
Power reduction through work reuse*
Emil Talpes

Carnegie Mellon University, ECE Department
5000 Forbes Ave

Pittsburgh, PA, 15213
412.268-3333

etalpes@andrew.cmu.edu

Diana Marculescu
Carnegie Mellon University, ECE Department

5000 Forbes Ave
Pittsburgh, PA, 15213

412.268-1167
dianam@ece.cmu.edu

ABSTRACT
Power consumption has become one of the big challenges in designing
high performance processors. The rapid increase in complexity and
speed that comes with each new CPU generation causes greater
problems with power consumption and heat dissipation. Traditionally,
these concerns are addressed through semiconductor technology
improvements such as voltage reduction and technology scaling. This
work proposes an alternative solution to this problem, by dealing with
the power consumption in the very early stage of the microarchitecture
design. More precisely, we show that by modifying the well-
established out-of-order, superscalar processor architecture, significant
gains can be achieved in terms of power requirements without
performance penalty. Our proposed approach relies on reusing as
much as possible from the work done by the front-end of a typical
pipelined, superscalar out-of-order via the use of a cache nested deeply
into the processor structure. Experimental results show up to 52%
(20% on average) savings in average energy per committed instruction
for two different pipeline structures.

1. INTRODUCTION

Today’s superscalar processor microarchitectures place an increasing
emphasis on exploiting instruction-level parallelism. This often
translates into having multiple execution units, wider instruction issue
buffers to support them and wider instruction paths for fetch, decode
and rename stages. This trend leads to increasing power requirements
to support all these resources. Until now, performance concerns have
always had priority so the power dissipation issues were addressed
mainly at the technology level, that is lower supply voltages, smaller
transistors, SOI technology, better packaging, etc.

Nevertheless, power dissipation has become one of the design
constraints for modern processors, and thus the microarchitecture
designer must now take power requirements into consideration as well.
Gating the input transitions has been one of the research directions
proposed as a potential way to reduce the power consumption for large
designs [10]. Focusing on a specific component of the processor,
techniques like Filter Cache [8] or L-cache [9] were proposed to
increase the power efficiency of the cache subsystem. Thus some parts
of the cache are shut down when they are not needed, obtaining a
better power efficiency.

More recently, an interesting architectural innovation unveiled by
Intel with the release of the Pentium 4 microprocessor is the use of a

 *This research has been supported in part by NSF Career Award CCR-

008479.

trace-cache-like structure to shorten the critical execution path. By
placing this cache in the pipeline, after the x86 decoding stages, and by
storing the decoded instructions (uops) in the trace-cache, the whole
decode stage can be shut down for significant periods of time while the
rest of the execution engine continues working, creating a shorter
critical execution path. When a hit in the trace-cache occurs,
instructions do not need to be decoded again and can be fed into the
pipeline directly from the trace-cache.

Moving one step forward, we can envision such a structure as being
placed even deeper in the pipeline to allow for even further
improvements through shortening the critical execution path [1]. If the
trace-cache is placed after the Issue Stage, the instructions that are
fetched, decoded and have already had registers renamed performed
should be stored in issue-order (and not in program-order) in the
trace-cache. The execution engine can thus be fed either from the Issue
Stage (during the trace-build phase) or directly from the trace-cache (if
a hit in the trace-cache occurs).

This new type of microarchitecture is the objective of this paper. We
propose a novel micro-architectural organization that allows for better
power efficiency through reusing the work done by the front-end of the
pipeline. Furthermore, techniques like Guarded Evaluation [5] or clock
gating [10] will enable significant reductions in power consumption for
pipeline stages not used during different phases of the program
execution.

2. PREVIOUS WORK

When it comes to performance, superscalar processor design has
always been the last to accept a possible compromise. As intended for
applications where raw performance is the primary target, the last bit
of potential efficiency is usually squeezed from each architectural
design. In this respect, all the power-reduction work was usually
concentrated on refining the CMOS technology. Traditional circuit-
level approaches, as voltage scaling, transistor resizing or library
redesign [6], are now employed by most of the modern superscalar
processors.

Guarded evaluation was proposed as a static technique in [5] to
reduce the power required by a design when some operands are left
unmodified through successive time steps. More general, clock gating
was proposed [10] to save the power wasted by units that are
temporarily not used. Both of these techniques require some extra
piece of logic (or a static algorithm) to identify when sub-blocks of the
larger design are not used in order to prevent the input transitions.
These techniques are currently widely accepted and tools like Wattch
[12] that model the power consumption of a superscalar processor
considers them as implemented by default. However, most of the
commercial high performance processors are not able to use them on a
large scale. This fact is mostly due to the inherent difficulties in
predetermining on a cycle-by-cycle basis whether a module is needed
or not in an out-of-order design or in finding longer intervals when a
module can be completely shut down.

In this paper we propose to modify the usual pipelined, out-of-order
microarchitecture to allow for longer (and predictable) intervals during
which some of the resources are not used. In order to achieve that, we
identify modules that perform the same computation each time an
instruction is executed and try to reuse as much as possible from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED ’01, August 2001, Huntington Beach, CA.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

previous work. Obviously, the functions performed by the Fetch and
Decode stages are identical each time a specific trace from the program
is executed. Using a novel register file structure, we can also reuse the
work done by the Rename and Issue stages. For reusing all this work,
we propose a new microarchitecture, with a modified type of trace-
cache placed between the Issue and Execute stages, storing traces of
instructions in issue order.

Storing instructions in the logical program order rather than actual
issue order was previously proposed by several studies [2][4]. Usually,
the trace-cache employed in all these studies is used as a mechanism
for improving the fetch efficiency and allowing for multiple branch
predictions during each clock cycle. An exception is the TurboScalar
microarchitecture [1], where a long and thin pipeline is used for
creating traces that feed a very short and thick pipeline, thus harvesting
a much higher IPC. All these studies are focused on increasing the
performance of the processor but do not address the power
consumption issue. In order to increase the performance, the
complexity of creating traces and storing them in an efficient structure
is taken off of the critical execution path and placed after the Retire
stage of the pipeline. Thus, these approaches avoid most of the drop in
performance caused by the extra-work required for filling the trace-
cache and can perform a lot of optimizations before storing the
instructions (reordering, renaming and hashing). However, these
aforementioned microarchitectures do not address the substantial
power overhead incurred by all the required logic.

3. ORGANIZATION OF THE PAPER

The paper is organized as follows: in Section 4 we present the main
aspects of our microarchitectural design, including the selected trace-
cache structure, the organization of the new register file and the
register renaming technique that will allow us to reuse the renaming
done when building the traces. In Section 5 we present the power-
performance trade-offs we have to analyze when using this type of
microarchitecture. The experimental setup is described in Section 6
and the results of these tests are included in Section 7. We conclude in
Section 8 with some final remarks and possible directions for future
research.

4. ARCHITECTURAL DESIGN

Typically, the microarchitecture-level design starts with the selection of
a typical out-of-order, superscalar architecture. In order to reduce the
critical execution path (and thus the number of modules that are used
for executing an instruction) we propose to place a trace-cache deep in
the pipeline, after the Issue Stage. In order to avoid the performance
penalty incurred by an extra pipeline stage between the Issue and the
Execution stages, we bypass it, issuing instructions in parallel to both
the trace cache and the execution stages. The conceptual
microarchitecture is illustrated in Figure 1.

Normally, instructions are fetched from the I-Cache through the
Fetch stage and then decoded. In the next stage, physical registers are
assigned for each logical register used by the instruction, avoiding
potential false dependencies. The resulting instructions are placed in
the Issue Window for dependency checking. A number of independent
instructions are issued to the execution stage and in parallel stored in
the trace-cache for potential reuse.

In this setting, the critical execution path can be significantly
shortened by feeding the execution units directly from the trace-cache
whenever possible. Initially, when the trace cache is empty, the
instructions are launched from the Issue Window, while a trace is build
in parallel in the trace-cache – we call this step the trace segment build
phase.

Upon a mispredict (or a trace completion condition), a search is
performed to identify a possible next trace starting at that point, and
should a hit occur, the instructions continue to be executed from the

trace-cache, on the alternative execution path (dotted line in Figure
1). At the end of executing a trace (either at the end of the trace or
when a mispredict occurs), the look-up must be performed again, in
order to find a potential next-trace. If a miss is encountered, the
pipeline front-end is launched again and a new trace is built.

4.1 Trace-cache Architecture

Similar to the conventional trace-cache implementations [4], our design
divides the program into traces of instructions that are stored on a
different basis than their original address. However, the cache we have
chosen in the proposed architecture is structurally different from the
trace-cache typically used for increasing the fetch bandwidth. From the
beginning, the decision to reuse as much as possible from the work
done in the first stages of the pipeline led to the necessity of storing the
instructions in issue order, not in program order. This fact enforces a
number of decisions that considerably limits the potential design space.

Figure 1. Superscalar microarchitecture that makes use of a
trace-cache to shorten the critical execution path

If stored in issue order, instructions lose their original, logical order
and they can be retrieved only on a sequential basis. However, in order
to allow the traces to be reused, the start address of each trace needs to
correspond to a physical address in the memory space. So, with each
change of trace, the processor must come back to an in-order execution
status, leading to some breaks in the potential parallelism. As
described later in the paper, we have not included complex or
sophisticated branch prediction mechanisms that are typically used in
trace-cache based microarchitectures. Such complex branch prediction
hardware is very likely to offset any power savings that we achieve via
dynamic work reuse.

At each trace end, a trace look-up step must be performed, leading
to some more performance penalty. Because of the overhead associated
with each trace change, the traces have to be as long as possible.
However, as they get longer, the number of traces that can be
accommodated in the cache decreases. This leads to a decrease of the
hit rate at trace look-up, so we end up with a higher utilization of the
front-end pipeline. In order to address this problem, we allowed the
maximum size of the traces to be dynamically modified. The size is
proportional to the number of mispredicts, in order to have longer
traces whenever the program locality is very good.

The simultaneous presence of traces with different lengths (some of
them very long) in the trace-cache prevented us from using the
standard model [4] or the very efficient block based trace-cache
structure [2]. So, we decided to go for a solution that resembles the
Intel implementation in the new Pentium 4 microarchitecture [13][15].
This solution is presented in Figure 2.

The trace-cache structure consists of a tag array and a corresponding
data array. The tag array is a highly associative cache, addressed using
the program counter. It is used for trace look-up and it should be as
fast as possible. The SET_ID value obtained from the tag array points
to the set in the data array that contains the beginning of the trace we
are looking for. The data array is an N-way set associative cache (in
Figure 2, N=4). A comparison with the TRACE_ID is performed for
each of the N blocks in the set to identify the starting block of the right
trace. Each block generally contains more than one instruction –
essentially the number of instructions that could be issued in parallel in
the trace segment build phase. The next chunk of instructions is
located in one of the blocks of the following set, and so on (see Figure
2). Knowing beforehand which is the next set, we avoid the trace look-
up penalty at the subsequent reads. A special end-of-trace marker
identifies the end of the trace.

Figure 2. The trace-cache architecture

A LRU approach is used for freeing up blocks in each set from the data
array when a new trace-building phase is initiated. To terminate the
creation of a trace, the trace-building algorithm takes into account
several criteria like: trace length, occurring mispredicts, jumps, and the
ability of finding another existing trace starting at the current point.

To avoid the latency of searching in the highly associative tag array,
a separate, small lookup table (FTLT – Fast Trace Lookup Table) is
used to cache the most recently used trace tags. The trace is abandoned
on trace-end (detected when attempting to issue more instructions to
the execution engine) or on a branch mispredict (detected by the Retire
Stage). When the trace must be replaced, a lookup is performed in the
FTLT for a new trace. If a miss in the FTLT occurs, the full-search is
performed in the tag array, and the front-end is restarted if a miss
occurs in the trace-cache. On a hit in the trace-cache, instructions will
be issued on the alternative execution path directly from the trace-
cache, but incurring the trace look-up penalty.

We should point out that a trace is created following a number of
branch predictions. If these predictions prove to be wrong, the trace
must be declared invalid and another one created. The policy we
implemented here is to declare a trace as invalid when we encounter
two mispredicts in a row while executing the trace.

In this implementation, we use a fairly large Data Array (100k) for
implementing the trace-cache. However, the access pattern for this
structure is highly predictable (most of the cycles we just increment the
row address we used for the previous access). This behavior allows us
to use sub-banking [14] for implementing this structure and turn off
the banks that are not being used in each cycle. All the banks have to
be validated at the same time only when we start a new trace (after
accessing the Tags Array).

4.2 Register File

Placing the above-described trace-cache deep in the pipeline, after the
Issue stage, allows us to reuse the work done by all the units belonging
to the front-end stages. This implies also that we do not perform
register renaming on the instructions issued directly from the trace-
cache. However, this operating mode assumes that the virtual-to-
architected register mapping is the same at the beginning of each trace.
Some architectural changes need to be made to the register pool and
control unit to ensure that this can be implemented. In order to handle
this task, we designed a special register pool structure. The logic
structure we propose implementing each register is presented in Figure
3.

As the one proposed in [3], our structure employs a number of
physical registers for renaming every logical register of the
microarchitecture. In our proposed microarchitecture, each of the
architected registers is organized as a circular buffer of physical
registers, as opposed to a stack organization proposed in [3].

Using this type of structure, each subsequent write to an architected
register goes to a different physical register. This approach solves the
false data dependencies and is used for implementing register
renaming. The number of in-flight instructions that can have the same
logical destination is N (the number of physical registers in the circular
buffer).

Figure 3. Architected register structure

Each read or write to this structure is associative, the physical register
used being validated by a comparison between its position (POS) bits
and the bits presented by the instruction. Having different physical
destinations, instructions can write the result as soon as it is available,
setting the V (valid) bit to signal an available value. However, the S
(speculated) bit will be reset only after the instruction is retired. A
physical register cannot be assigned as a destination for a new
instruction (in the Register Renaming stage) if the associated S bit is
set. If this happens, we don’t have enough physical registers to
perform renaming at this moment and the rename stage will stall.

The N position values (POS 0 – POS N-1) are initialized with
consecutive values – 0,1,2 … N-1 and represent the logical order of the
registers in the circular queue. IDX is a pointer in this queue
representing the most recent register used for writing.

4.3 Register Renaming

When the instruction reaches the renaming stage, some physical
registers must be assigned to its source and destination registers. For
the destination register, the IDX value is incremented and assigned to
the instruction. The S (speculated) bit is checked for the corresponding
physical register and, if it is found set, the pipeline is stalled.
Otherwise, S is set and V (valid) is deleted to mark the value as not yet
available. V will be set when the result is written back to the register

and S will be deleted later, when the instruction will be retired. For a
source register, the IDX value is read and assigned to the instruction.

Each trace generation is made with IDX starting from 0 (the correct
value for the register is stored in the location marked by POS = 0). If
this condition is respected, all the subsequent executions of a trace can
be done without further renaming the registers. The caveat is that this
requires some extra work to be done when a trace execution ends. In
fact, all the POS values need to be recomputed for the circular buffer to
start each time with the latest value for that architected register. This
can be done subtracting from POS the IDX value, but it will require a
complex circuit for each physical register. However, the same effect
can be obtained performing a XOR between IDX and POS since the
physical order of the registers is not important and does not have to
match with the logical one. The important aspect – all registers to have
different tags, between 0 and N-1 – is preserved and the register
holding the last value becomes Register 0.

5. POWER – PERFORMANCE TRADE-OFF
ANALYSIS

In this paper, we propose dynamic work reuse as a viable solution for
power efficient microarchitecture. Using techniques like guarded
evaluation and clock gating for shutting down the front-end (while
issuing instructions from the trace-cache) should allow us to achieve
significant reduction in the power consumption of the overall
microarchitecture.

From a performance point of view, this microarchitecture has both
strong points as well as weak points. From the conceptual structure,
presented in Figure 1, it is obvious that the alternative execution path is
shorter than the normal pipeline. This aspect considerably reduces the
mispredict penalty when the next trace is found in the trace-cache, and
is a definite advantage when executing programs with a bad branch
predictability. This advantage should increase, as the current trend is
to use deeper pipelines. However, although placing the trace-cache
deep in the pipeline creates a shorter critical execution path, there are
some caveats associated to it. First, each time instructions are issued
from the trace-cache, we cannot make use of the normal branch
predictor from the Fetch stage, and the branch is speculated based on
the trace. Given this, during execution from the trace-cache, the branch
prediction algorithm is equivalent to a 1-bit predictor1, which will
predict branches the same way as during the trace-build phase.
Because we use longer traces, with a big number of potential branch
instructions, a next-trace predictor would be very complex and would
require a lot of power. However, since we cannot afford a very big
trace-cache (because of the power concerns), creating more traces from
the same program address for multiple possible branch predictions is
not an option here. In addition, complex multiple branch prediction
hardware is likely to offset any power savings obtained by work reuse.

Furthermore, when traces are created (or executed from the trace-
cache), the parallelism obtained by out-of-order execution is exploited
only within the bounds of a trace. If the length of the trace is small
(e.g. not well-behaved programs), this fact can reduce the potential
parallelism that otherwise could have been exploited by the normal
microarchitecture. However, our target here is to obtain a structure
with a better power efficiency and this should be possible even if we
allow a small drop in performance. There are a number of parameters
that can be varied in order to tune the microarchitecture for better
performance or better power efficiency.

1 Actually, it is more complex, almost like a 2-bit predictor due to the

interference of the trace removal algorithm, detailed in Section 3.1.

6. EXPERIMENTAL SETUP

To validate our approach, we implemented two models based on the
Wattch simulator [12]. We have modified the SimpleScalar
microarchitecture in order to support our register file and trace cache
models, a larger number of stages and a buffer based model for inter-
stage communication. We implemented both the modified
microarchitecture (with the trace-cache placed between the Issue and
Execute stages) and a corresponding normal superscalar pipeline as a
base for comparison. Both structures were based on the same pipeline
and did not use some advanced features, like fetching from multiple
cache blocks, etc. The main purpose of modeling those
microarchitectures was to compare their behavior in terms of
performance and power requirements.

We have considered 2 versions of the pipeline – one shorter, with 8
stages and another one, with 14 stages. The 8-stage pipeline was
chosen because it is a common depth used in the today’s processors.
Its conceptual structure is:

Figure 4. Short pipeline microarchitecture

However, the current trend for achieving higher clock rates dictates an
increase in the pipeline depth. For this purpose, we have also
considered a 14-stage pipeline:

Figure 5. Long pipeline microarchitecture

For all tests we have used 4-ways pipelines, with the default
configuration provided by the SimpleScalar toolset: 16k L1 I-Cache,
16k L1 D-Cache, 256k unified L2 cache, no penalty for accessing the
L1 cache, 6 cycles for accessing the L2 Cache, 32 cycles for going to
memory. The trace-cache is configured with 100k memory for the data
array and 16k for the tag array. For looking up a trace in the tag array
we have considered a penalty of 1 cycle. In both cases, we have
accounted for the difference in global clock power due to an increased
number of pipeline registers that have to be clocked. We have used the
SPECint-95 and SPECfp-95 benchmarks to validate our results.

7. EXPERIMENTAL RESULTS

For an 8-stage pipeline, our microarchitecture performs up to 10%
faster than the basic one for benchmarks like GCC, PERL or TURB3D
and up to 5% slower for SWIM. All the values presented below are
normalized with respect to the normal microarchitecture.

Overall, the proposed structure is 1.2% faster than the normal one.
These results may not show the same trend as earlier results on using
trace-cache [1]. The microarchitecture was tuned so as to yield
approximately the same performance as the basic one, but requiring
less power.

0.6
0.7
0.8
0.9

1
1.1
1.2

Normalized IPC

GCC

GO

JPEG

COMPRESS

PERL

FPPPP

SWIM

APPLU

MGRID

TURB3D

Figure 6. IPC variation for the 8-stage pipelines

(100k trace cache)

To report the power consumption values, we have considered the
energy required for committing one instruction (EPI). Since we assume
clock gating is used for idle modules in the pipeline, we use the same
technique implemented in Wattch for measuring the power
consumption – by adding to the power required by the active modules
a fraction of the power required by those unused. We report the results
for 10%, 5% and 0% power overhead for unused modules. However,
since most of the time instructions are executed from the trace-cache,
completely shutting off the front-end could be a viable alternative, and
thus the 0% overhead becomes realistic.

The power consumption is reduced for our microarchitecture by as
much as 28% (48% for 0% overhead) for MGRID or TURB3D.
Overall, the energy per committed instruction was reduced by 21% (for
the 5% overhead model) and 36% if 0% overhead was considered. In
Figure 7, all these values are normalized with respect to the power
requirements of the original pipeline organization.

Figure 7. Normalized EPI for an 8-stage pipeline
(100k trace-cache)

0.6

0.7

0.8

0.9

1

1.1

1.2

Normalized IPC

GCC

GO

JPEG

COMPRESS

PERL

FPPPP

SWIM

APPLU

MGRID

TURB3D

Figure 8. IPC variation for the 14-stage pipelines

(100k trace-cache)

For the longer pipeline (14 stages), the IPC for both structures is
smaller, due to the increased mispredict penalty. Here, the proposed
microarchitecture is about 0.3% slower than the normal superscalar
one. However, for the case of normalized performance, the trend is
similar to the 8-stage case.

From the power consumption point of view, we find a similar
situation. For the 0% overhead model, the gain varies between 23% for
FPPPP and as much as 52% for TURB3D. Overall, the power
consumption per committed instruction is reduced by 20% for the 5%
overhead model or by as much as 40% if the more aggressive, 0%
overhead assumption is considered.

Figure 9. Normalized EPI for a 14-stage pipeline
(100k trace-cache)

Increasing the trace-cache size to 200k increases its usage and thus its
efficiency. We run a test with this new configuration and the results
were significantly better. The alternative execution path was used 76%
of the total execution time and the IPC increased to 8% over the
normal microarchitecture.

Simulating again all the benchmarks for the new trace-cache (on the
8-stage pipeline), the usage of the alternative execution path was better
for some applications, but other cannot benefit from the larger cache.

An interesting case in all these tests is FPPP. We have performed
several tests in different configuration and discovered that this
benchmark is composed from one big basic block. If we double the
trace-cache size (up to 200k), the alternative path usage is much better.
In the case of FPPP, if the 100k size trace-cache is used as in the rest
of the test cases, the processor issues instructions from the trace-cache
only 40% of the time (compared to up to 99% of the time for
TURB3D).

Figure 10. Alternative execution path usage
(100k trace-cache)

In such situations, the trace-cache may become inefficient since it is
not capable to accommodate the entire basic block. As seen in Figure
10, for most of the benchmarks instructions are issued from the trace-
cache more than 60% of the time, whereas in case of FPPP the trace-
cache usage is only 40%.

For FPPP, the energy per instruction computed with respect to the
normal microarchitecture dropped to 90.9% (10% overhead), 80.5%
(5% overhead) and 61.3 (0% overhead).

0

20

40

60

80

100

120

GCC
GO

JP
EG

COM
PRESS

PERL

FPPPP

SW
IM

APPLU

M
GRID

TURB3D

U
sa

ge
 [%

]

100k trace-cache 200k trace-cache

0

0.2

0.4

0.6

0.8

1

1.2

GCC
GO

JP
EG

COM
PRESS

PERL

FPPPP

SW
IM

APPLU

M
GRID

TURB3D

10% overhead 5% overhead 0% overhead

0

20

40

60

80

100

120

GCC
GO

JP
EG

COM
PRESS

PERL

FPPPP

SW
IM

APPLU

M
GRID

TURB3D

U
sa

ge
 [%

]

8 stages 14 stages

Figure 11. Comparative view of the alternative
 execution path

Figure 12. Normalized EPI for an 8-stage pipeline
(200k trace-cache)

Overall, we obtained a slight increase in IPC (1.5% over the smaller
trace-cache version) but a slight decrease in energy efficiency (1%).

8. CONCLUSION AND FUTURE WORK

In this paper, we propose a new microarchitecture that yields
comparable performance to the usual superscalar microarchitecture
while using significantly less power. Our experiments show that,
depending on the overhead model considered for the unused modules,
by using this approach we can achieve between 20% and 40%
reduction in power consumption.

Experimentally, we noticed that there are a few ways we can tune
the design for power or performance. For example, by further
decreasing the length of the traces, the number of instructions executed
per cycle (IPC) decrease by about 3-5% while the energy required per
instruction (EPI) decreases also by as much as 10% below the values
we have presented. Furthermore, if we don’t update the branch history
buffer while executing from the trace-cache, we have a drop in IPC of
about 2% and a decrease in EPI of 5%. In the experiments we
presented here, we tuned our test microarchitecture for a performance
within 3% from the equivalent superscalar architecture.

A drawback of our trace-cache organization is the relative
inefficiency in the space usage. As we want to be able to store and

retrieve the instructions as fast as possible, we are storing them in the
trace cache exactly as they come out from the issue window. In this
respect, on a 4-way processor we will try to store as much as 4
instructions in every entry of the data array. If during a clock cycle the
processor is not able to find and issue 4 independent instructions, this
will result in some empty slots in the trace. So, the overall usage of the
trace cache (in terms of memory space) could be below 100%. In a
future implementation, we will try to come up with a way to compress
the instructions for a better efficiency in the data array usage.

9. ACKNOWLEDGEMENTS

The authors would like to thank John Shen of Carnegie Mellon
University/Intel Corp. for many stimulating discussions, as well as for
offering many insights into the TurboScalar microarchitecture.

10. REFERENCES
[1] B. Black and J. P. Shen – “TurboScalar: A High Frequency, High IPC
Microarchitecture“ - International Symposium on Computer Architecture,
June 2000
[2] B. Black, B. Rychlik, J. P. Shen – “The Block-based Trace Cache” -
International Symposium on Computer Architecture, May 1999
[3] B. Black, J. P. Shen - ”Scalable Register Renaming via the Quack
Register File” – Technical Report CMuART-2000-01
[4] E. Rotenberg, S. Bennett, J.E.Smith – “A trace Cache
Microarchitecture and Evaluation” - IEEE Trans. on Computers, February
1999
[5] V. Tiwari, S. Malik, P. Ashar – “Guarded Evaluation: Pushing Power
Management to Logic Synthesis / Design” - International Symposium on
Low Power Design, April 1995
[6] V. Tiwari, D. Sigh, S Rajgopal – “Reducing Power in High-
performance Microprocessors” – Design Automation Conference, June
1998
[7] T. D. Burd, R. W. Brodersen – “Energy Efficient CMOS
Microprocessor Design” - 28th Hawaii International Conference on System
Sciences, Jan. 1995
[8] Kin, J.; Munish Gupta; Mangione-Smith, W.H - “The filter cache: an
energy efficient memory structure” - IEEE Micro, December 1997
[9] N. Bellas, I Hajj - Architectural and Compiler Techniques for Energy
Reduction in High Performance Processors” - International Symposium on
Low Power Electronics Design, August 1998
[10] F. Theeuwen, E. Seelen – “Power Reduction Through Clock Gating by
Symbolic Manipulation” - Workshop on Logic and Architecture Synthesis,
1996
[11] T. Austin, “The SimpleScalar Architectural Research Tool Set,
Version 2.0” - Computer Sciences Technical Report, June 1997
[12] D. Brooks, V. Tiwari, M. Martonosi – “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations” - International
Symposium on Computer Architecture, June 2000
[13] INTEL Corp – US Patent US6170038 “Trace based instruction
caching”
[14] Ghose, K.; Kamble, M.B. - “Reducing power in superscalar
processor caches using subbanking, multiple line buffers and bit-line
segmentation” - International Symposium on Low Power Electronics and
Design, July 1999.
[15] SPEC Benchmarks - www.spec.com
[16] Pentium 4 Microarchitecture – P. De Mone –
http://www.realworldtech.com

0

20

40

60

80

100

120

GCC
GO

JP
EG

COM
PRESS

PERL

FPPPP

SW
IM

APPLU

M
GRID

TURB3D

U
sa

ge
 [%

]

100k trace-cache 200k trace-cache

0
0.2
0.4
0.6
0.8

1
1.2

GCC
GO

JP
EG

COM
PRESS

PERL

FPPPP

SW
IM

APPLU

M
GRID

TURB3D

10% overhead 5% overhead ideal

