 16 banks,
1R+1W per bank

Main memory 80 ns for a random access
Pipeline 8 stages deep, 4 instructions wide
ROB/LSQ size 128
Store buffer size 64

Table 1: Processor Parameters

5. VFI CONFIGURATIONS
We consider several different VFI granularities. Finer-

grained VFIs are expected to enable better DVFS perfor-
mance through increased flexibility. The choice of VFI gran-
ularity also impacts the number and size of the clock net-
works in the processor, affecting both clock power and skew.
We model the power effect, but conservatively ignore the
skew effect, assuming that the baseline VFI processor runs
at the same frequency as the reference synchronous proces-
sor. Finally, increasing the number of VFIs increases the
design complexity.

The L2 and memory interface always form their own clock
domain, while the cores are split equally into one, four, or
16 domains. Thus, we have a configuration where every core
runs independently, a configuration where all the cores run
at the same speed, and an intermediate configuration where
the cores are arranged in four clusters of four cores each.
For the clustered organization, we consider the case where
a cluster is comprised of all the cores with the same index
mod 4 and the case where cores with consecutive indices are
grouped together. Examining both allows us to determine
how significant an effect the mapping of threads to cores to
VFIs has on DVFS performance.

6. EXPERIMENTAL METHODOLOGY

6.1 Configurations Simulated
We perform our experiments using the processor param-

eters in Table 1. We simulate an aggressive L2 cache ar-
chitecture to avoid the shared cache becoming the primary
bottleneck in most workloads, which would make it optimal
in many scenarios for all cores to run at the lowest VF level.

We simulate several VFI microarchitectures. VFI-B, our
VFI baseline, splits the core into 17 clock domains, but runs
each at the same frequency as the synchronous baseline. Mi-
croarchitectures using DVFS are named VFI-x-y. x specifies
the DVFS control algorithm being used (“P” for PI, “G” for
Greedy, and “T” for Threshold), while y specifies the num-
ber of core VFIs in the design (“1” for a single clock domain
containing all cores, “16” for an individual VFI per core,
“4M” for four cores per VFI using modulo mapping, and
“4C” for four cores per VFI using consecutive mapping).

We experimented to find good values for the DVFS algo-
rithm parameters. For PI, we use stability constants Ki =
0.6 and Kp = 0.2. These were found to give better perfor-
mance than the values of 0.3 and 0.1 suggested by Juang et
al. [7], probably because our significantly larger threads dis-

40

Web server (SPECweb99, 16K connections)
apache FastCGI, worker threading model
zeus FastCGI
Online transaction processing (TPC-C, 100 warehouses)
tpcc db2 DB2, 64 clients, 450 MB buffer pool
tpcc oracle Oracle, 16 clients, 1.4 GB SGA

Decision support systems (TPC-H on DB2)
tpch qry1 Scan-dominated, 450 MB buffer pool
tpch qry2 Join-dominated, 450 MB buffer pool

Scientific
ocean 1026x1026 grid, 9600 s relaxations,

20K res., err. tol. 1e-07
sparse 4096x4096 matrix

Table 2: Workloads Used

play less short-term variation. We found a reference queue
occupancy qref of 70% to yield good results. For Greedy,
a hold interval length of five DVFS intervals was used. Fi-
nally, the target utilization band for Threshold was set to
[0.4, 0.6]. We initially tried to use a band centered around
70% utilization, but found this to yield high performance
degradation for an unacceptably small energy benefit. We
hypothesize that the control-theoretic nature of PI allows it
to use more aggressive targets with less risk of an overshoot
in reducing a VFI’s VF level.

6.2 Workloads Simulated
We simulate the commercial and scientific workloads in

Table 2. Our online transaction processing (OLTP) work-
loads include TPC-C v3.0 on both IBM DB2 v8 ESE and
Oracle 10g Enterprise Database Server. The Decision Sup-
port Systems (DSS) workloads consist of two TPC-H queries,
categorized as scan- or join-dominated [10]. Apache HTTP
Server v2.0 and Zeus Web Server v4.3 are evaluated on
SPECweb99 under full saturation by requests. Finally, we
simulate two scientific workloads: ocean (ocean current sim-
ulation) and sparse (solves Ax=b for sparse A).

Each workload is simulated at several points to provide
sampling measurements. Each checkpoint is loaded along
with all non-transient state (cache, branch predictor, mem-
ory, and disk contents) and detailed simulation is performed
for 100 µs (400,000 cycles at 4 GHz). The first 75 µs are
used for warmup; statistics are only gathered over the last
25 µs. We use throughput, expressed as the number of non-
spin user instructions retired in the last 25 µs, as a proxy
for performance. This corresponds roughly to the amount of
useful work done for workloads such as TPC-H and our sci-
entific applications, while it has been shown for transaction-
oriented workloads such as SPECweb and TPC-C that the
number of user instructions per transaction is relatively con-
stant [14] (and thus the user instruction retire rate is propor-
tional to the performance metric of transactions per minute).

7. RESULTS
The VFI configurations are compared on throughput and

energy/throughput2 in Figure 4. The reported values are all
normalized with respect to the synchronous baseline with
no voltage or frequency scaling. The VFI baseline is shown
for reference in each set of results. Because we simulate
the same time interval for every configuration, the average
power draw is just a constant multiple of the total energy.
Paired-measurement sampling [13] was used to generate the
results and associated 95% confidence intervals.

0%

20%

40%

60%

80%

100%

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

Avg
. (c

om
m.)

P
er

ce
nt

 o
f t

im
e

0.6 V
0.7 V
0.8 V
0.9 V
1.0 V

Figure 3: VFI-G-16 utilization of VF levels

The results for VFI-B show an average performance loss of
2.1% in moving from a fully-synchronous microarchitecture
to a VFI one, with the worst case being 5.0% for zeus. The
reduction in clock power is insufficient to offset the perfor-
mance loss, resulting in an average E/T2 increase of 4.5%.

We see that the best scheme overall is VFI-G-16, which di-
vides the processor into independent per-core VFIs and uses
the Greedy DVFS control algorithm. It is able to achieve an
average E/T2 reduction of 38.2% relative to the synchronous
baseline on our mix of commercial and scientific workloads,
a significantly larger energy-efficiency gain than that found
for small benchmarks and kernels with lightweight threads
[7]. One might suspect that this indicates that the origi-
nal design was highly unbalanced. However, we examined
the actual utilization of the levels and saw that this was
generally not the case. Figure 3 shows the percentage of
time spent at each VF level for each workload under VFI-
G-16 along with the overall average and the average when
considering only the commercial applications We see that
the scientific workloads heavily favor the lower VF levels as
a result of their high L2 miss rates (around 10% for both
ocean and sparse, compared with about 5% for the next-
worst case, apache), but that the commercial applications
make good use of all the available levels.

We simulated an oracle that groups all the cores in a sin-
gle clock domain (and places the L2 and memory controller
in a second one) and always chooses the VF level which
minimizes E/T2. Simulating oracles for configurations with
more VFIs was intractable due to the number of operating
points that would have had to be considered. The oracle
we were able to simulate showed an average E/T2 reduc-
tion of 33.6% relative to the synchronous baseline. VFI-G-1,
which uses the same VFI configuration, achieves an almost-
oracular reduction of 32.6% (although one must consider
simulation variability). VFI-G-16 performs better than the
coarse-grained oracle, suggesting that there is something to
be gained from finer-grained VFIs.

However, we see that the differences between the various
VFI configurations are, for the most part, relatively small
and not statistically significant at a 95% confidence level.
Moreover, simulating more points did not improve the con-
fidence intervals significantly. This suggests that the bene-
fits of per-core DVFS on real workloads are not necessarily
as large as may generally be assumed. With this caveat in
mind, we will nevertheless examine the trends.

In Figure 4, Greedy displays the best E/T2 for every VFI
configuration, highlighting the importance of using an al-

41

0

0.2

0.4

0.6

0.8

1

1.2

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
Th

ro
ug

hp
ut

(a) Throughput, VFI-P

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
E

ne
rg

y/
Th

ro
ug

hp
ut

2

(b) Energy/throughput2, VFI-P

0

0.2

0.4

0.6

0.8

1

1.2

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
Th

ro
ug

hp
ut

(c) Throughput, VFI-G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
E

ne
rg

y/
Th

ro
ug

hp
ut

2

(d) Energy/throughput2, VFI-G

0

0.2

0.4

0.6

0.8

1

1.2

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
Th

ro
ug

hp
ut

(e) Throughput, VFI-T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
E

ne
rg

y/
Th

ro
ug

hp
ut

2

(f) Energy/throughput2, VFI-T

Figure 4: Simulation results, all relative to the synchronous baseline

VFI-B

VFI-P-1

VFI-P-4M

VFI-P-4C

VFI-P-16

VFI-B

VFI-G-1

VFI-G-4M

VFI-G-4C

VFI-G-16

VFI-B

VFI-T-1

VFI-T-4M

VFI-T-4C

VFI-T-16

gorithm that considers the metric of interest directly. This
is underscored by the results for PI, which show worsening
E/T2 as the VFIs are made more fine-grained. Greedy, on
the other hand, displays an E/T2 improvement of 8.3% in
moving from the coarse-grained VFI-G-1 to the fine-grained
VFI-G-16. The additional flexibility of finer-grained VFIs is
wasted on PI because the algorithm does not know how to
take advantage of it. We do see that PI tends to be the most
stable of the schemes across VFI configurations in terms of
how much the E/T2 improvement varies, perhaps a benefit
of the control-theoretic approach.

As mentioned in Section 6.1, the target utilization for
Threshold had to be set relatively low, favoring higher fre-
quencies. We see that Threshold achieves the lowest perfor-
mance degradation, but also the lowest E/T2 improvement.

We considered two different core-to-VFI mappings for the
case where the cores are broken into four VFIs. We see in

Figure 4 that the effect of the mapping is relatively insignif-
icant on average. The OS does not consider the mapping
when it assigns threads to cores, and thus good cases tend
to be averaged out with bad ones. We considered a “bet-
ter” mapping (VFI-G-4B), which chooses the better of the
two core-to-VFI mappings on a per-checkpoint basis, and
applied it to the best-performing algorithm, Greedy. The
E/T2 results are shown in Figure 5, along with those for a
corresponding “worse” mapping (VFI-G-4W). Such schemes
are clearly unrealizable in hardware, but the OS can ap-
proximate the same effect through its mapping of threads
to cores. We see that a dynamic hardware/software scheme
which could fully emulate VFI-G-4B would reduce E/T2 by
37.9% relative to the synchronous baseline, resulting in a
final E/T2 only 0.4% worse than that of VFI-G-16, and
would offer both reasonable hardware complexity and ex-
cellent energy-efficiency. Of course, the degree to which the

42

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ap
ac

he
ze

us

tpc
c_

db
2

tpc
c_

ora
cle

tpc
h_

qry
1

tpc
h_

qry
2

oc
ea

n

sp
ars

e

Ave
rag

e

R
el

at
iv

e
E

ne
rg

y/
Th

ro
ug

hp
ut

2

VFI-B
VFI-G-4M
VFI-G-4C
VFI-G-4B
VFI-G-4W

Figure 5: Comparison of core-to-VFI mappings

OS can exploit such effects depends on the characteristics of
the variation.

We make some notes regarding the different application
classes. There is a great deal of similarity between the two
web server applications; this is expected given that serving
web pages is a simple task. We also see that workloads from
the same application class cluster together in Figure 3. The
scientific workloads display the highest utilization of the low
two VF levels, followed by the DSS, web server, and OLTP
workloads. Moreover, the amount of time spent in the low
two levels is very similar for the two workloads in any class.
This could be used to tune a design to particular application
classes without knowing exactly what software will be run.

8. CONCLUSION
We have made several important new observations regard-

ing fine-grained dynamic voltage/frequency scaling for chip-
multiprocessors. We have shown that DVFS can be highly
effective in improving the energy-efficiency of CMPs running
multithreaded commercial and scientific workloads, with the
best scheme we evaluated achieving an energy/throughput2

reduction of 38.2%. Moreover, we demonstrated that the
increasing flexibility offered by moving to finer-grained volt-
age/frequency islands does not necessarily translate into bet-
ter energy-efficiency. Even if the DVFS algorithm is able to
exploit the extra freedom, the gains are often small and
likely not complexity-effective given the number of inde-
pendent VFIs required. We also showed that a coopera-
tive hardware/software scheme has at least the potential to
achieve the energy-efficiency of the most complex hardware-
only scheme, but at a substantially lower hardware cost.

9. REFERENCES
[1] L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: a scalable architecture
based on single-chip multiprocessing. In ISCA ’00:
Proceedings of the 27th International Symposium on
Computer Architecture, 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA ’00: Proceedings of the 27th
International Symposium on Computer Architecture,
2000.

[3] J. A. Butts and G. S. Sohi. A static power model for
architects. In MICRO 33: Proceedings of the 33rd

Annual IEEE/ACM international symposium on
Microarchitecture, 2000.

[4] T. Chelcea and S. Nowick. Robust interfaces for mixed
systems with application to latency-insensitive
protocols. In DAC ’01: Proceedings of the 38th annual
Design Automation Conference, 2001.

[5] J. Dorsey, S. Searles, M. Ciraula, E. Fang, S. Johnson,
N. Bujanos, R. Kumar, D. Wu, M. Braganza, and
S. Meyers. An integrated quad-core Opteron processor.
In ISSCC ’07: IEEE International Solid-State Circuits
Conference Digest of Technical Papers, 2007.

[6] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core
global power management policies: Maximizing
performance for a given power budget. In MICRO ’06:
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006.

[7] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W.
Clark. Coordinated, distributed, formal energy
management of chip multiprocessors. In ISLPED ’05:
Proceedings of the 2005 International Symposium on
Low Power Electronics and Design, 2005.

[8] J. Li and J. F. Mart́ınez. Dynamic power-performance
adaptation of parallel computation on chip
multiprocessors. In HPCA ’06: Proceedings of the 12th
International Symposium on High-Performance
Computer Architecture, 2006.

[9] G. Magklis, P. Chaparro, J. González, and
A. González. Independent front-end and back-end
dynamic voltage scaling for a gals microarchitecture.
In ISLPED ’06: Proceedings of the 2006 International
Symposium on Low Power Electronics and Design,
2006.

[10] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: fast
and accurate database workload representation on
modern microarchitecture. In CASCON ’05:
Proceedings of the 2005 conference of the Centre for
Advanced Studies on Collaborative Research, 2005.

[11] K. Skadron, M. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In ISCA ’03:
Proceedings of the 30th International Symposium on
Computer Architecture, 2003.

[12] E. Talpes and D. Marculescu. Toward a multiple
clock/voltage island design style for power-aware
processors. IEEE Trans. Very Large Scale Integr.
Syst., 13(5), 2005.

[13] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C.
Hoe. Simulation sampling with live-points. In ISPASS
’06: Proceedings of the 2006 International Symposium
on Performance Analysis of Systems and Software,
2006.

[14] T. F. Wenisch, R. E. Wunderlich, M. Ferdman,
A. Ailamaki, B. Falsafi, and J. C. Hoe. Simflex:
Statistical sampling of computer system simulation.
IEEE Micro, 26(4), 2006.

[15] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark.
Formal online methods for voltage/frequency control
in multiple clock domain microprocessors. In
ASPLOS-XI: Proceedings of the 11th international
conference on Architectural Support for Programming
Languages and Operating Systems, 2004.

43

