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ABSTRACT   
Power consumption has become one of the big challenges in designing 
high performance processors. The rapid increase in complexity and 
speed that comes with each new CPU generation causes greater 
problems with power consumption and heat dissipation. Traditionally, 
these concerns are addressed through semiconductor technology 
improvements such as voltage reduction and technology scaling. This 
work proposes an alternative solution to this problem, by dealing with 
the power consumption in the very early stage of the microarchitecture 
design. More precisely, we show that by modifying the well-
established out-of-order, superscalar processor architecture, significant 
gains can be achieved in terms of power requirements without 
performance penalty. Our proposed approach relies on reusing as 
much as possible from the work done by the front-end of a typical 
pipelined, superscalar out-of-order via the use of a cache nested deeply 
into the processor structure. Experimental results show up to 52% 
(20% on average) savings in average energy per committed instruction 
for two different pipeline structures. 

1. INTRODUCTION 

Today’s superscalar processor microarchitectures place an increasing 
emphasis on exploiting instruction-level parallelism. This often 
translates into having multiple execution units, wider instruction issue 
buffers to support them and wider instruction paths for fetch, decode 
and rename stages. This trend leads to increasing power requirements 
to support all these resources. Until now, performance concerns have 
always had priority so the power dissipation issues were addressed 
mainly at the technology level, that is lower supply voltages, smaller 
transistors, SOI technology, better packaging, etc. 

Nevertheless, power dissipation has become one of the design 
constraints for modern processors, and thus the microarchitecture 
designer must now take power requirements into consideration as well. 
Gating the input transitions has been one of the research directions 
proposed as a potential way to reduce the power consumption for large 
designs [10]. Focusing on a specific component of the processor, 
techniques like Filter Cache [8] or L-cache [9] were proposed to 
increase the power efficiency of the cache subsystem. Thus some parts 
of the cache are shut down when they are not needed, obtaining a 
better power efficiency.  

More recently, an interesting architectural innovation unveiled by 
Intel with the release of the Pentium 4 microprocessor is the use of a 
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trace-cache-like structure to shorten the critical execution path. By 
placing this cache in the pipeline, after the x86 decoding stages, and by 
storing the decoded instructions (uops) in the trace-cache, the whole 
decode stage can be shut down for significant periods of time while the 
rest of the execution engine continues working, creating a shorter 
critical execution path. When a hit in the trace-cache occurs, 
instructions do not need to be decoded again and can be fed into the 
pipeline directly from the trace-cache. 

Moving one step forward, we can envision such a structure as being 
placed even deeper in the pipeline to allow for even further 
improvements through shortening the critical execution path [1]. If the 
trace-cache is placed after the Issue Stage, the instructions that are 
fetched, decoded and have already had registers renamed performed 
should be stored in issue-order (and not in program-order) in the 
trace-cache. The execution engine can thus be fed either from the Issue 
Stage (during the trace-build phase) or directly from the trace-cache (if 
a hit in the trace-cache occurs).  

This new type of microarchitecture is the objective of this paper. We 
propose a novel micro-architectural organization that allows for better 
power efficiency through reusing the work done by the front-end of the 
pipeline. Furthermore, techniques like Guarded Evaluation [5] or clock 
gating [10] will enable significant reductions in power consumption for 
pipeline stages not used during different phases of the program 
execution. 

2. PREVIOUS WORK 

When it comes to performance, superscalar processor design has 
always been the last to accept a possible compromise. As intended for 
applications where raw performance is the primary target, the last bit 
of potential efficiency is usually squeezed from each architectural 
design. In this respect, all the power-reduction work was usually 
concentrated on refining the CMOS technology. Traditional circuit-
level approaches, as voltage scaling, transistor resizing or library 
redesign [6], are now employed by most of the modern superscalar 
processors. 

Guarded evaluation was proposed as a static technique in [5] to 
reduce the power required by a design when some operands are left 
unmodified through successive time steps. More general, clock gating 
was proposed [10] to save the power wasted by units that are 
temporarily not used. Both of these techniques require some extra 
piece of logic (or a static algorithm) to identify when sub-blocks of the 
larger design are not used in order to prevent the input transitions. 
These techniques are currently widely accepted and tools like Wattch 
[12] that model the power consumption of a superscalar processor 
considers them as implemented by default. However, most of the 
commercial high performance processors are not able to use them on a 
large scale. This fact is mostly due to the inherent difficulties in 
predetermining on a cycle-by-cycle basis whether a module is needed 
or not in an out-of-order design or in finding longer intervals when a 
module can be completely shut down. 

In this paper we propose to modify the usual pipelined, out-of-order 
microarchitecture to allow for longer (and predictable) intervals during 
which some of the resources are not used. In order to achieve that, we 
identify modules that perform the same computation each time an 
instruction is executed and try to reuse as much as possible from the 
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previous work. Obviously, the functions performed by the Fetch and 
Decode stages are identical each time a specific trace from the program 
is executed. Using a novel register file structure, we can also reuse the 
work done by the Rename and Issue stages. For reusing all this work, 
we propose a new microarchitecture, with a modified type of trace-
cache placed between the Issue and Execute stages, storing traces of 
instructions in issue order.  

Storing instructions in the logical program order rather than actual 
issue order was previously proposed by several studies [2][4]. Usually, 
the trace-cache employed in all these studies is used as a mechanism 
for improving the fetch efficiency and allowing for multiple branch 
predictions during each clock cycle. An exception is the TurboScalar 
microarchitecture [1], where a long and thin pipeline is used for 
creating traces that feed a very short and thick pipeline, thus harvesting 
a much higher IPC. All these studies are focused on increasing the 
performance of the processor but do not address the power 
consumption issue. In order to increase the performance, the 
complexity of creating traces and storing them in an efficient structure 
is taken off of the critical execution path and placed after the Retire 
stage of the pipeline. Thus, these approaches avoid most of the drop in 
performance caused by the extra-work required for filling the trace-
cache and can perform a lot of optimizations before storing the 
instructions (reordering, renaming and hashing). However, these 
aforementioned microarchitectures do not address the substantial 
power overhead incurred by all the required logic. 

3. ORGANIZATION OF THE PAPER 

The paper is organized as follows: in Section 4 we present the main 
aspects of our microarchitectural design, including the selected trace-
cache structure, the organization of the new register file and the 
register renaming technique that will allow us to reuse the renaming 
done when building the traces.  In Section 5 we present the power-
performance trade-offs we have to analyze when using this type of 
microarchitecture. The experimental setup is described in Section 6 
and the results of these tests are included in Section 7. We conclude in 
Section 8 with some final remarks and possible directions for future 
research. 

4. ARCHITECTURAL DESIGN 

Typically, the microarchitecture-level design starts with the selection of 
a typical out-of-order, superscalar architecture. In order to reduce the 
critical execution path (and thus the number of modules that are used 
for executing an instruction) we propose to place a trace-cache deep in 
the pipeline, after the Issue Stage. In order to avoid the performance 
penalty incurred by an extra pipeline stage between the Issue and the 
Execution stages, we bypass it, issuing instructions in parallel to both 
the trace cache and the execution stages. The conceptual 
microarchitecture is illustrated in Figure 1. 

Normally, instructions are fetched from the I-Cache through the 
Fetch stage and then decoded. In the next stage, physical registers are 
assigned for each logical register used by the instruction, avoiding 
potential false dependencies.  The resulting instructions are placed in 
the Issue Window for dependency checking. A number of independent 
instructions are issued to the execution stage and in parallel stored in 
the trace-cache for potential reuse. 

In this setting, the critical execution path can be significantly 
shortened by feeding the execution units directly from the trace-cache 
whenever possible. Initially, when the trace cache is empty, the 
instructions are launched from the Issue Window, while a trace is build 
in parallel in the trace-cache – we call this step the trace segment build 
phase.  

Upon a mispredict (or a trace completion condition), a search is 
performed to identify a possible next trace starting at that point, and 
should a hit occur, the instructions continue to be executed from the 

trace-cache, on the alternative execution   path (dotted line in Figure 
1). At the end of executing a trace (either at the end of the trace or 
when a mispredict occurs), the look-up must be performed again, in 
order to find a potential next-trace. If a miss is encountered, the 
pipeline front-end is launched again and a new trace is built. 

4.1 Trace-cache Architecture 

Similar to the conventional trace-cache implementations [4], our design 
divides the program into traces of instructions that are stored on a 
different basis than their original address. However, the cache we have 
chosen in the proposed architecture is structurally different from the 
trace-cache typically used for increasing the fetch bandwidth. From the 
beginning, the decision to reuse as much as possible from the work 
done in the first stages of the pipeline led to the necessity of storing the 
instructions in issue order, not in program order. This fact enforces a 
number of decisions that considerably limits the potential design space.  

Figure 1. Superscalar microarchitecture that makes use of a 
trace-cache to shorten the critical execution path  

If stored in issue order, instructions lose their original, logical order 
and they can be retrieved only on a sequential basis. However, in order 
to allow the traces to be reused, the start address of each trace needs to 
correspond to a physical address in the memory space. So, with each 
change of trace, the processor must come back to an in-order execution 
status, leading to some breaks in the potential parallelism. As 
described later in the paper, we have not included complex or 
sophisticated branch prediction mechanisms that are typically used in 
trace-cache based microarchitectures. Such complex branch prediction 
hardware is very likely to offset any power savings that we achieve via 
dynamic work reuse. 

At each trace end, a trace look-up step must be performed, leading 
to some more performance penalty. Because of the overhead associated 
with each trace change, the traces have to be as long as possible. 
However, as they get longer, the number of traces that can be 
accommodated in the cache decreases. This leads to a decrease of the 
hit rate at trace look-up, so we end up with a higher utilization of the 
front-end pipeline. In order to address this problem, we allowed the 
maximum size of the traces to be dynamically modified. The size is 
proportional to the number of mispredicts, in order to have longer 
traces whenever the program locality is very good.  

The simultaneous presence of traces with different lengths (some of 
them very long) in the trace-cache prevented us from using the 
standard model [4] or the very efficient block based trace-cache 
structure [2]. So, we decided to go for a solution that resembles the 
Intel implementation in the new Pentium 4 microarchitecture [13][15]. 
This solution is presented in Figure 2. 



The trace-cache structure consists of a tag array and a corresponding 
data array. The tag array is a highly associative cache, addressed using 
the program counter. It is used for trace look-up and it should be as 
fast as possible. The SET_ID value obtained from the tag array points 
to the set in the data array that contains the beginning of the trace we 
are looking for. The data array is an N-way set associative cache (in 
Figure 2, N=4). A comparison with the TRACE_ID is performed for 
each of the N blocks in the set to identify the starting block of the right 
trace. Each block generally contains more than one instruction – 
essentially the number of instructions that could be issued in parallel in 
the trace segment build phase. The next chunk of instructions is 
located in one of the blocks of the following set, and so on (see Figure 
2). Knowing beforehand which is the next set, we avoid the trace look-
up penalty at the subsequent reads. A special end-of-trace marker 
identifies the end of the trace. 

 

 

Figure 2. The trace-cache architecture 

A LRU approach is used for freeing up blocks in each set from the data 
array when a new trace-building phase is initiated. To terminate the 
creation of a trace, the trace-building algorithm takes into account 
several criteria like: trace length, occurring mispredicts, jumps, and the 
ability of finding another existing trace starting at the current point. 

To avoid the latency of searching in the highly associative tag array, 
a separate, small lookup table (FTLT – Fast Trace Lookup Table) is 
used to cache the most recently used trace tags. The trace is abandoned 
on trace-end (detected when attempting to issue more instructions to 
the execution engine) or on a branch mispredict (detected by the Retire 
Stage). When the trace must be replaced, a lookup is performed in the 
FTLT for a new trace. If a miss in the FTLT occurs, the full-search is 
performed in the tag array, and the front-end is restarted if a miss 
occurs in the trace-cache. On a hit in the trace-cache, instructions will 
be issued on the alternative execution path directly from the trace-
cache, but incurring the trace look-up penalty. 

We should point out that a trace is created following a number of 
branch predictions. If these predictions prove to be wrong, the trace 
must be declared invalid and another one created. The policy we 
implemented here is to declare a trace as invalid when we encounter 
two mispredicts in a row while executing the trace. 

In this implementation, we use a fairly large Data Array (100k) for 
implementing the trace-cache. However, the access pattern for this 
structure is highly predictable (most of the cycles we just increment the 
row address we used for the previous access). This behavior allows us 
to use sub-banking [14] for implementing this structure and turn off 
the banks that are not being used in each cycle. All the banks have to 
be validated at the same time only when we start a new trace (after 
accessing the Tags Array). 

4.2 Register File 

Placing the above-described trace-cache deep in the pipeline, after the 
Issue stage, allows us to reuse the work done by all the units belonging 
to the front-end stages. This implies also that we do not perform 
register renaming on the instructions issued directly from the trace-
cache. However, this operating mode assumes that the virtual-to-
architected register mapping is the same at the beginning of each trace. 
Some architectural changes need to be made to the register pool and 
control unit to ensure that this can be implemented. In order to handle 
this task, we designed a special register pool structure. The logic 
structure we propose implementing each register is presented in Figure 
3. 

As the one proposed in [3], our structure employs a number of 
physical registers for renaming every logical register of the 
microarchitecture. In our proposed microarchitecture, each of the 
architected registers is organized as a circular buffer of physical 
registers, as opposed to a stack organization proposed in [3]. 

Using this type of structure, each subsequent write to an architected 
register goes to a different physical register. This approach solves the 
false data dependencies and is used for implementing register 
renaming. The number of in-flight instructions that can have the same 
logical destination is N (the number of physical registers in the circular 
buffer).  

 
Figure 3. Architected register structure 

Each read or write to this structure is associative, the physical register 
used being validated by a comparison between its position (POS) bits 
and the bits presented by the instruction. Having different physical 
destinations, instructions can write the result as soon as it is available, 
setting the V (valid) bit to signal an available value. However, the S 
(speculated) bit will be reset only after the instruction is retired. A 
physical register cannot be assigned as a destination for a new 
instruction (in the Register Renaming stage) if the associated S bit is 
set. If this happens, we don’t have enough physical registers to 
perform renaming at this moment and the rename stage will stall. 

The N position values (POS 0 – POS N-1) are initialized with 
consecutive values – 0,1,2 … N-1 and represent the logical order of the 
registers in the circular queue. IDX is a pointer in this queue 
representing the most recent register used for writing. 

4.3 Register Renaming 

When the instruction reaches the renaming stage, some physical 
registers must be assigned to its source and destination registers. For 
the destination register, the IDX value is incremented and assigned to 
the instruction. The S (speculated) bit is checked for the corresponding 
physical register and, if it is found set, the pipeline is stalled. 
Otherwise, S is set and V (valid) is deleted to mark the value as not yet 
available. V will be set when the result is written back to the register 



and S will be deleted later, when the instruction will be retired. For a 
source register, the IDX value is read and assigned to the instruction.  

Each trace generation is made with IDX starting from 0 (the correct 
value for the register is stored in the location marked by POS = 0). If 
this condition is respected, all the subsequent executions of a trace can 
be done without further renaming the registers. The caveat is that this 
requires some extra work to be done when a trace execution ends. In 
fact, all the POS values need to be recomputed for the circular buffer to 
start each time with the latest value for that architected register. This 
can be done subtracting from POS the IDX value, but it will require a 
complex circuit for each physical register. However, the same effect 
can be obtained performing a XOR between IDX and POS since the 
physical order of the registers is not important and does not have to 
match with the logical one. The important aspect – all registers to have 
different tags, between 0 and N-1 – is preserved and the register 
holding the last value becomes Register 0. 

5. POWER – PERFORMANCE TRADE-OFF 
ANALYSIS 

In this paper, we propose dynamic work reuse as a viable solution for 
power efficient microarchitecture. Using techniques like guarded 
evaluation and clock gating for shutting down the front-end (while 
issuing instructions from the trace-cache) should allow us to achieve 
significant reduction in the power consumption of the overall 
microarchitecture. 

From a performance point of view, this microarchitecture has both 
strong points as well as weak points. From the conceptual structure, 
presented in Figure 1, it is obvious that the alternative execution path is 
shorter than the normal pipeline. This aspect considerably reduces the 
mispredict penalty when the next trace is found in the trace-cache, and 
is a definite advantage when executing programs with a bad branch 
predictability. This advantage should increase, as the current trend is 
to use deeper pipelines. However, although placing the trace-cache 
deep in the pipeline creates a shorter critical execution path, there are 
some caveats associated to it. First, each time instructions are issued 
from the trace-cache, we cannot make use of the normal branch 
predictor from the Fetch stage, and the branch is speculated based on 
the trace. Given this, during execution from the trace-cache, the branch 
prediction algorithm is equivalent to a 1-bit predictor1, which will 
predict branches the same way as during the trace-build phase. 
Because we use longer traces, with a big number of potential branch 
instructions, a next-trace predictor would be very complex and would 
require a lot of power. However, since we cannot afford a very big 
trace-cache (because of the power concerns), creating more traces from 
the same program address for multiple possible branch predictions is 
not an option here. In addition, complex multiple branch prediction 
hardware is likely to offset any power savings obtained by work reuse. 

Furthermore, when traces are created (or executed from the trace-
cache), the parallelism obtained by out-of-order execution is exploited 
only within the bounds of a trace. If the length of the trace is small 
(e.g. not well-behaved programs), this fact can reduce the potential 
parallelism that otherwise could have been exploited by the normal 
microarchitecture. However, our target here is to obtain a structure 
with a better power efficiency and this should be possible even if we 
allow a small drop in performance. There are a number of parameters 
that can be varied in order to tune the microarchitecture for better 
performance or better power efficiency.  

                                                             
1 Actually, it is more complex, almost like a 2-bit predictor due to the 

interference of the trace removal algorithm, detailed in Section 3.1.  

6. EXPERIMENTAL SETUP 

To validate our approach, we implemented two models based on the 
Wattch simulator [12]. We have modified the SimpleScalar 
microarchitecture in order to support our register file and trace cache 
models, a larger number of stages and a buffer based model for inter-
stage communication. We implemented both the modified 
microarchitecture (with the trace-cache placed between the Issue and 
Execute stages) and a corresponding normal superscalar pipeline as a 
base for comparison. Both structures were based on the same pipeline 
and did not use some advanced features, like fetching from multiple 
cache blocks, etc. The main purpose of modeling those 
microarchitectures was to compare their behavior in terms of 
performance and power requirements. 

We have considered 2 versions of the pipeline – one shorter, with 8 
stages and another one, with 14 stages. The 8-stage pipeline was 
chosen because it is a common depth used in the today’s processors. 
Its conceptual structure is: 

Figure 4. Short pipeline microarchitecture 

However, the current trend for achieving higher clock rates dictates an 
increase in the pipeline depth. For this purpose, we have also 
considered a 14-stage pipeline: 

Figure 5. Long pipeline microarchitecture 

For all tests we have used 4-ways pipelines, with the default 
configuration provided by the SimpleScalar toolset: 16k L1 I-Cache, 
16k L1 D-Cache, 256k unified L2 cache, no penalty for accessing the 
L1 cache, 6 cycles for accessing the L2 Cache, 32 cycles for going to 
memory. The trace-cache is configured with 100k memory for the data 
array and 16k for the tag array. For looking up a trace in the tag array 
we have considered a penalty of 1 cycle. In both cases, we have 
accounted for the difference in global clock power due to an increased 
number of pipeline registers that have to be clocked. We have used the 
SPECint-95 and SPECfp-95 benchmarks to validate our results. 

7. EXPERIMENTAL RESULTS 

For an 8-stage pipeline, our microarchitecture performs up to 10% 
faster than the basic one for benchmarks like GCC, PERL or TURB3D 
and up to 5% slower for SWIM. All the values presented below are 
normalized with respect to the normal microarchitecture. 

Overall, the proposed structure is 1.2% faster than the normal one. 
These results may not show the same trend as earlier results on using 
trace-cache [1]. The microarchitecture was tuned so as to yield 
approximately the same performance as the basic one, but requiring 
less power.  
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Figure 6. IPC variation for the 8-stage pipelines  

(100k trace cache) 



To report the power consumption values, we have considered the 
energy required for committing one instruction (EPI). Since we assume 
clock gating is used for idle modules in the pipeline, we use the same 
technique implemented in Wattch for measuring the power 
consumption – by adding to the power required by the active modules 
a fraction of the power required by those unused. We report the results 
for 10%, 5% and 0% power overhead for unused modules. However, 
since most of the time instructions are executed from the trace-cache, 
completely shutting off the front-end could be a viable alternative, and 
thus the 0% overhead becomes realistic. 

The power consumption is reduced for our microarchitecture by as 
much as 28% (48% for 0% overhead) for MGRID or TURB3D. 
Overall, the energy per committed instruction was reduced by 21% (for 
the 5% overhead model) and 36% if 0% overhead was considered. In 
Figure 7, all these values are normalized with respect to the power 
requirements of the original pipeline organization. 

Figure 7. Normalized EPI for an 8-stage pipeline 
(100k trace-cache) 
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Figure 8. IPC variation for the 14-stage pipelines 

(100k trace-cache) 

For the longer pipeline (14 stages), the IPC for both structures is 
smaller, due to the increased mispredict penalty. Here, the proposed 
microarchitecture is about 0.3% slower than the normal superscalar 
one. However, for the case of normalized performance, the trend is 
similar to the 8-stage case.  

From the power consumption point of view, we find a similar 
situation. For the 0% overhead model, the gain varies between 23% for 
FPPPP and as much as 52% for TURB3D. Overall, the power 
consumption per committed instruction is reduced by 20% for the 5% 
overhead model or by as much as 40% if the more aggressive, 0% 
overhead assumption is considered. 

 
 
 
 

Figure 9. Normalized EPI for a 14-stage pipeline 
(100k trace-cache) 

 
Increasing the trace-cache size to 200k increases its usage and thus its 
efficiency. We run a test with this new configuration and the results 
were significantly better. The alternative execution path was used 76% 
of the total execution time and the IPC increased to 8% over the 
normal microarchitecture. 

Simulating again all the benchmarks for the new trace-cache (on the 
8-stage pipeline), the usage of the alternative execution path was better 
for some applications, but other cannot benefit from the larger cache. 

An interesting case in all these tests is FPPP. We have performed 
several tests in different configuration and discovered that this 
benchmark is composed from one big basic block. If we double the 
trace-cache size (up to 200k), the alternative path usage is much better. 
In the case of FPPP, if the 100k size trace-cache is used as in the rest 
of the test cases, the processor issues instructions from the trace-cache 
only 40% of the time (compared to up to 99% of the time for 
TURB3D).  

Figure 10.  Alternative execution path usage 
(100k trace-cache) 

In such situations, the trace-cache may become inefficient since it is 
not capable to accommodate the entire basic block. As seen in Figure 
10, for most of the benchmarks instructions are issued from the trace-
cache more than 60% of the time, whereas in case of FPPP the trace-
cache usage is only 40%. 

For FPPP, the energy per instruction computed with respect to the 
normal microarchitecture dropped to 90.9% (10% overhead), 80.5% 
(5% overhead) and 61.3 (0% overhead).   
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Figure 11. Comparative view of the alternative 
 execution path 

 

Figure 12. Normalized EPI for an 8-stage pipeline 
(200k trace-cache) 

Overall, we obtained a slight increase in IPC (1.5% over the smaller 
trace-cache version) but a slight decrease in energy efficiency (1%). 

8. CONCLUSION AND FUTURE WORK 

In this paper, we propose a new microarchitecture that yields 
comparable performance to the usual superscalar microarchitecture 
while using significantly less power. Our experiments show that, 
depending on the overhead model considered for the unused modules, 
by using this approach we can achieve between 20% and 40% 
reduction in power consumption. 

Experimentally, we noticed that there are a few ways we can tune 
the design for power or performance. For example, by further 
decreasing the length of the traces, the number of instructions executed 
per cycle (IPC) decrease by about 3-5% while the energy required per 
instruction (EPI) decreases also by as much as 10% below the values 
we have presented. Furthermore, if we don’t update the branch history 
buffer while executing from the trace-cache, we have a drop in IPC of 
about 2% and a decrease in EPI of 5%. In the experiments we 
presented here, we tuned our test microarchitecture for a performance 
within 3% from the equivalent superscalar architecture. 

A drawback of our trace-cache organization is the relative 
inefficiency in the space usage. As we want to be able to store and 

retrieve the instructions as fast as possible, we are storing them in the 
trace cache exactly as they come out from the issue window. In this 
respect, on a 4-way processor we will try to store as much as 4 
instructions in every entry of the data array. If during a clock cycle the 
processor is not able to find and issue 4 independent instructions, this 
will result in some empty slots in the trace. So, the overall usage of the 
trace cache (in terms of memory space) could be below 100%. In a 
future implementation, we will try to come up with a way to compress 
the instructions for a better efficiency in the data array usage. 
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