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Abstract - This paper proposes a novel technique for power-
performance trade-off based on a profile-driven code execution
methodology. Specifically, we show that there is an optimal level of
parallelism for energy consumption and propose a compiler-assisted
technique for code annotation that can be used at run-time to adaptively
trade-off power and performance. As shown by experimental results, our
approach is up to 23% better than clock throttling and is as efficient as
voltage scaling (up to 10% better in some cases). The technique proposed
in this paper can be used by an ACPI-compliant power manager for
prolonging battery life or as a passive cooling feature for thermal
management.
1 Introduction
Power dissipation has become a critical design concern in recent years,
driven by the increased levels of complexity and emergence of mobile
applications. While it is generally agreed that tools for power estimation
and optimization do exist for hardware specifications at different levels
(circuit, gate, register-transfer or behavioral), more work is needed in the
area of power analysis or optimization at microarchitecture, architecture
or system level [1]. Having tools that are able to quantify the effect of
different performance or power optimization schemes for a piece of code
running on a given processor is of extreme importance for computer
architects and compiler engineers who can characterize different
architecture styles not only in terms of their performance, but also in
terms of the corresponding energy efficiency.

In the area of power modeling for embedded software, [2] proposes a
per-instruction base power model that can be used to find an aggregate
power estimate for a sequence of instructions. In [3], the case of DSP
applications is addressed. There, the inter-instruction effects turn out to
be significant, thus making possible to develop instruction scheduling
techniques that target power minimization. The authors of [4] present an
architectural enhancement to reduce the extra work or energy due to
mispredicted branches, without significant loss in performance. In [5] a
technique for reducing the average power consumption for the pipeline
structure is presented. Other approaches target techniques for energy
efficient memory systems [6,7]. From a different perspective, the aspect
of thermal management has been addressed in [8] where a hardware-
driven technique for instruction cache throttling has been proposed. 

In this paper we address the problem of energy optimization in modern
processors by using compiler-assisted code annotation for variable fetch
or execution rate. We improve the state-of-the-art by proposing a novel
technique for fine-grain energy characterization based on a profile-driven
code execution methodology. Specifically, we show analytically and
experimentally that there exists an optimal level of parallelism for energy
consumption (which may not be necessarily the same as the one for
performance) and propose a compiler-assisted technique for code
annotation that adaptively selects at run-time the optimal number of
instructions to be fetched or executed in parallel as far as energy is
concerned. Energy, as opposed to performance, is a much more data-
dependent parameter. As it will be shown subsequently, it is indeed
possible to use less than the maximum number of functional units
available, and achieve less energy consumption. We study this effect for
the execution stage, as well as for the entire processor. For the first time
to our knowledge, we show that there exists an inherent trade-off
between performance and energy consumption, due to the data-
dependency effect, but, most importantly, due to speculative execution
and the inherent level of parallelism exhibited by common applications.
To validate our results, we use a microarchitecture-level power simulator
developed in industry [9].  As shown subsequently, significant savings
can be obtained in  both energy and power consumption, at the expense
of some decrease in performance. 

The techniques described in this paper can be used as a means for
prolonging the battery life, but most importantly, for thermal
management [10] by achieving significant average power reductions in

the execution stage or throughout the chip. Such an approach could be
used in the context of power management schemes using the Advanced
Configuration and Power Interface (ACPI). Thermal management in
ACPI is achieved via average power reduction through “clock throttling”
in the case of passive cooling, or by turning on the on-chip fan in the case
of active cooling. However, both techniques are likely to actually
decrease the battery life by consuming more energy, although the average
power per cycle is decreased. Our proposed technique is up to 20% more
efficient than the classic clock throttling technique and also reduces the
total energy consumed, thus prolonging battery life as a by-product. Also,
as opposed to the instruction cache throttling technique presented in [8],
our characterization is software-driven and provides a fine grain energy
characterization on a per basic block, per process basis.

The paper is organized as follows: Section 2 presents the rationale
behind profile-driven code execution. In Section 3, we present our
proposed methodology for code-annotation for low energy code
execution. Section 4 shows our experimental results on a subset of
SpecInt95 benchmarks. We conclude in Section 5 with some final
remarks.
2 Profile-Driven Instruction Execution for Energy Optimization
In superscalar processors, the hardware may execute from one to eight
instructions per cycle. Usually, these instructions must be independent
and satisfy some constraints. If a certain instruction is dependent or
doesn’t meet the constraints, only the instructions preceding it in the
sequence are issued, hence the variability in issue rate. If, in addition,
out-of-order execution of instructions is permitted, any of the succeeding
instructions may be executed if there are no data dependencies present.
Let us consider the simple case of an in-order execution of a
computation-intensive piece of code. We show subsequently how the
total energy per operation is decreased by trading-off performance for
power. 
Example 1. Consider the computation of the product of two input
streams1 and the availability of up to four 16-bit multipliers able to
perform the multiplication. We consider four possible scenarios
corresponding to using one, two, three or all of the functional units. The
four scenarios, labeled with the corresponding total energy per operation,
are depicted in Fig.1. (It is assumed that the input stream xi includes both
operands.) As it can be seen, the energy consumption per operation varies
significantly among the four scenarios. This is mainly due to the very
different profile of the data that is sent to each of the available functional
units. Also, when comparing the performance, we can see that using four
multipliers gives the largest performance (4 computations per clock
cycle), but using two multipliers reduces the total energy by more than
32% and average power by 65%, when compared to the worst case. 

Fig.1 Four ways of computing a series of multiplications
This type of behavior is actually found very frequently in practice,
especially in computation intensive applications. These effects become
even more important in the case of DSP processors where most of the
power consumption is due to the datapath performing additions or
multiplications. Another scenario where this effect may become
prevalent is the one of a mix of load/store and arithmetic instructions that
alternatively use the same functional units for computing effective
addresses and output values. Typically, memory addresses look much
more “different” than the operands of arithmetic instructions and thus, a
behavior similar to the one shown above will arise.

However, in superscalar processors, the contribution of the datapath
(i.e., execution stage) to the total energy consumption may not be
impressive. More precisely, the fetch and issue stages which actually
schedule and dispatch instructions to the execution stage have a
significant contribution to the total energy consumption. A typical
pipeline structure for an out-of-order superscalar processor is shown in
Fig.2. The fetch stage can bring a fixed number of instructions from the I-
cache, while in the dispatch stage, the instruction decoding and register

1. We have used a real data stream from a DSP application.
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renaming is performed. The scheduler tracks memory and register
dependencies and issues as many instructions as possible to the execution
stage. Not surprisingly, whether or not the execution stage does any
useful computation, the fetch, dispatch and schedule stages are always
active for the purpose of increasing performance via fetching multiple
instructions, register renaming, resolving dependencies and doing out-of-
order issue to the execution stage. 

Fig.2 The pipeline of a typical superscalar processor [12]
In what follows, we will present the analytic model which allows for
reducing total energy of the execution stage in datapath dominated
architectures (VLIW or application specific architectures). In addition,
we will discuss the motivation for varying the fetch and execution rates
in the case of control dominated architectures (superscalar architectures,
with out-of-order and speculative execution).
2.1 Datapath dominated architectures
This section presents theoretical evidence in support of the inherent
energy-performance trade-off shown in Example 1. It mainly targets
architectures that are datapath dominated (such as VLIW or DSP),
although the results are valid for superscalar processors as well.

Power consumption is a function of the switched capacitance of a
module and there is a close relationship between the power consumption
of a functional unit and the number of transitions on its primary inputs.
Thus, a simple and effective way to characterize the effect of an input
sequence on power consumption is via its average Hamming distance.
The following result provides a characterization of the average Hamming
distance between vectors that are separated by an arbitrary (but fixed)
number of time steps. The input stream is assumed to be modelled by a
lag-one Markov chain. (All proofs can be found in [11,13].)
Proposition 1. If an input sequence {xn} n ≥ 0 is modeled by a lag-one
Markov chain,  is the probability of occurrence of vector x and

 is the conditional probability of making a transition from y to x in
exactly k steps, then the average Hamming k-distance denoted by

 converges when  and the limit is

. 

dk is the average Hamming distance between input vectors that are
exactly k steps apart. Thus, dk is a measure of the average switching
activity when exactly k units are used to process the input sequence in
parallel. Although the above result is valid only for finite-order Markov
chains, we should point out that in practice, data traces or memory
references do exhibit a finite time interval in which dependencies are
present (due to spatial and temporal locality).

This result can be extended to any finite-order Markov chain and to
other measures that may be relevant to the actual power dissipation, such
as signal probabilities or number of ones in the input sequence. In
addition, since most power macromodels are based on switching activity
and other input statistics that satisfy similar properties as the ones in
Proposition 1, the average energy per operation will show a similar trend.
More precisely, the following result holds for the energy per operation of
a given type of functional unit:
Proposition 2. If a data trace {xn} n ≥ 0 is modeled by a lag-one Markov
chain, and  is the energy consumed per operation when k
identical functional units are available, then 

where Em is the energy macromodel and D is as in Proposition 1.
The energy cost per operation for k instructions issued in parallel is

proportional to dk and from the above result, it can be seen that no gain
can be achieved by increasing the parallelism over some limit. Moreover,
the optimal solution (that is, the value of k for which dk is minimized) is
found for small values of k. Typically, dk has the behavior depicted in
Fig.3, with a rapid convergence to the limit after k reaches a value of five
or six. The minimum energy can be obtained for any value of k, including
1.

In practice, since the level of parallelism in most user programs is
limited, to find the value of k for which the total energy per operation (or
dk) is minimized, we only need to consider a finite number of
configurations. We point out that in the context of out-of-order or
speculative execution, the actual data stream looks different than in the

case of in-order execution, but the behavior is similar to the one in Fig.3.

2.2 Control dominated architectures
The results presented in Section 2.1 are valid for the characterization of
datapath dominated architectures, without any data dependencies. In
modern processors, extensive use of out-of-order execution makse the
contribution of datapath to the total energy cost less important. In
addition, modern processors use a fair amount of branch prediction and
speculation. However, this does not come without a price in the amount
of energy consumed, especially when a branch is mispredicted. Thus, as
the execution width is increased from 1 to 2, 3, or more, the amount of
unnecessary energy consumed due to mispredictions is likely to increase. 

Another factor that is important in how the resources of the processors
are used is the instruction-level parallelism (ILP) exhibited by the user
code. Depending on the inherent level of parallelism exhibited by
common applications, the overhead due to the dispatch and schedule
stages will increase with increasing fetch and issue rates, although the
same amount of parallelism is uncovered. For a piece of code that is less
parallelizable, fetching the instructions slower will decrease the extra
power consumed, as well as the energy cost due to mispredictions. On the
other hand, if more instructions than necessary  are fecthed, the fetch
queue will fill up quickly and instructions will wait there for a long time
until they are sent to the next stage of the pipeline. To illustrate this
behavior, we show in Fig.4 the distribution of ILP for optimal E*DC

(E=energy, D=cycles). While ILP has to be 4 for achieveing high
performance (right side of the chart),  if the target is low energy (or other
variants), the ILP is almost equally distributed among all values 1-4 (left
side of the chart).

All these issues make it difficult to develop an analytic model that is
able to unravel all power-performance trade-offs present in common
applications. To overcome these limitations, we need to find mechanisms
able to finely tune the fetch, issue and execution rates according to the
actual program characteristics. For this purpose, we propose a profile-
driven methodology, as described in the following section. 
3 Profile-Driven Code-Annotation for Low-Energy Code Execu-
tion
Based on the results presented in Section 2, a simple profile-driven
methodology can be used for finding the optimal number of instructions
to be executed in parallel for a given basic block (a basic block is a
straight line code sequence with no transfers in or out, except at the
beginning or the end). What we target is a fine grain characterization of
the basic blocks encountered in the typical execution of a program as far
as the optimal number of instructions to be executed in parallel is
concerned. Typical basic blocks that will benefit from such a
methodology are loops, unrolled to uncover more parallelism. 

To capture both the data dependency effect and, more importantly, the
effect of out-of-order and speculative execution, we propose a profile-
driven methodology to find the optimal number of instructions to be
executed in parallel for each basic block. We first simulate the input
program for a typical input stream K times, varying the fetch or execution
rate between 1 and K (the maximum available rate for the architecture
under consideration). Then, after collecting the energy values for each
basic block, the value of k which gives the minimum value of the energy
consumption for the entire system is used to annotate all instructions in
the basic block under consideration. This assumes that the instruction
format allows for recording this information and that the
microarchitecture of the processor is slightly modified to support variable
fetch or execution rates. 
4 Experimental Results
We have implemented the methodology described in Section 3 by using
the sim-outorder simulator from the SimpleScalar suite [12]. Its
instruction format allows for code annotation with the rate to be used at
run-time for fetch or execution. To validate our proposed techniques,
each basic block is annotated with the level of parallelism which gives
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Table 2: Fixed and variable fetch rate for SpecInt’95 benchmarks

Benchmark
Fetch rate = 1 Fetch rate = 2 Fetch rate = 3 Adaptive

P E C P E C P E C P E CPCT EVS

compress950.63 0.88 1.40 0.87 0.96 1.10 0.98 0.99 1.01 0.65 0.84 1.28 0.78 0.78
li 0.54 0.95 1.76 0.83 0.93 1.12 0.96 0.97 1.01 0.80 0.90 1.12 0.89 0.91

ijpeg 0.41 1.11 2.68 0.69 1.03 1.49 0.96 0.99 1.04 0.99 0.99 1.00 1.00 1.00
m88ksim 0.54 0.97 1.80 0.89 0.94 1.05 0.98 0.96 0.98 0.86 0.89 1.03 0.97 0.98
Average 0.53 0.98 1.91 0.82 0.96 1.19 0.97 0.98 1.010.85 0.921.070.93 0.92

the minimum energy consumption. We note that other criteria can be used
for optimization, such as energy delay product, or energy optimization
with performance constraints, etc. We have implemented the meta-block
concept in which each basic block is assigned the same execution or fetch
rate as its neighbors, when they execute in sequence most of the time
[11,13]. To validate the results, the annotated code is then run through a
modified version of sim-outorder which allows for dynamic selection of
the execution or fetch width according to the information stored in the
annote field. To this end, we performed two sets of experiments. 

A. Datapath dominated architectures: adaptive execution rate for
reducing the energy consumption of the execution stage. For this
purpose, we have augmented the sim-outorder simulator with
information about the power consumption of the datapath only. The
datapath modules are pre-characterized with power macromodels that are
instantiated with actual profile data.

We report in Table 1 our results for some of the SpecInt95
benchmarks. In columns 2-10 we present the effect of executing less than
4 instructions each clock cycle. All values are normalized with respect to
the base case of 4 instructions executed every cycle. As we can see,
decreasing the level of parallelism decreases performance (C) in all
cases, compared to the base case. On the other hand, total energy (E)
increases steadily with the level of parallelism for compress95, while for
the other three benchmarks, the worst energy case is obtained either for 3
(li and m88ksim) or 2 (ijpeg) instructions executed every cycle. In
addition, the average power (P) varies a lot among the 4 scenarios and it
can be about 68% less (for ijpeg) in the case of one instruction executed
per cycle when compared to the base case.

In columns 11-20 we present the effect of adaptively selecting the
optimal execution rate for each basic block. In the constrained case, we
selected the number of instructions to be executed in parallel which
minimizes the total energy per  basic block, but doesn’t increase the
number of cycles by more than twice. For comparison, all results are
normalized with respect to the base case of up to 4 instructions executed
each cycle. We also report the normalized values for average power
values obtained using clock throttling (PCT) and total energy when using
voltage scaling (EVS), both producing the same performance penalty as
our adaptive execution rate technique. In the unconstrained case we get
an energy savings 19% on average. In addition, an average power savings
of 44% can be obtained with about 35% decrease in performance2, while
the improvement over clock throttling can reach 23% (for ijpeg) or
almost 19% on average. Also, our technique performs better
(compress95), or about the same (li, m88ksim) when compared to voltage
scaling. In the constrained case, the total energy savings is about 13% on
average, while the power savings is 33% on average, at the expense of
25% decrease in performance. The variable execution rate technique
performs on average about 12% better than clock throttling and is about
as efficient as voltage scaling. Our technique, however, does not require
additional circuitry like voltage scaling does (DC-DC converters, level
converters or variable clock frequency).  

We have also studied the effect of changing the input files used for
running each of the benchmarks. Our analysis [13] shows that the level of
parallelism needed to reduce the total energy is not necessarily related to
the actual data values fed to the execution stage and thus the annotation
process is robust.

B. Control dominated architectures: adaptive fetch rate for reducing
the energy consumption of the whole chip. To validate the results, we
have used the same experimental setup as in A. However, in this case we
have used an industry developed simulator [9] based on SimpleScalar
which uses real power density values for each module of the processor
[14]. The power model used is activity based and assumes a constant
energy cost per module whenever that module is in use, and a non-zero
(but much smaller) cost whenever is idle. Each basic block is
characterized in terms of total energy for fetch rates of 1-4 and is
annotated with the rate giving the minimum energy consumption. We
report in Table 2 our results for full chip normalized values of average
power, energy and number of cycles (P, E, C). Columns 2-10 present the
case of fixed fetch rateand all values are normalized with respect to the
base case (4 instructions fetched every cycle). In this case, the total

energy, as well as the number of cycles vary significantly from one
application to another.

In contrast, in columns 11-15 we report the results for adaptive fetch
rate, on a per basic-block basis. As we can see, the total energy cost is
reduced by up to 16% for compress95 or 10% in the case of li . In the case
of ijpeg, the savings are not impressive and this is mainly due to its
inherent increased level of parallelism compared to the other
benchmarks. We also report the power and energy values obtained when
using clock throttling (PCT) and voltage scaling (EVS), respectively. As it
can be seen, our adaptive approach can be up to 16% better than clock
throttling and up to 10% better than voltage scaling. The average power
consumption values are reduced by 15% on average, with a performance
penalty of 6%. We note that up to 10-15% reduction in the average power
and energy costs can be expected if a data dependent model is used.

To conclude, our approach can be efficiently used for trading-off
performance for a decrease in both total energy and average power
consumption. While the first will affect the battery life, the second can be
used as an efficient means to reduce the operating temperature in a
system equipped with a smart thermal manager. The annotated code can
be used whenever the operating temperature increases over a threshold
limit as a passive cooling technique, similar to the “clock throttling” state
of the CPU in the ACPI specification [10]. However, for the same
performance penalty, our approach is up to 23% better than clock
throttling and can be up to 10% better than voltage scaling.
5 Conclusion
In this paper, we presented a novel technique for code optimization for
low power based on a profile-driven methodology. Specifically, we show
analytically that there is an optimal level of parallelism for energy
consumption (which may not be necessarily the same as for performance)
and we propose a compiler-assisted technique for code annotation that
adaptively selects at run-time the optimal number of instructions to be
fetched or executed in parallel as far as total energy is concerned.
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