

ABSTRACT
The problem of determining bounds for application completion times
running on generic systems comprised of single or multiple voltage-
frequency islands (VFIs) with arbitrary topologies is addressed in the
context of manufacturing-driven variability. The approach provides
an exact solution for the system-level timing yield in single clock,
single voltage (SSV) and VFI systems with an underlying tree-based
topology, and a tight upper bound for generic, non-tree based
topologies. The results show that: (a) timing yield for overall source-
to-sink completion time for generic systems can be modeled in an
exact manner for both SSV and VFI systems; and (b) multiple VFI,
latency-constrained systems can achieve 11-90% higher timing yield
than their SSV counterparts. The results are proven formally and
supported by experimental results on two embedded applications,
namely software defined radio and MPEG2 encoder.
Categories and Subject Descriptors: I.6 [Simulation and
Modeling]: Modeling methodologies; B.8.2 [Performance and
reliability]: performance analysis and design aids.
General terms: design, performance.
Keywords: variability, voltage-frequency islands.

1. INTRODUCTION
Driven by aggressive technology scaling, sub-wavelength
lithography is causing increased variability in process technology
parameters. In addition, due to increased power density and stressed
thermal envelope, system parameter variability (e.g., temperature and
voltage variation) increases as well. Such process and system
parameter variations can manifest themselves across a single die
(within-die - WID) or across several dies (die-to-die - D2D). In
addition, variations can be systematic or random, static or dynamic in
nature.

Irrespective of their source or manifestation, variability poses a
major challenge in designing complex single chip systems. Due to
increased parameter variation, reliability of logic and memory
available on chip decreases significantly. Design methodologies and
tools that take into account these variations are needed for all levels
of abstraction present in current design flows. While a significant
body of work exists for characterizing performance and power
consumption in the presence of process-driven variability at low
levels of abstraction (i.e., the interface between physical-gate levels)

[1]-[4], models of these effects need to be provided at higher levels of
abstraction as well. Current high-level design methodologies and
tools (namely targeting register transfer - RT - and system levels) still
assume a classic static timing behavior and do not include effects of
variability on performance or energy. In such cases, design
optimization tools or exploration frameworks are likely to provide
suboptimal solutions or designs that might not satisfy given
requirements in the presence of severe variability. In support of a
complete probabilistic design flow, high-level modeling of variability
effects is needed for determining design choices that are most likely to
meet initial design constraints.

The work presented in this paper is a starting point in this
direction, by enabling high-level analysis of variability on overall
system performance and its interactions or trade-offs with energy. As
a design driver for our framework we consider the case of complex
systems on chip (SoCs) comprised of a set of intellectual property
(IP) cores or processing elements. Recently, design methodologies
based on voltage-frequency islands (VFI) have been proposed [5]-[7]
as a possible solution to energy efficiency by allowing each island to
run at its own voltage (speed) such that performance constraints are
met, while energy is minimized. Techniques that allow either static or
dynamic voltage/speed assignment [5],[7] for each island have been
proposed and shown to increase energy efficiency significantly, under
given latency or rate constraints. Although implicitly assumed, the
benefits of using multiple clock or voltage islands on variability
effects have not been proven so far. This paper provides a formal
proof showing that VFI-based systems are more likely to meet timing
constraints than their single clock, single voltage (SSV) counterparts,
under most general assumptions, that is generic distributions
characterizing local VFI clock cycle times. Furthermore, this paper
describes practical ways of characterizing overall system variability
via stochastic upper bounds for the end-to-end system latency or
completion time via stochastic ordering [8]-[11] and simple
combinations of multiplication and/or convolution of individual
component distributions.

1.1. Related Work
This paper addresses the problem of determining the timing yield for
latency-constrained systems with an underlying synchronous, single
voltage (SSV) or voltage-frequency island-based (VFI)
implementation. While statistical timing and power analysis
including process-driven variability effects has become a hot area of
research recently, the problem has only been addressed at logic/gate
levels of abstraction. Statistical timing analysis has been addressed at
logic level for the case of generalized distributions [1], as well as in
the case of considering arbitrary correlations and stochastic bounds
[2]. Fast heuristics have been proposed for both statistical timing
analysis [3] as well as variability aware leakage power estimation [4].
While this is by no means an exhaustive enumeration of existing
work in this area, they all address the variability problem at logic/gate

System-Level Process-Driven Variability Analysis for
Single and Multiple Voltage-Frequency Island Systems*

Diana Marculescu, Siddharth Garg
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email: {dianam, sgarg1}@ece.cmu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

* This research was supported in part by Semiconductor Research Corpora-
tion contract no. 2005-HJ-1314.

level, and do not provide capabilities for composability of these per
core (or per module) models for whole system-level analysis of
process-driven variability impact. With design refinement starting at
higher and higher levels, there is an increased (yet, so far
unsupported) need for system-level characterization of variability
effects on both performance and power consumption.

1.2. Paper Contribution
So far, at system level, performance and power analysis largely

relies on “perfect” hardware assumption, that does not include any
uncertainties induced by the manufacturing process or dynamic
parameter variations. The problem of performance analysis for
systems with global asynchronous communication has been
addressed before [12], but neither cases considered process
variability impact on overall timing yield or latency variability.

The main contribution of the paper is to provide a first step in the
direction of analyzing statistical properties at system level in the
presence of variations. Specifically, the approach presented in this
paper:
• Provides a general approach for characterizing global system level

timing yield for complex systems, relying on generic distributions
characterizing individual modules.

• Shows that VFI-based latency-constrained systems are always
more likely to meet given timing constraints than their SSV
counterparts under the same communication latency assumption.

The results presented in this paper can be useful for system
developers that need to consider driver applications characterized by
real-time latency constraints and thus, need to determine upfront the
best design choice for meeting these constraints. Tools supporting
this decision as early in the design process as possible are desirable
and become mandatory with increased design complexity and
variability effects.

2. PRELIMINARIES AND ASSUMPTIONS
Without loss of generality, we consider the case of systems comprised
of a number of synchronous cores, IPs or processing elements (PEs)1

(homogeneous or heterogeneous). We consider both the case of fully
synchronous/single voltage (SSV) systems, as well as the case of
systems based on voltage-frequency islands (VFIs). In the latter case,
PEs can be assigned to a single VFI (in other words, cores cannot
belong to more than one VFI).

A VFI might consist of a single PE or, depending on the physical or
design considerations, may include a group of PEs. We assume that
power in the case of both SSV and VFI systems is supplied by an off-

or on-chip source and can be controlled independently for a VFI. This
may be achieved by using either on-chip voltage regulators or
multiple power grids [13]. Since each VFI is locally synchronous, it
is assumed to be clocked using a ring oscillator controlled by the
intra-island supply voltage using a digital phased lock loop [14][15].
In the case of SSV systems, communication is synchronous, point-to-
point, while in the case of VFI systems, it is implemented via a
modified version of mixed-clock FIFOs [16] that also allows for
voltage level conversion.

In both SSV and VFI cases, we assume that the allocation and
mapping of various processes or computational kernels of the
application to PEs, as well as the number and types of the
communication links and PEs have already been determined. We also
assume that the processes have already been scheduled on their
respective processing elements. For VFI systems, a bounded number
of storage cells is available in the mixed-clock FIFOs used between
two communicating PEs

To this end, the system comprised of communication cores is
modeled using a component graph. In a component graph G(V, E),
cores are modeled as communicating processes (nodes) that have
associated communication channels between them (edges). As shown
in Figure 1., in the case of SSV systems, all cores/PEs are clocked
globally (thus being characterized by correlated latencies via the
common cycle time), while in the case of VFI systems, each core/PE
is part of a single voltage-frequency island, as noted before (thus
being characterized by independently distributed latencies, as local
clocks are not correlated).

This paper addresses the impact that process variability has on
performance (and associated energy trade-offs) for applications
implemented as systems on a chip, using either a SSV or VFI
organization. Since variability affects timing yield, natural design
drivers for the considered problem are applications characterized by
real time rate and deadline constraints. So far, such applications have
only been analyzed from a worst-case timing perspective, by using
static timing assumptions, without relying on process-induced
probabilistic or statistical models for their timing behavior.

3. THEORETICAL FORMULATION
Consider the component graph in Figure 1. To this end, we will
assume the following, without loss of generality:
• The component graph G(V, E) is characterized by the set of nodes

V = {1, 2, ...,n} and edges E = {(i, j) | i precedes j}.
• Although the underlying component graph model may include

feedback paths, in the theoretical treatment we restrict ourselves to
directed acyclic graphs (DAGs). General graphs have been shown
to be reducible to acyclic component graphs by lumping strongly
connected components (SCCs) including feedback loops into
supernodes [5],[17]. As shown in [17], the processing rates of
these supernodes (and thus, their latencies in cycle counts) can be
found by averaging across all nodes in the SCC.

• The component graph includes a single source node (s) and a
single sink node (S). Graphs including multiple sinks or source
nodes can be reduced to this case by adding dummy, zero-latency
source (sink) nodes feeding into (from) the actual source (sink)
nodes.

• Each node i () in the component graph is characterized by
the number of cycles Ci it takes to process one item of data (be it,
packet - as in the case of networking applications, or macroblock/
frame - as in the case of video streaming applications, for
example). While in the most general case, Ci’s vary depending on1. Cores, IPs or PEs will be used interchangeably throughout the paper.

Figure 1. (a) A SSV-based component graph with cores (PEs)
clocked by a single global clock signal and characterized by a
global voltage level; (b) A VFI-based component graph as in [5]
with cores (PEs) characterized by local speeds/voltages.

s S1

2 3

4 5

6

ΛS = L

s S1

2 3

4 5

6

ΛS = L

s S1

2 3

4 5

6

ΛS = L

PEs (Vs, fs) PE2 (V2, f2)

PE6 (V6, f6)

s S1

2 3

4 5

6

ΛS = L

PEs (Vs, fs) PE2 (V2, f2)

PE6 (V6, f6)

s S1

2 3

4 5

6

ΛS = L

PEs (Vs, fs) PE2 (V2, f2)

PE6 (V6, f6)

(a) (b)

1 i n≤ ≤

the workload and type of data processed, we restrict ourselves to
considering Ci a constant1 characterizing per core typical or worst-
case cycle-count and not a time-varying, workload-dependent
variable. This way, we separate the effect of platform-induced
variability from the effect of workload-induced variability. We
note that Ci is application, and not architecture dependent. In other
words, it is not related to the number of physical registers/memory
elements present in each node of the component graph (in a
pipelined or non-pipelined implementation) - the effect of these is
included in the actual distribution of the cycle time for node i (Ti).

• If manufacturing process-induced variations are considered, the
latency for core i can be modeled as where cycle

time of core i (Ti) is characterized by a probability density function
(pdf) which includes effects not only from the process, but also
from the underlying architecture (via the effective number of
independent critical paths). Indeed, as shown in the FMAX model
proposed and validated by Intel [18], the cycle time of as complex
design can be characterized by a pdf that is a function of the single
gate delay and the effective number of independent critical paths.
Thus, core i latency Li is also characterized by a pdf2 , where

, and cumulative distribution function (cdf) given

by . The expectation of each

random variable Li can thus be defined as

 since Fi(t) is a

positively defined function (Fi(t) = 0 for t < 0).
• For each node i, we define its completion time Λi as the source-to-

node i latency: where is

the set of all nodes directly preceding node i (empty set if i is a
source node). Λi is characterized by distribution Φi(t) and the
completion time for sink node S is the overall graph completion
time: with distribution . For

example, in Figure 1. the completion time for the component
graphs shown is the source-to-sink latency .

• Completion times for nodes are assumed to be structurally
correlated only. In other words, only correlations due to underlying
topology are considered and thus pdf’s fi and cdf’s Fi are assumed
to be independent for all nodes i. In general, process-driven
variability inadvertently introduces spatial correlations, in addition
to existing structural correlations induced by the interconnect
network topology. However, the level of abstraction at which we
address this problem is much higher than existing work (i.e., gate-
level). At this coarser level of granularity, it is expected that
structural correlations due to system topology will be dominating,
while spatial correlations can be considered negligible for all
practical purposes.

The goal of this work is twofold:

(i)Given the system component graph and associated node
distributions, find the resulting distribution for the overall system
completion time L (F(t)), and thus the likelihood that a given
latency constrained system will satisfy a given timing constraint,
under process-driven variations.

(ii)Characterize formally and quantitatively the relation between
completion time of VFI-based systems and their SSV counterparts,
thus allowing system designers to choose one organization versus
the other early in the design process depending on their likelihood
of meeting required timing constraints.

Specifically, while existing work in statistical timing analysis has
addressed the problem of finding the timing yield for circuits (or
cores) of moderate complexity, the same problem for complex
systems comprised of interconnected IPs or cores has not been
addressed. Assuming that fi (Fi) have already been determined by a
detailed analysis applied to each core or PE, this paper provides a
framework for characterizing overall system variability, be it SSV or
VFI based, their relationship in terms of timing yield, as well as its
impact on system level performance trade-offs.

3.1. Stochastic Bounds for Completion Time
Since distributions fi might be general and may not be reducible to
well-known forms (e.g., Gaussian), to address the problem of
determining the cdf F for the end-to-end latency, we rely on the
concept of stochastic bounding which has been used before, but in the
context of statistical timing analysis at lower levels of abstraction
(i.e., gate-level) [2]. Since we assume that spatial correlations can be
neglected at this level of abstraction (as described before) we will
rely only on including the impact of structural correlations due to the
inter-core communication topology. For determining bounds on
graph completion time, we use the concept of stochastic ordering
[19] and positively associated variables [20].
Definition 1. [19] Given two random variables X and Y with
positively defined cdf’s Fx and FY, X is stochastically smaller than Y

(written as or) if 3 for every

.
Definition 2. [20] The variables of random vector

 are positively associated if for all monotone,

non-decreasing functions for which expectations exist,
 where the covariance matrix (Cov) between

random vectors X and Y is defined as

.
It has been shown [11] that stochastic ordering can be used to

characterize upper bounds for positively associated random variables.

Indeed, if variables of random vector are an

independent version of (i.e.,

 are mutually independent and , have the

same probability distribution), then , and thus X is an upper
bound for X.

Stochastic ordering is preserved across multiplication and
convolution of distributions [19]. If random variables above are path
or node latencies in a component graph, note that the product

1. Since this paper does not target computation/communication analysis or
trade-offs, the communication latency is assumed to be lumped in Ci. The
difference between SSV and VFI systems communication latency modeling
will become apparent in the sequel.
2. While the proposed framework assumes continuous distributions
throughout the paper, it can be easily extended to discrete distributions.

Li Ci Ti⋅=

fi t()

fi : R [0 ∞),→

Pr Ti t≤() Fi t() fi u() ud
∞–

t

∫= =

E Li[] tfi t() td
∞–

∞

∫ 1 F– i t()[] td
0

∞

∫= =

Λi maxj pred i()∈ Lj{ } Li+= pred i()

L ΛS= Pr L t≤() F t() ΦS t()= =

L ΛS=

3. Note that we write , even if .

X Yst≤ FX Fst Y≤ FX u() FY u()≥

FX Fst Y≤ FX u() FY u()≥

u 0≥

X X1 X2 … Xn, , ,{ }=

f g: Rn R→,

Cov f X() g X(),[] 0≥

Cov X Y,[] E X E X[]–() Y E Y[]–()T⋅[]=

X X1 X2 … Xn, , ,{ }=

X X1 X2 … Xn, , ,{ }=

X1 X2 … Xn, , ,{ } Xi Xi

X Xst≤

distribution corresponds to a parallel combination of nodes or paths
(all of them need to satisfy timing constraints), while convolution
corresponds to a series combination (their sum needs to satisfy given
timing constraints).

Existing work in determining stochastic bounds for graph
completion times [8]-[11],[21] have all relied on building new graphs
for which computing completion times is easy to perform via product
or convolution operations, such as the case of series-parallel DAGs.
These newly built graphs are characterized by completion times that
stochastically bound the initial graph completion time, but are easier
to compute since they rely only on using multiplication and
convolution of cdf’s. To determine upper or lower bound series-
parallel combinations for a given initial graph, simple node/arc
addition or removal is used. Intuitively, insertion of edges (arcs) in
the original graph increases dependencies, thus leading to an upper
bound on execution time, while deletion of arcs causes less
dependencies and smaller execution times (hence a lower bound).
Furthermore, path latencies in the new graphs are random variables
that form an independent version of the initial positively associated
latencies, and thus provide stochastic bounds for overall completion
time.

One of the deterministic algorithms that can be automated and
applied for generic component graphs is due to Shogan and relies on
duplicating nodes so as to obtain a tree graph G with paths that
stochastically upper bound completion times of the original graph G.
Since the approach is deterministic in manner, the achieved bound is
tighter than other heuristics that try to find series-parallel upper
bound graphs. The result has been proven formally in [21]:
Lemma 1. [11][21]1 Consider a component graph G(V, E). Stochastic
upper bounds for node and overall graph completion time can be
found from its associated graph G(V, E) defined as follows:
(i)If i is a source node in G(V, E), let Gi be the graph containing the

single node i. The cdf for completion time of node i in Gi is defined

as .

(ii)If i is not a source node, let Gpred(i) be the graph obtained by
considering all Gj in parallel, where j is a direct predecessor of i in
the original component graph. Thus, Gi is defined as the graph
connecting Gpred(i) in series with node i, with cdf for node i defined

as . (1)

(iii)If j are all sink nodes in the original graph, G is obtained by
considering all Gj in parallel (connected in series with a dummy
node if originally there is more than a sink node). In this case, the

cdf for the overall completion time of graph G is given by

 which provides a stochastic upper

bound for the original graph completion time: ΛG ΛG.

3.2. Completion Time in VFI vs. SSV Systems
The theoretical formulation presented in Section 3.1. provides a
means of bounding execution time for systems comprised of cores or
IPs characterized by independent, generic distributions. More
precisely, the formulation makes a very important assumption, that is,
there are no other constraints among execution times of various cores.
However, in SSV systems this assumption does not hold true.
Consider, for example, the case of SSV from Figure 1. - in this case,
the latency for core i is , where T is the global clock

cycle time (the same for all cores). For given cycle counts per core
(typically obtained by worst-case or typical case analysis or
profiling), per core latencies are constrained: . Thus, the

probability that a given path pj with latency πj in the component
graph satisfies a constraint t can be expressed as:

 (2)

which is different than the same probability in the VFI case where
cores are not constrained by a global clock speed:

 (3)

While for equation (3) variables ti’s are not restricted to be
multiples of a single global clock cycle time and a true convolution is
applicable for determining the overall probability, the same is not true
for equation (2). Furthermore, we will show formally that the
probability in (2) is smaller than the one in (3), thus making SSV
systems less likely to meet timing constraints. To be able to compare
the two cases, one might wonder if an equivalent algorithm for
determining stochastic upper bounds exists for SSV systems. We
show that this is indeed possible:
Lemma 2.2 Consider a component graph of an SSV system GSSV(V,
E). Stochastic upper bounds for node and overall graph completion
time can be found from its associated graph GSSV(V, E) defined as in
Lemma 1, except for equation (1) which is replaced by:

 (4)

where .

We are now able to prove that SSV systems are less likely to meet
timing constraints than their VFI counterparts. The result is shown in
the following two theorems.
Theorem 1. Consider the distribution (cdf) family

and associated pdf’s , . Let {αi}

be a set of fixed non-negative numbers with and

. Then .

1. The proof can be found in [11].

Figure 2. A series-parallel component graph and source-to-sink
latency computation for given node latency distributions.

1

2

5

6431

2

5

643

Pr L1 6– t≤()
Pr L1 5– 6– t≤()

Pr L1 2– 6– t≤()
Pr L1 3– 4– 6– t≤()
⋅
⋅

=

Pr L1 2– 6– t≤() F1 F2 F6⊗ ⊗() t()=

Pr L1 5– 6– t≤() F1 F5 F6⊗ ⊗() t()=

Pr L1 3– 4– 6– t≤()
F1 F3 F4 F6⊗ ⊗ ⊗() t()=

Φi t() Φi t() Fi t()= =

Φi t() Φj t()
j pred i()∈
∏ Fi t()⊗= Φi t()≤

2. Remaining proofs can be found in [22].

Φ t() Φj t()
jsink node
∏ F t()≤=

st≥

Li Ci T⋅=

Li Ci⁄ T=

Pr πj t≤() Pr Li ti≤()
i pj Σti,∈ t= ti tk⁄, Ci Ck⁄=∩=

Pr πj t≤() Pr Li ti≤()
i pj Σti,∈ t=∩=

Φi t() Φj αit()
j pred i()∈
∏ Fi 1 αi–()t()= Φi t()≤

αi maxjCj() maxjCj Ci+()⁄=

F1 F2 … Fn, , ,()

f1 f2 … fn, , ,() Fi fi : R , [0 ∞),→

0 αi 1≤ ≤

αi
i

∑ 1= ⊗ Fi 1 … n, ,= i t() Fi αi t⋅()
i 1 … n, ,=∏≥

Theorem 1 can be used to formally show that SSV are less likely to
meet timing constraints under process-driven variations than their
VFI counterparts in the case of series-parallel (and thus, tree)
topologies. The result is shown in the following theorem.
Theorem 2. Consider the SSV and VFI systems as in Figure 1.
Assuming that the communication latency is the same for both SSV
and VFI systems, for the case of series-parallel topologies, if

and are their corresponding completion times, then:

 (5)

for any . In other words and thus, the SSV

system is less likely to meet timing constraints than its corresponding
VFI counterpart.

The theoretical results shown in this section can be used to
determine how much likelier is a VFI system to satisfy given timing
constraints than a SSV system. For a given required timing yield, the
gap between the two completion times can be used to check whether
additional latency due to inter-island communication will reduce this
gap and if any leftover difference between completion times can be
traded-off for energy efficiency. More specifically, consider
completion times , for timing yield y (i.e., completion

times for which probability is exactly y: ,

). The VFI system can tolerate any

synchronization penalty that satisfies , and

can use any leftover slack for further reducing

energy, while maintaining the same performance as the original SSV
system by assigning voltages to local VFIs, under given latency
constraints. Recent work [5] has shown that this is possible for VFI
systems with significant reduction in overall energy requirements.

4. RESULTS
We have implemented the algorithm described in Lemmas 1 and 2 for
determining upper bounds for the expected completion times for
general DAG structures, for both VFI and SSV system. For the case
of general component graphs with feedback loops or cycles, we have
applied the technique from [5][17] for replacing strongly connected
components (SCCs) of the graph with supernodes. As shown in [17],
the processing rates of these supernodes (and thus, their latencies in
cycle counts) can be found by averaging across all nodes in the SCC.
The complexity of this conversion algorithm is linear in the number
of nodes and edges in the component graph.

Based on the upper bound (tree-like) component graph
counterparts, we have implemented the algorithms for determining
the upper bounds for completion time in SSV and VFI
implementations, as shown in Lemmas 1 and 2, respectively. The two
algorithms require O(n2) multiplications and O(n) convolutions (only
for Lemma 1) and thus have manageable time complexity (n is the
number of PEs/cores). To assess the validity of the presented
theoretical results, we have considered two applications that are
typically latency constrained: software defined radio and MPEG-2
encoder. As shown in Figure 3., both have series-parallel topologies,
while MPEG-2 encoder (Figure 3.(b)) includes a feedback loop. The
three nodes involved in the corresponding SCC (Pred+Add,
DCT+Quant, and IDCT+Iquant) can be lumped into a single node,
such that the resulting topology in this case is a simple series
combination.

Both design drivers are characterized by a simple linear pipeline
topology, and thus, the cdf’s as described in Lemma 1 and 2 are exact
results, and not bounds. For each module part of software defined
radio or MPEG-2 encoder, we have assumed the cycle counts and the
core information shown in Table 1 . The nominal clock speed of the
Hitachi SH3 cores was 60MHz, while the one for the ARM7TDMI
cores it was 133MHz. To model manufacturing process-driven
variations, we have assumed that the cycle time per domain is
distributed normally, with mean value given by the nominal critical
path delay, and standard deviation of 20% [23]. However, our
approach is general and can deal with any type of generic
distributions, not only normal distributions.

We have computed the cdf for each module and overall system
level cdf for completion time of each application shown in Figure
3.(a)-(b) for both SSV and VFI cases (Figure 4. and Figure 5.). As it
can be seen in the figures, results verify empirically our proven
theoretical result by showing the VFI systems are more likely to
satisfy a given latency constraint than their SSV counterparts.
Considering the 50% yield target for SSV completion time as the
baseline, we note that VFI systems are 80% (software radio) to 90%
(MPEG-2 encoder) more likely in satisfying the given latency
constraint, achieving a 90-95% yield. In the case of an 80% yield
target for SSV completion time, VFI systems have a 99% yield (or
24% more likely in satisfying the same latency target), while for a
90% yield target for SSV completion time, VFI systems ensure a
100% yield (or 11% more likely) in meeting the given latency
constraint.

5. CONCLUSION
This paper has provided a first step in the direction of analyzing
statistical properties at system level in the presence of variations. To
this end, we have described a general approach for characterizing
global system level timing yield for complex systems, relying on
generic distributions characterizing individual modules. We also
showed formally and empirically that VFI-based latency-constrained
systems are always more likely to meet given timing constraints than
their SSV counterparts, under the same communication latency

LSSV

LVFI

Pr LSSV t≤() FSSV t() FVFI t()≤ Pr LVFI t≤()= =

t 0≥ LSSV Lst VFI≥

LSSV y, LVFI y,

FSSV LSSV y,() y=

FVFI LVFI y,() y=

Ls Ls LSSV y, LVFI y,–≤

LSSV y, LVFI y,– Ls–
Table 1: Driver Application Characteristics

SwRadio Modules
(Hitachi SH3 cores)

LPF Demod Eq (10) Sink

Cycles/packet 61494 33086 463193 32736
MPEG2-Enc Modules
(ARM7TDMI cores)

Motion
Est

Pred+Add DCT+Q VLC IDCT+IQ Sink

Cycles/macroblock 101282 16722 370060 43222 351259 3188

Figure 3. Applications: (a) SW-defined radio; (b) MPEG-2 encoder.

Source Motion
Est Pred

+Add
DCT +
Quant VLC Sink

IDCT
+Iquant

Source Motion
Est Pred

+Add
DCT +
Quant VLC Sink

IDCT
+Iquant

(a)

(b)

assumption. Future work will include extensions to address the
treatment of rate-based constraint systems and power variability
system level analysis.

6. REFERENCES
[1] X. Li, J. Le, P. Gopalakrishnan, L.T. Pileggi, “Asymptotic Probability

Extraction for Non-Normal Distributions of Circuit Performance,” in
Proc. IEEE/ACM Intl. Conference on Computer Aided Design
(ICCAD), San Jose, CA, Nov. 2004.

[2] M. Orshansky and A. Bandyopadhyay, “Fast Statistical Timing Analy-
sis Handling Arbitrary Delay Correlations,” in Proc. ACM/IEEE
Design Automation Conference (DAC), San Diego, CA, June 2004.

[3] H. Chang, S.S. Sapatnekar, “Statistical Timing Analysis Considering
Spatial Correlations Using A Single PERT-like Traversal,” in Proc.

IEEE/ACM Intl. Conference on Computer Aided Design (ICCAD), San
Jose, CA, Nov. 2003.

[4] I.A. Ferzli, F.N. Najm, “Statistical Estimation of Leakage-Induced
Power Grid Voltage Drop Considering Within-Die Process Variations,”
in Proc. ACM/IEEE Design Automation Conference (DAC), Anaheim,
CA, June 2003.

[5] K. Niyogi, D. Marculescu, “Speed and Voltage Selection for GALS
Systems Based on Voltage/Frequency Islands,” in Proc. ACM/IEEE
Asian-South Pacific Design Automation Conference (ASPDAC),
Shanghai, China, Jan.2005.

[6] H. Wu, I.-M. Liu, M.D.F. Wong, Y. Wang, “Post-Placement Voltage
Island Generation Under Performance Requirement,” Proc. IEEE/ACM
Intl. Conference on Computer Aided Design (ICCAD), San Jose, CA,
Nov. 2005.

[7] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu, “Architecting Voltage
Islands in Core-based System-on-a-Chip Designs,” in ACM/IEEE Intl.
Symposium on Low Power Electronics and Design (ISLPED), Newport
Beach, CA, Aug. 2004.

[8] A.W. Shogan, “Bounding distributions for a stochastic PERT network,”
Networks 7 (1977) 359–381.

[9] B. Dodin, “Bounding the project completion time distribution in PERT
networks,” Oper. Res. 33 (4) (1985) 862–881.

[10] W. Kleinöder, “Stochastic analysis of parallel programs for hierarchical
multiprocessor systems,” Ph.D. Thesis, University of Erlangen, Nürn-
berg, 1982.

[11] M. Colajanni, F. Lo Presti, S. Tucci, “A hierarchical approach for
bounding the completion time distribution of stochastic task graphs,”
Performance Evaluation 41 (2000) 1–22.

[12] J.Y. Brunel, W.M. Kruijtzer, P. Lieverse, K.A. Vissers, “YAPI: Applica-
tion modeling for signal processing systems,” in Proc. ACM/IEEE
Design Automation Conference (DAC), Los Angeles, CA, June 2000.

[13] “IBM Blue Logic Cu-08 voltage islands” http://www.ibm.com/chips/
products/asics/products/v island.html.

[14] L.S. Nielson, C. Niessen, J. Sparso, and K.Van Berkel, “Low-power
operation using self timed circuits and adaptive scaling of the supply
voltage,” in IEEE Transactions on Very large Scale Integration (VLSI)
Systems, 2 (4):391–397, December 1994.

[15] J. Muttersbach, T. Villiger, and W. Fichtner, “Practical design of glo-
bally asynchronous locally synchronous systems,” in Proc. Intl Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC), April 2000.

[16] T. Chelcea and S.M. Nowick, “A low latency fifo for mixed-clock sys-
tems,” In Proc. of IEEE Computer Society Workshop on VLSI
(WVLSI), April 2000.

[17] A. Dasdan, “Rate Analysis of Embedded Systems,” Ph.D. thesis, Uni-
versity of Illinois at Urbana Champagne, 1998.

[18] K.A. Bowman, S.G. Duvall, J.D. Meindl, “Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency dis-
tribution for gigascale integration,” in IEEE Journal of Solid State Cir-
cuits (JSSC), 37 (2):183–190, Feb. 2002.

[19] D. Stoyan, “Comparison Methods for Queues and Other Stochastic
Models,” John Wiley, New York, 1983.

[20] R.E. Barlow, F. Proshan, “Statistical Theory of Reliability and Life
Testing,” Hold, New York, 1975.

[21] F. Lo Presti, M. Colajanni, S. Tucci, “Stochastic bounds on execution
times of parallel computations,” in Proc. of the IEEE Second Interna-
tional Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, Durham, NC, February 1994.

[22] D. Marculescu, S. Garg, “Variability Analysis for Single and Multiple
Voltage-Frequency Island Systems,” Technical Report CMU CSSI-06-
09, April 2006.

[23] S. Nassif, “Design for variability in DSM technologies,” in Proc. IEEE
International Symposium on Quality Electronic Design (ISQED),
March 2000.

Figure 4. Module latency (top) and system level timing yield
(bottom) for software-defined radio.

Figure 5. Module latency (top) and system level timing yield
(bottom) for MPEG2-encoder.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

