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Abstract  
Due to difficulties in distributing a single global clock signal over 
increasingly large chip areas, a globally asynchronous, locally 
synchronous design is considered a promising technique in the 
system on a chip (SoC) era. In the context of today’s increasingly 
complex SoCs, there is a need for design methodologies that start 
at higher levels of abstraction. Much of the previous work has been 
devoted to design of asynchronous communication schemes such 
as mixed clock FIFOs and pausible clocks for globally asynchro-
nous, locally synchronous systems, but at low levels of abstraction, 
such as circuit level.  To enable early design evaluation of such 
schemes, this paper proposes to use a SystemC-based modeling 
methodology for the asynchronous communication among various 
locally synchronous islands. The modeling framework encom-
passes various levels of abstraction and enables system-level vali-
dation of circuit or RT level hardware descriptions, as well as their 
impact on high-level design decisions.  
Categories and Subject Descriptors 
C.4 [Perf. of Syst.]: Modeling techniques, Power Modeling 
General Terms: Performance, Design. 
Keywords: Globally asynchronous locally synchronous, 
mixed clock FIFO, pausible clock. 

1 Introduction 
Due to increasing die sizes, higher clock speeds and high clock 
skews, future digital VLSI designs will require a paradigm shift 
from the globally synchronous design style. In addition, the 
integration of various IP (Intellectual Property) cores on com-
plex systems on a chip requires a multitude of available clock 
frequencies on a single die. A globally asynchronous, locally 
synchronous design (GALS) paradigm enables such integration, 
by allowing for synchronous blocks to operate asynchronously 
with respect to each other. In such a scenario, not only the 
speed, but also the voltage of each block can be customized or 
chosen so as to meet the power and performance requirements 
of the target application. This design paradigm is also particu-
larly attractive for a system-on-chip where circuit building 
blocks (or IP blocks) from a number of design houses are inte-

grated onto a single chip.  
       Communication between the building blocks of a SoC is a 
complex problem, particularly when a range of clocking strate-
gies has to be tailored to each building block in order to obtain 
a required performance within a power budget. Also, in the 
context of the increasing complexity of systems-on-chip (SoCs) 
and time-to-market pressures, the design abstraction has to be 
raised to the system level to increase design productivity. 
Transaction level modeling [6], which is enabled and supported 
by system level languages such as SystemC, can be used to 
separate the computation components from the communication 
components. Communication can be modeled as channels, 
while transaction requests take place by calling the interface of 
these channel models. Unnecessary details of communication 
and computation can be hidden in a TLM and can be added 
later. This enables speeding up of simulation and allows for 
exploration and validation of design alternatives at a higher 
level of abstraction. 
1.1 Paper contributions 
     This paper addresses the problem of power and performance 
analysis of GALS based systems, using transaction level model-
ing, in which the computation components are modeled as 
processes (with or without cycle accurate representations) while 
the communication is modeled in a cycle accurate manner.  
SystemC excels in its usefulness to model designs at system 
level, while still supporting synthesizable RT level hardware 
descriptions. Thus, a seamless refinement of a design can occur 
such that each part of the design is implemented independently, 
without resorting to changes of other parts of the design. This 
paper advances the state-of-the-art by providing ways of using 
SystemC to model mixed clock communication channels of 
primarily two types: mixed clock FIFOs [2,3] and pausible 
clocks [4,5]. The computation processes are modeled as un-
timed algorithmic descriptions in a procedural language (such 
as C) that interface with the communication channel in a cycle 
accurate manner.  
     To this end, this paper introduces a system level methodol-
ogy amenable for analyzing the power and performance charac-
teristics of asynchronous/mixed clock communication inter-
faces that have already been designed and validated at circuit-
level. A system level model of such interfaces built by abstract-
ing these circuit level characteristics enables plug-and-play 
capabilities for these interfaces into any SoC application and 
provides the designer fast analysis of the communication over-
head in terms of power and/or performance. This paper does not 
focus on the architecture and cycle accurate modeling of the 
computation units of the SoC, which is a different problem by 
itself.  The proposed system level modeling methodology also 
enables design exploration of these applications in terms of 
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Figure 1. Mixed clock FIFO [3]                         Figure 2.   Pausible clock architecture [4] 

which communication interfaces or architectures are more suit-
able for deploying.  Since power is an important metric for SoC 
applications, providing reliable estimates for the power over-
head introduced by various on-chip communication schemes on 
target real life SoC applications is of extreme importance, and 
is thus a main ingredient of the approach proposed herein. 
1.2 Paper Organization 

The rest of the paper is organized as follows. Section 2 pre-
sents related work. Section 3 introduces GALS based systems, 
while Section 4 describes specific GALS based communication 
architecture that we model in this paper. Section 5 shows how 
system level analysis would aid a system designer make design 
decisions based on power and performance. Section 6 shows 
the experimental results, while Section 7 concludes the paper 
with final remarks and directions for future research.   

2 Related Work 
Chapiro has first introduced and studied GALS systems in de-
tail in his thesis [1]. His work covers metastability issues in 
GALS systems and outlines a stretchable clocking strategy 
which provides a mechanism for asynchronous communication. 

In GALS systems, the asynchronous modules have to 
communicate with each other asynchronously which may lead 
to metastability issues. Chelcea et al. [2] use mixed clock FI-
FOs as low latency communication mechanism between syn-
chronous blocks. Cummings [3] uses a memory based mixed 
clock FIFO to communicate between different clock domains. 
We use his work and a pausible clocking scheme by Yun et al. 
[4] to model GALS communication interfaces at the system 
level. Mutterbasch et al. [5] have implemented asynchronous 
wrappers around synchronous blocks. Most of this existing 
work is done at the RTL or circuit level. Thus, there is a need 
for system level tools for analyzing these communication archi-
tectures, which we attempt to address in this paper.  Transaction 
level modeling [6] has been researched in the system level lan-
guage and modeling area. The concept of channel, which en-
ables separating communication from computation, has been 
introduced and discussed in [7]. [8] broadly describes the trans-
action leveling modeling features based on the channel concept 
and presents some design examples. 

We use these transaction level concepts, but our focus is 
on GALS communication interfaces, which has not been looked 
into before.  

3 GALS Systems 
Globally asynchronous locally synchronous systems may offer 
a solution for SoC implementations seeking good performance 
and low power consumption. Locally clocked building blocks 
can be integrated on a single chip via asynchronous intercon-
nect between them. This may lead to the common problem of 
metastability due to non-synchronization conditions of data and 
clock signal. This can be crudely resolved by using a double 
latching mechanism [9] to allow for metastability resolution. 
However, such a mechanism introduces an additional latency in 
the circuit. In the following section, we describe other strategies 
to minimize metastability problems.  

4 Communication Circuits and Architecture 
In this section we describe the implementation of the communi-
cation architecture for point-to-point interconnect between lo-
cally synchronous modules. We describe two such communica-
tion schemes: (I) a memory based mixed clock FIFO and (II) a 
pausible clocking scheme. 
4.1 Mixed Clock FIFO Architecture 
      In this case, we propose the use of a mixed clock FIFO for 
reading and writing data from and to locally clocked synchro-
nous islands with different rates of producing or consuming 
data items. In the proposed scenario, we use a RAM based de-
sign [3] for the FIFO, with read and write addresses being 
passed by the producer and the consumer modules. Figure 1 
shows a detailed description of the logic level circuit for the 
mixed clock FIFO implementation. The FIFO memory buffer is 
a dual ported RAM module that is accessed by both the read 
and write clock domains.  
4.2 Pausible Clocking Based Communication Architecture 
      In this type of asynchronous communication between syn-
chronous islands, we use a pausible clocking based scheme as 
proposed by Yun et al. [4]. Synchronous clock domains com-
municate with each other via completely asynchronous FIFO 
channels as opposed to mixed clock FIFOs as described in the 
earlier scheme.  The interfaces between the synchronous mod-
ules and the FIFO are pausible clocking control (PCC) circuits. 
A block diagram of the communication architecture is shown in 
Figure 2.  

 The important difference between the mixed clock FIFO 
architecture and the pausible clock based architecture is that the 
latter ensures that metastability does not occur, while the for-
mer has a very small (albeit, non-zero) probability of entering a 
metastable state.  



Figure 3. SystemC/SPECTRE comparison of mixed clock FIFO (above) and pausible clock (below) 

5 System Level Analysis of GALS based SOCs 
Due to complexity incurred in distributing a single global clock 
across the entire chip area, and the varying power requirements 
for different functional blocks of system-on-chip applications, 
next generation systems will most certainly be implemented 
using multiple voltage/frequency islands [10]. Each such Volt-
age/Frequency Island (VFI) would have its own internal clock 
for its logic and powered by an off-chip or on-chip voltage 
source. This would enable designers to scale up or down the 
voltage and frequency of an on-chip module based on its per-
formance requirements, thereby saving dynamic and static 
power. In this paper, we assume that an application is already 
logically partitioned into several on-chip synchronous modules 
communicating asynchronously with each other through GALS 
communication interfaces as described in the previous section. 
To this end, the proposed methodology relies on cycle-accurate 
models for the mixed-clock communication interfaces, vali-
dated against detailed, circuit level implementations. By using 
power and performance macro models validated against real 
implementations, we are thus able to provide highly reliable 
models for use at system level. 
5.1 Modeling and Validation of GALS Interfaces 
    We have developed both SystemC models and complete cir-
cuit implementations of the mixed clock FIFO and pausible 
clock based communication interfaces. The circuit implementa-
tion is done using STMicroelectronics 130nm technology. Sys-
temC enables modeling of these interfaces at various levels of 
abstraction. Thus, these models can be used at both RTL as well 
as transaction level depending on the stage of the design. Since 
SystemC is primarily used for modeling synchronous clock 
based systems, a completely asynchronous interface needs to be 
modeled and analyzed at the circuit level in order to extract the 
relevant delay parameters, which can be plugged into SystemC.   
     To our knowledge, there has not been any similar effort in 
past literature to characterize such asynchronous interfaces in 
SystemC. Circuit-level accurate characterizations are used to 
validate and build the system-level models for the asynchro-
nous interfaces. Figure 3 shows the SystemC and SPECTRE 

waveforms for a mixed clock FIFO [3] and pausible clock cir-
cuit [4]. The mixed clock FIFO has the write clock running at 
twice the frequency of the read clock.  This makes the wfull 
(write full) signal go high at time t=25ns and t=55ns respec-
tively. For the pausible clock case, we run the producer and the 
consumer modules at 1.89 GHz and 1.47 GHz respectively. 
This causes a clock pause at the producer (signal sysclk2) at 
t=1.4ns. As described in Section 4.2, this is caused by arbitra-
tion between the clock signal and the acknowledgement signal 
received from the consumer. The SystemC module shown in 
Figure 4 is an example of how we model the asynchronous 
finite state machine of the pausible clock circuit. 

 
SC_MODULE(producer_afsm) { 
 //output and input ports 
 sc_out<bool> R2; 
 sc_out<bool> Sas; 
 sc_in<bool>  As; 
 sc_in<bool> G2; 
 //processes  
 void update_R2(); 
 void update_Sas(); 
 SC_CTOR(producer_afsm) { 
  SC_THREAD(update_R2); 
  sensitive<<As; 
  sensitive_pos<<G2; 
   
  SC_THREAD(update_Sas); 
  sensitive_pos<<G2;  
 } 
} 

     Figure 4. System C code example for pausible clock modeling 
 
5.2 Metrics for Characterizing Impact of GALS Interfaces 
     In order to characterize at system level GALS based SoC 
applications, we need to define metrics relevant at both power 
and performance, as well as input parameters affecting these 
metrics. The most important metric is the throughput of the 
application. System level analysis of the application can not 
only allow designers to analyze the effect of system parameters 
such as FIFO sizing, producer rate and consumer rate on the 
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throughput of the application, but also enable them to do a cy-
cle by cycle analysis of the throughput of the system.  
      For a mixed clock FIFO interface, we define a few metrics 
relevant to this type of GALS interface. The first one is related 
to the number of times an application experiences an additional 
clock cycle latency due to synchronization of the full/empty 
signals (NUM_FE_LATENCY) and what is the average duration 
of this latency in terms of clock cycles (AVG_FE_LATENCY). 
Such metrics enable designers to evaluate the performance pen-
alty in using a mixed clock interface with respect to the single 
clock domain case.  
      In case of the pausible clock circuitry, two other metrics are 
relevant for its behavior and impact on overall performance or 
power. The first one is related to the number of times the clock 
signal of a synchronous module is paused 
(NUM_RW_PAUSES) and  the second is associated to the total 
latency incurred by such read-write pauses over a specified 
simulation time (TOT_RW_LATENCY). Again, such metrics 
enable the system level designer to estimate the performance 
penalty for a pausible clock based circuit and explore other 
GALS communication architectures. For the pausible clock 

metrics, we use latency values obtained from SPECTRE simu-
lations of the pausible clock asynchronous circuitry and plug 
them into the SystemC simulation environment. Finally, in both 
cases, we also consider the ratio of communication cycles to the 
computation cycles for a particular application, which helps the 
designer to analyze whether the application is communication 
or computationally intensive.  
      Due to increasing clock frequencies and smaller device 
sizes, power is an equally important metric in SoC based appli-
cations. Since GALS based architectures incur an extra over-
head in terms of asynchronous communication circuitry, it is 
useful to characterize the power consumption of the computa-
tion cores and the communication interfaces for a particular 
application. To this end, we also evaluate the power require-
ments of both the communication elements using circuit level 
simulation, as well the computational cores using an architec-
tural simulator to compare the energy consumption in different 
architectures.  

Figure 6. Average throughput for pausible clock circuit 
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Figure 5. Average throughput for mixed clock FIFO 

Figure 8. Average duration of synchronization stall in producer 
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Figure 7. Number of synchronization stalls in producer 

    Figure 10. Total clock pause time in producer Figure 11. Power consumption in interfacesFigure 9. Number of clock pauses in producer 



6 Experimental Setup and Results 
In this section we describe case studies on synthetic, as well as 
real life applications, which can be implemented as heterogene-
ous system-on-chip applications. We implement the GALS 
based communication interfaces as SystemC modules with in-
put and output ports which can be plugged into any application 
implemented in SystemC either at the behavioral or RT level.  
6.1 Synthetic Trace Case Study 
     The synthetic case studies are based on a simple producer 
consumer model, where the user can vary input parameters of 
the producer and consumer such as rate of production, rate of  
consumption, burst size of data, FIFO size and clock frequency 
of the producer and the consumer modules. The producer rate 
is defined as the probability that the producer will send a token 
to the consumer at a producer clock cycle (same definition 
holds for the consumer rate).  The burst size is defined as the 
number of data tokens transferred by the producer during one 
data transfer from the producer to the consumer. For the ex-
periments related to synthetic applications, we varied the clock 
frequency of the producer module from 200 MHz to 300 MHz. 
The clock ratio between the producer and the consumer mod-
ules is defined as the ratio of the consumer clock frequency to 
the producer clock frequency. We varied the clock ratio from 
0.3 to 5 in steps of 0.15, which allows us to examine various 
phase relationships between the producer and the consumer 
clock. We also vary the FIFO size between 4 and 16 to observe 
the impact of FIFO size on throughput and other performance 
related metrics. We vary the producer and consumer rate be-
tween 0.4 and 1, while the burst size is varied from 1 to 8. 
     We implemented both the mixed clock FIFO and the pausi-
ble clock circuits in ST Microelectronics 130 nm technology. 
We performed SPECTRE simulations in order to verify our 
SystemC simulation results and also to abstract the delay pa-
rameters for the asynchronous logic in the pausible clock cir-
cuit. Experimental results for the synthetic models are shown in 
Figures 5-11.  

Figures 5 and 6 show the impact of the clock ratio and 
FIFO size on the average throughput with the rates and burst 
size kept constant, in case of mixed clock FIFO and pausible 
clock based interfaces. We see an almost linear increase in 
throughput as the clock ratio increases, since this corresponds 
to an increase in the clock frequency of the consumer clock 
frequency, which translates to more data being read in the same 
period of time. Also we see that the curves saturate when the 
clock ratio reaches one. This happens because, after the con-
sumer module operates at a faster clock frequency than the pro-
ducer, there is no additional increase in throughput. There is a 
marginal increase in throughput due to increase in FIFO size 
when the producer and consumer operate at the same clock 
frequency. By analyzing the curves closely, we can see that the 
maximum impact of FIFO size on throughput occurs at a clock 
ratio of 0.9 to 1. For smaller values of clock ratio, the consumer 
module operates at a much slower rate than the producer and 
thus after an initial period of instability, the system reaches a  
steady state when the reads and writes occur according to the 
consumer clock frequency. For large values of clock ratio, the 
consumer is always much faster than the producer and thus the 
FIFO never gets full.  

Figure 7 shows the impact of clock ratio and FIFO size on 
the number of stalls in the producer due to synchronization of 
the full signal. As expected, the number of stalls is maximized 
when the consumer module runs at a much slower frequency 
than the producer, since the FIFO fills up quickly. Also, it is 

seen that the number of such stalls becomes higher with in-
creasing producer clock frequency. Again, when the producer 
and consumer clock frequencies are nearly equal, an increase in 
FIFO size reduces the number of stalls since we have less in-
stances of the FIFO filling up.   

Figure 8 shows the average duration of synchronizing the 
full signal of the producer with varying phase differences be-
tween the producer and consumer clocks (clock ratio). It can be 
seen that the number of synchronization cycles lies between 1 
and 2, and is completely arbitrary depending on the phase dif-
ference between the producer and the consumer clocks. The 
phase difference between the clocks is dependent on the clock 
ratio between the producer and consumer clocks.  

Figures 9 and 10 show the distribution of the number of 
clock pauses and the total latency due to clock pauses in the 
producer with varying phase differences (clock ratios) between 
the producer and consumer clocks for different values of pro-
ducer rate, consumer rate, burst sizes and FIFO sizes. We can 
see that the maximum number of pauses occurs between clock 
ratios of 0.5 and 1. This kind of information may be very useful 
to decide which ratios of clock frequencies to avoid at an early 
stage of the GALS based design.  

Finally, Figure 11 shows the average power consumption 
for an eight bit four stage FIFO implementation, with varying 
clock ratios.  As the clock ratio increases, the consumer oper-
ates at a faster rate and the throughput starts increasing. Due to 
increasing throughput and increasing consumer frequency, 
power consumption increases.  It can be seen that the pausible 

clock consumes more power than the mixed clock FIFO be-
cause of its complex asynchronous circuitry. However, it must 
be noted that the power number for the pausible clock circuitry 
includes the current drawn by the local ring oscillator clock. 

                   Figure 12. Software radio application  

6.2 Real Application Case Study 
      The real life application under consideration is software-
defined radio [11], which is partitioned into five components - 
source, low pass filter (LPF), demodulator (DEMOD), equal-
izer (EQ). Each component is assumed to be implemented as a 
stand-alone application executing on a single processor as 
shown in Figure 12. The source module generates samples at a 
fixed rate (1 KHz), that are sent to the LPF node through a 
GALS based communication interface, which may be either a 
mixed clock FIFO, or a pausible clock interface. 
       We performed static profiling of each module on an in-
house multi-core simulator Myrmigki [12], to obtain the com-
putation cycles and power consumption using instruction level 
models of the Hitachi SH core. Figure 13 shows the impact of 
FIFO sizing on the communication cycles in each module. It is 
seen that there is some improvement in the equalizer node when 
the FIFO size is increased from 4 to 16, while the other mod-
ules do not show much improvement in terms communication 
latency.  
      Table 1 shows the ratio of communication to computation 
cycles in each module of the software radio system-on-chip for 
processing one sample. The number of communication cycles is 
negligible compared to the computation workload in this par-
ticular application. Table 1 also shows the breakdown of 
NUM_FE_LATENCY and NUM_RW_PAUSES by each module 



Sw radio-communication cycles 

0

500

1000

1500

2000

2500

3000

3500

4000

lpf demod eq sink

nu
m

be
r o

f c
yc

le
s

f size=4 fsize=8
fsize=16

Computation energy/sample

0
100
200
300
400
500
600
700
800
900

lpf demod eq sink

E
ne

rg
y 

(m
ic

ro
J)

Communication energy/sample

0

200

400

600

800

1000

1200

1400

lpf-demod demod-eq eq-sink

E
ne

rg
y 

(p
ic

o 
J)

mixed-clock pausible clock

Figure 14. Computation and Communication energy in software radio   Figure 13. Impact of FIFO size on cycles 

of the software radio application. The majority of the full empty 
stalls and read-write pauses occur in the LPF and EQ modules 
since these operate at a larger frequency than the other modules 
of the application. 
  
Module  comp/comm. cycles RW_PAUSES FE_LATENCY 
LPF 61194/583 102 338 
DEMOD 33086/254 0 3 
EQ 463190/3501 145 255 
SINK 32736/127 0 1 

Table 1. Metrics for Software Radio application 
       
       Figure 14 shows the energy consumption per sample in the 
communication interfaces between the components as well as 
the computational IPs in the system-on-chip. The pausible clock 
circuit consumes more average power than the mixed clock 
FIFO interfaces as can be seen in the figure. The energy con-
sumption in the interfaces between the computational elements 
depends on the clock ratio of the computational IPs and the 
time for sending and receiving one sample, which corresponds 
to 500ns at a source frequency of 1 KHz. The energy consump-
tion in the computational elements which are Hitachi SH3 cores 
in this case is much larger compared to the communication en-
ergy consumption. The computation energy is measured using 
instruction level power estimation in Myrmigki [12]. The power 
numbers for the communication elements is obtained from 
SPECTRE simulations of the mixed clock FIFO and pausible 
clock circuits.   
          From a performance perspective, both the mixed clock 
FIFO and pausible clock circuits show similar throughput char-
acteristics. However, the designer must keep in mind that while 
the pausible clock design eliminates metastability, it introduces 
undesirable circuit level characteristics like clock jitter due to 
pauses in the local ring oscillator. From a power perspective, 
the extra logic in the asynchronous circuit elements in the pau-
sible clock circuit burn more power compared to the relatively 
simple decoder and full empty logic in the mixed clock FIFO.    

7 Conclusion 
This paper describes a system level methodology to evaluate 
the power and performance of GALS based interconnect sys-
tems. We evaluate two main interconnect architectures namely 
a mixed clock FIFO and a pausible clock based scheme. A sys-
tem level model of these interconnect architectures allows the 
system level designer to design an application at the transaction 
or RTL level using system level models of such point to point 
asynchronous interconnect structures. Such system level char-
acterization of GALS based interconnect reduces simulation 
time of an application by orders of magnitude compared to a 
Verilog or SPICE simulation. Further, for asynchronous cir-

cuits, circuit level delay parameters can be abstracted and 
plugged into re-usable SystemC models, thereby providing a 
vertical integration from the circuit to the system level.  Future 
direction includes developing system level models of GALS 
based bus interconnects and building a library of such intercon-
nect structures for easy use of the system level developer. 
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