
System Level Power and Performance Modeling of GALS
Point-to-point Communication Interfaces*

 Koushik Niyogi Diana Marculescu
 Electrical and Computer Engineering Electrical and Computer Engineering
 Carnegie Mellon University Carnegie Mellon University
 5000 Forbes Avenue 5000 Forbes Avenue
 Pittsburgh, PA 15213 Pittsburgh, PA 15213
 Email: kniyogi@ece.cmu.edu Email: dianam@ece.cmu.edu

Abstract
Due to difficulties in distributing a single global clock signal over
increasingly large chip areas, a globally asynchronous, locally
synchronous design is considered a promising technique in the
system on a chip (SoC) era. In the context of today’s increasingly
complex SoCs, there is a need for design methodologies that start
at higher levels of abstraction. Much of the previous work has been
devoted to design of asynchronous communication schemes such
as mixed clock FIFOs and pausible clocks for globally asynchro-
nous, locally synchronous systems, but at low levels of abstraction,
such as circuit level. To enable early design evaluation of such
schemes, this paper proposes to use a SystemC-based modeling
methodology for the asynchronous communication among various
locally synchronous islands. The modeling framework encom-
passes various levels of abstraction and enables system-level vali-
dation of circuit or RT level hardware descriptions, as well as their
impact on high-level design decisions.
Categories and Subject Descriptors
C.4 [Perf. of Syst.]: Modeling techniques, Power Modeling
General Terms: Performance, Design.
Keywords: Globally asynchronous locally synchronous,
mixed clock FIFO, pausible clock.

1 Introduction
Due to increasing die sizes, higher clock speeds and high clock
skews, future digital VLSI designs will require a paradigm shift
from the globally synchronous design style. In addition, the
integration of various IP (Intellectual Property) cores on com-
plex systems on a chip requires a multitude of available clock
frequencies on a single die. A globally asynchronous, locally
synchronous design (GALS) paradigm enables such integration,
by allowing for synchronous blocks to operate asynchronously
with respect to each other. In such a scenario, not only the
speed, but also the voltage of each block can be customized or
chosen so as to meet the power and performance requirements
of the target application. This design paradigm is also particu-
larly attractive for a system-on-chip where circuit building
blocks (or IP blocks) from a number of design houses are inte-

grated onto a single chip.
 Communication between the building blocks of a SoC is a
complex problem, particularly when a range of clocking strate-
gies has to be tailored to each building block in order to obtain
a required performance within a power budget. Also, in the
context of the increasing complexity of systems-on-chip (SoCs)
and time-to-market pressures, the design abstraction has to be
raised to the system level to increase design productivity.
Transaction level modeling [6], which is enabled and supported
by system level languages such as SystemC, can be used to
separate the computation components from the communication
components. Communication can be modeled as channels,
while transaction requests take place by calling the interface of
these channel models. Unnecessary details of communication
and computation can be hidden in a TLM and can be added
later. This enables speeding up of simulation and allows for
exploration and validation of design alternatives at a higher
level of abstraction.
1.1 Paper contributions
 This paper addresses the problem of power and performance
analysis of GALS based systems, using transaction level model-
ing, in which the computation components are modeled as
processes (with or without cycle accurate representations) while
the communication is modeled in a cycle accurate manner.
SystemC excels in its usefulness to model designs at system
level, while still supporting synthesizable RT level hardware
descriptions. Thus, a seamless refinement of a design can occur
such that each part of the design is implemented independently,
without resorting to changes of other parts of the design. This
paper advances the state-of-the-art by providing ways of using
SystemC to model mixed clock communication channels of
primarily two types: mixed clock FIFOs [2,3] and pausible
clocks [4,5]. The computation processes are modeled as un-
timed algorithmic descriptions in a procedural language (such
as C) that interface with the communication channel in a cycle
accurate manner.
 To this end, this paper introduces a system level methodol-
ogy amenable for analyzing the power and performance charac-
teristics of asynchronous/mixed clock communication inter-
faces that have already been designed and validated at circuit-
level. A system level model of such interfaces built by abstract-
ing these circuit level characteristics enables plug-and-play
capabilities for these interfaces into any SoC application and
provides the designer fast analysis of the communication over-
head in terms of power and/or performance. This paper does not
focus on the architecture and cycle accurate modeling of the
computation units of the SoC, which is a different problem by
itself. The proposed system level modeling methodology also
enables design exploration of these applications in terms of

*This research has been supported in part by Semiconductor
Research Corporation under contracts no.2004-HJ-1189 and
2005-HJ-1314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00

Figure 1. Mixed clock FIFO [3] Figure 2. Pausible clock architecture [4]

which communication interfaces or architectures are more suit-
able for deploying. Since power is an important metric for SoC
applications, providing reliable estimates for the power over-
head introduced by various on-chip communication schemes on
target real life SoC applications is of extreme importance, and
is thus a main ingredient of the approach proposed herein.
1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 pre-
sents related work. Section 3 introduces GALS based systems,
while Section 4 describes specific GALS based communication
architecture that we model in this paper. Section 5 shows how
system level analysis would aid a system designer make design
decisions based on power and performance. Section 6 shows
the experimental results, while Section 7 concludes the paper
with final remarks and directions for future research.

2 Related Work
Chapiro has first introduced and studied GALS systems in de-
tail in his thesis [1]. His work covers metastability issues in
GALS systems and outlines a stretchable clocking strategy
which provides a mechanism for asynchronous communication.

In GALS systems, the asynchronous modules have to
communicate with each other asynchronously which may lead
to metastability issues. Chelcea et al. [2] use mixed clock FI-
FOs as low latency communication mechanism between syn-
chronous blocks. Cummings [3] uses a memory based mixed
clock FIFO to communicate between different clock domains.
We use his work and a pausible clocking scheme by Yun et al.
[4] to model GALS communication interfaces at the system
level. Mutterbasch et al. [5] have implemented asynchronous
wrappers around synchronous blocks. Most of this existing
work is done at the RTL or circuit level. Thus, there is a need
for system level tools for analyzing these communication archi-
tectures, which we attempt to address in this paper. Transaction
level modeling [6] has been researched in the system level lan-
guage and modeling area. The concept of channel, which en-
ables separating communication from computation, has been
introduced and discussed in [7]. [8] broadly describes the trans-
action leveling modeling features based on the channel concept
and presents some design examples.

We use these transaction level concepts, but our focus is
on GALS communication interfaces, which has not been looked
into before.

3 GALS Systems
Globally asynchronous locally synchronous systems may offer
a solution for SoC implementations seeking good performance
and low power consumption. Locally clocked building blocks
can be integrated on a single chip via asynchronous intercon-
nect between them. This may lead to the common problem of
metastability due to non-synchronization conditions of data and
clock signal. This can be crudely resolved by using a double
latching mechanism [9] to allow for metastability resolution.
However, such a mechanism introduces an additional latency in
the circuit. In the following section, we describe other strategies
to minimize metastability problems.

4 Communication Circuits and Architecture
In this section we describe the implementation of the communi-
cation architecture for point-to-point interconnect between lo-
cally synchronous modules. We describe two such communica-
tion schemes: (I) a memory based mixed clock FIFO and (II) a
pausible clocking scheme.
4.1 Mixed Clock FIFO Architecture
 In this case, we propose the use of a mixed clock FIFO for
reading and writing data from and to locally clocked synchro-
nous islands with different rates of producing or consuming
data items. In the proposed scenario, we use a RAM based de-
sign [3] for the FIFO, with read and write addresses being
passed by the producer and the consumer modules. Figure 1
shows a detailed description of the logic level circuit for the
mixed clock FIFO implementation. The FIFO memory buffer is
a dual ported RAM module that is accessed by both the read
and write clock domains.
4.2 Pausible Clocking Based Communication Architecture
 In this type of asynchronous communication between syn-
chronous islands, we use a pausible clocking based scheme as
proposed by Yun et al. [4]. Synchronous clock domains com-
municate with each other via completely asynchronous FIFO
channels as opposed to mixed clock FIFOs as described in the
earlier scheme. The interfaces between the synchronous mod-
ules and the FIFO are pausible clocking control (PCC) circuits.
A block diagram of the communication architecture is shown in
Figure 2.

 The important difference between the mixed clock FIFO
architecture and the pausible clock based architecture is that the
latter ensures that metastability does not occur, while the for-
mer has a very small (albeit, non-zero) probability of entering a
metastable state.

Figure 3. SystemC/SPECTRE comparison of mixed clock FIFO (above) and pausible clock (below)

5 System Level Analysis of GALS based SOCs
Due to complexity incurred in distributing a single global clock
across the entire chip area, and the varying power requirements
for different functional blocks of system-on-chip applications,
next generation systems will most certainly be implemented
using multiple voltage/frequency islands [10]. Each such Volt-
age/Frequency Island (VFI) would have its own internal clock
for its logic and powered by an off-chip or on-chip voltage
source. This would enable designers to scale up or down the
voltage and frequency of an on-chip module based on its per-
formance requirements, thereby saving dynamic and static
power. In this paper, we assume that an application is already
logically partitioned into several on-chip synchronous modules
communicating asynchronously with each other through GALS
communication interfaces as described in the previous section.
To this end, the proposed methodology relies on cycle-accurate
models for the mixed-clock communication interfaces, vali-
dated against detailed, circuit level implementations. By using
power and performance macro models validated against real
implementations, we are thus able to provide highly reliable
models for use at system level.
5.1 Modeling and Validation of GALS Interfaces
 We have developed both SystemC models and complete cir-
cuit implementations of the mixed clock FIFO and pausible
clock based communication interfaces. The circuit implementa-
tion is done using STMicroelectronics 130nm technology. Sys-
temC enables modeling of these interfaces at various levels of
abstraction. Thus, these models can be used at both RTL as well
as transaction level depending on the stage of the design. Since
SystemC is primarily used for modeling synchronous clock
based systems, a completely asynchronous interface needs to be
modeled and analyzed at the circuit level in order to extract the
relevant delay parameters, which can be plugged into SystemC.
 To our knowledge, there has not been any similar effort in
past literature to characterize such asynchronous interfaces in
SystemC. Circuit-level accurate characterizations are used to
validate and build the system-level models for the asynchro-
nous interfaces. Figure 3 shows the SystemC and SPECTRE

waveforms for a mixed clock FIFO [3] and pausible clock cir-
cuit [4]. The mixed clock FIFO has the write clock running at
twice the frequency of the read clock. This makes the wfull
(write full) signal go high at time t=25ns and t=55ns respec-
tively. For the pausible clock case, we run the producer and the
consumer modules at 1.89 GHz and 1.47 GHz respectively.
This causes a clock pause at the producer (signal sysclk2) at
t=1.4ns. As described in Section 4.2, this is caused by arbitra-
tion between the clock signal and the acknowledgement signal
received from the consumer. The SystemC module shown in
Figure 4 is an example of how we model the asynchronous
finite state machine of the pausible clock circuit.

SC_MODULE(producer_afsm) {
 //output and input ports
 sc_out<bool> R2;
 sc_out<bool> Sas;
 sc_in<bool> As;
 sc_in<bool> G2;
 //processes
 void update_R2();
 void update_Sas();
 SC_CTOR(producer_afsm) {
 SC_THREAD(update_R2);
 sensitive<<As;
 sensitive_pos<<G2;

 SC_THREAD(update_Sas);
 sensitive_pos<<G2;
 }
}

 Figure 4. System C code example for pausible clock modeling

5.2 Metrics for Characterizing Impact of GALS Interfaces
 In order to characterize at system level GALS based SoC
applications, we need to define metrics relevant at both power
and performance, as well as input parameters affecting these
metrics. The most important metric is the throughput of the
application. System level analysis of the application can not
only allow designers to analyze the effect of system parameters
such as FIFO sizing, producer rate and consumer rate on the

F ull La te nc y M ixe d C lo c k (N UM _ F E _ LA T E N C Y)

-2000
0

2000
4000
6000
8000

10000

0 0.5 1 1.5 2 2.5 3 3.5

clock ratio

nu
m

be
r o

f w
rit

e
fu

lls

fs ize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

Pow er Consum ption

0

500

1000

1500

2000

2500

0 1 2 3 4
clock rat io

A
ve

ra
ge

 p
ow

er
 (m

ic
ro

w

at
ts

)

mixed clock pausible clock

S ynt he t ic - t hro ughput -pa us ible c lo c k

0

50

100

150

0 1 2 3 4

clock ratio

th
ro

ug
hp

ut
 (M

B
/s

ec
)

fs ize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

fsize=16,wclk=210 fsize=16,wclk=300

throughput of the application, but also enable them to do a cy-
cle by cycle analysis of the throughput of the system.
 For a mixed clock FIFO interface, we define a few metrics
relevant to this type of GALS interface. The first one is related
to the number of times an application experiences an additional
clock cycle latency due to synchronization of the full/empty
signals (NUM_FE_LATENCY) and what is the average duration
of this latency in terms of clock cycles (AVG_FE_LATENCY).
Such metrics enable designers to evaluate the performance pen-
alty in using a mixed clock interface with respect to the single
clock domain case.
 In case of the pausible clock circuitry, two other metrics are
relevant for its behavior and impact on overall performance or
power. The first one is related to the number of times the clock
signal of a synchronous module is paused
(NUM_RW_PAUSES) and the second is associated to the total
latency incurred by such read-write pauses over a specified
simulation time (TOT_RW_LATENCY). Again, such metrics
enable the system level designer to estimate the performance
penalty for a pausible clock based circuit and explore other
GALS communication architectures. For the pausible clock

metrics, we use latency values obtained from SPECTRE simu-
lations of the pausible clock asynchronous circuitry and plug
them into the SystemC simulation environment. Finally, in both
cases, we also consider the ratio of communication cycles to the
computation cycles for a particular application, which helps the
designer to analyze whether the application is communication
or computationally intensive.
 Due to increasing clock frequencies and smaller device
sizes, power is an equally important metric in SoC based appli-
cations. Since GALS based architectures incur an extra over-
head in terms of asynchronous communication circuitry, it is
useful to characterize the power consumption of the computa-
tion cores and the communication interfaces for a particular
application. To this end, we also evaluate the power require-
ments of both the communication elements using circuit level
simulation, as well the computational cores using an architec-
tural simulator to compare the energy consumption in different
architectures.

Figure 6. Average throughput for pausible clock circuit

M ixed C lock F IFO latency (AVG_FE_LATENCY)

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

clo ck ratio
av

er
ag

e
w

rit
e

cl
oc

k
cy

cl
es

(la

te
nc

y)

S ynthe t ic -T hro ughput -M ixe d C lo c k F IF O

0

50

100

150

0 1 2 3 4

clock ratio

th
ro

ug
hp

ut
 (M

B
/s

ec
)

fs ize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

fsize=16,wclk=210 fsize=16,wclk=300

Figure 5. Average throughput for mixed clock FIFO

Figure 8. Average duration of synchronization stall in producer
P ausible Clock write pauses

(NUM _RW_P AUSES)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4
clock ratio

nu
m

be
r o

f w
rit

e
pa

us
es

Pausib le C lo ck w r i t e p ause t ime
(T O T _ R W _ LA T EN C Y)

0

5

10

15

20

25

30

35

0 1 2 3 4

clo ck ratio

w
rit

e
pa

us
e

la
te

nc
y

(n
s)

Figure 7. Number of synchronization stalls in producer

 Figure 10. Total clock pause time in producer Figure 11. Power consumption in interfacesFigure 9. Number of clock pauses in producer

6 Experimental Setup and Results
In this section we describe case studies on synthetic, as well as
real life applications, which can be implemented as heterogene-
ous system-on-chip applications. We implement the GALS
based communication interfaces as SystemC modules with in-
put and output ports which can be plugged into any application
implemented in SystemC either at the behavioral or RT level.
6.1 Synthetic Trace Case Study
 The synthetic case studies are based on a simple producer
consumer model, where the user can vary input parameters of
the producer and consumer such as rate of production, rate of
consumption, burst size of data, FIFO size and clock frequency
of the producer and the consumer modules. The producer rate
is defined as the probability that the producer will send a token
to the consumer at a producer clock cycle (same definition
holds for the consumer rate). The burst size is defined as the
number of data tokens transferred by the producer during one
data transfer from the producer to the consumer. For the ex-
periments related to synthetic applications, we varied the clock
frequency of the producer module from 200 MHz to 300 MHz.
The clock ratio between the producer and the consumer mod-
ules is defined as the ratio of the consumer clock frequency to
the producer clock frequency. We varied the clock ratio from
0.3 to 5 in steps of 0.15, which allows us to examine various
phase relationships between the producer and the consumer
clock. We also vary the FIFO size between 4 and 16 to observe
the impact of FIFO size on throughput and other performance
related metrics. We vary the producer and consumer rate be-
tween 0.4 and 1, while the burst size is varied from 1 to 8.
 We implemented both the mixed clock FIFO and the pausi-
ble clock circuits in ST Microelectronics 130 nm technology.
We performed SPECTRE simulations in order to verify our
SystemC simulation results and also to abstract the delay pa-
rameters for the asynchronous logic in the pausible clock cir-
cuit. Experimental results for the synthetic models are shown in
Figures 5-11.

Figures 5 and 6 show the impact of the clock ratio and
FIFO size on the average throughput with the rates and burst
size kept constant, in case of mixed clock FIFO and pausible
clock based interfaces. We see an almost linear increase in
throughput as the clock ratio increases, since this corresponds
to an increase in the clock frequency of the consumer clock
frequency, which translates to more data being read in the same
period of time. Also we see that the curves saturate when the
clock ratio reaches one. This happens because, after the con-
sumer module operates at a faster clock frequency than the pro-
ducer, there is no additional increase in throughput. There is a
marginal increase in throughput due to increase in FIFO size
when the producer and consumer operate at the same clock
frequency. By analyzing the curves closely, we can see that the
maximum impact of FIFO size on throughput occurs at a clock
ratio of 0.9 to 1. For smaller values of clock ratio, the consumer
module operates at a much slower rate than the producer and
thus after an initial period of instability, the system reaches a
steady state when the reads and writes occur according to the
consumer clock frequency. For large values of clock ratio, the
consumer is always much faster than the producer and thus the
FIFO never gets full.

Figure 7 shows the impact of clock ratio and FIFO size on
the number of stalls in the producer due to synchronization of
the full signal. As expected, the number of stalls is maximized
when the consumer module runs at a much slower frequency
than the producer, since the FIFO fills up quickly. Also, it is

seen that the number of such stalls becomes higher with in-
creasing producer clock frequency. Again, when the producer
and consumer clock frequencies are nearly equal, an increase in
FIFO size reduces the number of stalls since we have less in-
stances of the FIFO filling up.

Figure 8 shows the average duration of synchronizing the
full signal of the producer with varying phase differences be-
tween the producer and consumer clocks (clock ratio). It can be
seen that the number of synchronization cycles lies between 1
and 2, and is completely arbitrary depending on the phase dif-
ference between the producer and the consumer clocks. The
phase difference between the clocks is dependent on the clock
ratio between the producer and consumer clocks.

Figures 9 and 10 show the distribution of the number of
clock pauses and the total latency due to clock pauses in the
producer with varying phase differences (clock ratios) between
the producer and consumer clocks for different values of pro-
ducer rate, consumer rate, burst sizes and FIFO sizes. We can
see that the maximum number of pauses occurs between clock
ratios of 0.5 and 1. This kind of information may be very useful
to decide which ratios of clock frequencies to avoid at an early
stage of the GALS based design.

Finally, Figure 11 shows the average power consumption
for an eight bit four stage FIFO implementation, with varying
clock ratios. As the clock ratio increases, the consumer oper-
ates at a faster rate and the throughput starts increasing. Due to
increasing throughput and increasing consumer frequency,
power consumption increases. It can be seen that the pausible

clock consumes more power than the mixed clock FIFO be-
cause of its complex asynchronous circuitry. However, it must
be noted that the power number for the pausible clock circuitry
includes the current drawn by the local ring oscillator clock.

 Figure 12. Software radio application

6.2 Real Application Case Study
 The real life application under consideration is software-
defined radio [11], which is partitioned into five components -
source, low pass filter (LPF), demodulator (DEMOD), equal-
izer (EQ). Each component is assumed to be implemented as a
stand-alone application executing on a single processor as
shown in Figure 12. The source module generates samples at a
fixed rate (1 KHz), that are sent to the LPF node through a
GALS based communication interface, which may be either a
mixed clock FIFO, or a pausible clock interface.
 We performed static profiling of each module on an in-
house multi-core simulator Myrmigki [12], to obtain the com-
putation cycles and power consumption using instruction level
models of the Hitachi SH core. Figure 13 shows the impact of
FIFO sizing on the communication cycles in each module. It is
seen that there is some improvement in the equalizer node when
the FIFO size is increased from 4 to 16, while the other mod-
ules do not show much improvement in terms communication
latency.
 Table 1 shows the ratio of communication to computation
cycles in each module of the software radio system-on-chip for
processing one sample. The number of communication cycles is
negligible compared to the computation workload in this par-
ticular application. Table 1 also shows the breakdown of
NUM_FE_LATENCY and NUM_RW_PAUSES by each module

Sw radio-communication cycles

0

500

1000

1500

2000

2500

3000

3500

4000

lpf demod eq sink

nu
m

be
r o

f c
yc

le
s

f size=4 fsize=8
fsize=16

Computation energy/sample

0
100
200
300
400
500
600
700
800
900

lpf demod eq sink

E
ne

rg
y

(m
ic

ro
J)

Communication energy/sample

0

200

400

600

800

1000

1200

1400

lpf-demod demod-eq eq-sink

E
ne

rg
y

(p
ic

o
J)

mixed-clock pausible clock

Figure 14. Computation and Communication energy in software radio Figure 13. Impact of FIFO size on cycles

of the software radio application. The majority of the full empty
stalls and read-write pauses occur in the LPF and EQ modules
since these operate at a larger frequency than the other modules
of the application.

Module comp/comm. cycles RW_PAUSES FE_LATENCY
LPF 61194/583 102 338
DEMOD 33086/254 0 3
EQ 463190/3501 145 255
SINK 32736/127 0 1

Table 1. Metrics for Software Radio application

 Figure 14 shows the energy consumption per sample in the
communication interfaces between the components as well as
the computational IPs in the system-on-chip. The pausible clock
circuit consumes more average power than the mixed clock
FIFO interfaces as can be seen in the figure. The energy con-
sumption in the interfaces between the computational elements
depends on the clock ratio of the computational IPs and the
time for sending and receiving one sample, which corresponds
to 500ns at a source frequency of 1 KHz. The energy consump-
tion in the computational elements which are Hitachi SH3 cores
in this case is much larger compared to the communication en-
ergy consumption. The computation energy is measured using
instruction level power estimation in Myrmigki [12]. The power
numbers for the communication elements is obtained from
SPECTRE simulations of the mixed clock FIFO and pausible
clock circuits.
 From a performance perspective, both the mixed clock
FIFO and pausible clock circuits show similar throughput char-
acteristics. However, the designer must keep in mind that while
the pausible clock design eliminates metastability, it introduces
undesirable circuit level characteristics like clock jitter due to
pauses in the local ring oscillator. From a power perspective,
the extra logic in the asynchronous circuit elements in the pau-
sible clock circuit burn more power compared to the relatively
simple decoder and full empty logic in the mixed clock FIFO.

7 Conclusion
This paper describes a system level methodology to evaluate
the power and performance of GALS based interconnect sys-
tems. We evaluate two main interconnect architectures namely
a mixed clock FIFO and a pausible clock based scheme. A sys-
tem level model of these interconnect architectures allows the
system level designer to design an application at the transaction
or RTL level using system level models of such point to point
asynchronous interconnect structures. Such system level char-
acterization of GALS based interconnect reduces simulation
time of an application by orders of magnitude compared to a
Verilog or SPICE simulation. Further, for asynchronous cir-

cuits, circuit level delay parameters can be abstracted and
plugged into re-usable SystemC models, thereby providing a
vertical integration from the circuit to the system level. Future
direction includes developing system level models of GALS
based bus interconnects and building a library of such intercon-
nect structures for easy use of the system level developer.

8 References
 [1] D.M. Chapiro, “Globally Asynchronous Locally Synchronous Systems,”

PhD Thesis, Stanford University, 1984.
[2] T. Chelcea, S.M. Nowick, “Robust Interfaces for Mixed Timing Sys-

tems with Application to Latency Insensitive Protocols”, Proceedings
of IEEE Design Automation Conference, June 2001,” Las Vegas, Ne-
vada.

[3] C.E. Cummings, “Simulation and Synthesis Techniques for Asynchro-
nous FIFO design,” SNUG 2002, San Jose, CA.

[4] K. Yun, R..P. Donhue, “Pausible Clocking: A First Step Toward Het-
erogeneous Systems,” Proceedings of International Conference on
Computer Design, October 1996, Austin, TX.

 [5] J. Muttersbach, T. Villiger, and W. Fichtner., “Practical Design of
Globally Asynchronous Locally Synchronous Systems,” Proceedings of
International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, April 2000.

 [6] L. Cai, D. Gajski, “Transactional Level Modeling: An Overview,”
Proceedings of IEEE/ACM International Conference on Hard-
ware/Software Codesign and System Synthesis, October 2003, Newport
Beach, CA.

 [7] D.D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, “SpecC: Specifi-
cation Language and Methodology,” Kluwer Academic Publishers,
March 2000.

 [8] T. Groker et al., “System Design with SystemC,” Kluwer Academic
Publishers, 2002.

 [9] R. Ginosar, “Fourteen Ways to Fool your synchronizer,” Proceedings of
International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, April 2003.

 [10] K.Niyogi, D. Marculescu, “Speed and Voltage Selection for GALS
Systems based on Voltage Frequency Islands,” Proceedings of the
ACM/IEEE Asia-Pacific Design Automation Conference,” China,
January 2005.

 [11] B. D. Van Veen and K. M. Buckley, “ Beamforming: a versatile
approach to spatial filtering,” IEEE ASSP Magazine, vol.5, no.2, pp.4-
24, April 1988.

 [12] P. Stanley-Marbell, M. Hsiao, “Fast Flexible Cycle Accurate Energy
Estimation,” ACM/IEEE International Symposium of Low Power Elec-
tronics and Design, August 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

