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Abstract—While prior research has extensively evaluated the perfor-
mance advantage of moving from a 2D to a 3D design style, the impact of
process parameter variations on 3D designs has been largely ignored. In
this paper, we attempt to bridge this gap by proposing a variability-aware
design framework for fully-synchronous (FS) and multiple clock-domain
(MCD) 3D systems. First, we develop analytical system-level models of the
impact of process variations on the performance of FS 3D designs. The
accuracy of the model is demonstrated by comparing against transistor-
level Monte Carlo simulations in SPICE - we observe a maximum error
of only 0.7% (average 0.31% error) in the mean of the maximum
critical path delay distribution. Second, to mitigate the impact of process
variations on 3D designs, we propose a variability-aware 3D integration
strategy for MCD 3D systems that maximizes the probability of the
design meeting specified system performance constraints. The proposed
optimization strategy is shown to significantly outperform FS and MCD
3D implementations that are conventionally assembled - for example, the
MCD designs assembled with the proposed integration strategy provide,
on average, 44% and 16.33% higher absolute yield than the FS and
conventional MCD designs respectively, at the 50% yield point of the
conventional MCD designs.

I. INTRODUCTION

Recently, major semiconductor companies have advocated a move
toward three dimensional integrated circuit (3D IC) technologies
to mitigate the growing wire delay concerns in deep sub-micron
technologies [1]. While a number of techniques have been proposed
for dense 3D integration, we concentrate primarily on stacked-die 3D
technologies [2] which involve fabricating each active device layer
on a different wafer and stacking the fabricated die on top of each
other using pick-and-place techniques. Through-silicon-vias (TSV)
are typically used to interconnect dies in different layers. Of specific
interest in this paper is the case of application specific embedded
systems, consisting of a network of processing elements (PEs) or
on-chip memories, implemented using the described 3D die-stacking
methodology.

While there has been significant prior research in the EDA com-
munity on tools for analyzing and optimizing the performance of 3D
designs from a physical design perspective, the analysis and opti-
mization of manufacturing process variations for 3D designs has not
been addressed. Moreover, the impact of process parameter variation
at the transistor- and gate-level for 2D systems has been extensively
researched in the past. However, micro-architecture and system-level
analysis and optimization of the impact process variations has only
recently gained attention, driven by the need to address process
variations as early in the design process as possible. To the best of
our knowledge, this paper presents the first analytical, system-level
model of the impact of process variations on the performance of 3D
designs. Using this model, we show that process variations impact
3D designs differently as compared to an equivalent 2D design. To
demonstrate the accuracy of the models, they are validated against
SPICE based Monte Carlo simulations that model both within-layer
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and layer-to-layer critical paths along with the associated wire and
TSV delays.

Since the proposed variability model indicates that FS 3D systems
suffer a greater performance loss to process variations as compared
to their FS 2D counterparts, we propose using a variability adaptive,
multiple clock-domain (MCD) 3D design style as a possible solution
to mitigate the performance loss. Moreover, we show that by using a
novel variability-aware die-level integration strategy for 3D MCD
SoCs, it is possible to further improve the system performance yield
- i.e., the fraction of fabricated systems that meet a specified system-
level performance constraint, such as execution latency or throughput
- beyond that achievable by a 3D MCD system assembled using a
conventional integration strategy.

The proposed framework can be used by system designers to
compare the performance yield that they can expect, under the impact
of process variations, for a range of possible 3D implementation
strategies, namely: (1) a FS 3D design; (2) a 3D MCD design
with conventional die-to-die integration; and (3) a 3D MCD design
with the proposed yield-aware integration strategy. While we show
that the performance yield improves from (1) to (3), the associated
implementation costs may also increase due to the area overhead
of local clock generation and additional test costs for the proposed
integration strategy. Such information would be extremely useful
for system designers to choose an implementation strategy that can
maximize the performance yield within implementation cost budgets.

II. RELATED WORK

Prior research in the area of system-level performance analysis
and optimization of 3D MPSoCs has focused on temperature- and
performance-aware floorplannning [5], design of 3D networks-on-
chip (NoCs) [4], and power optimization [6]. However, none of these
works consider the impact of process variations on 3D designs, which
is the focus of this study.

The impact of manufacturing process variations on circuit power
and performance characteristics, especially at the transistor/gate levels
has received a lot of attention recently [8]. On the other hand, high-
level modeling of the performance impact of process variations has
only recently gained attention, and was pioneered by [3], where the
widely used generic critical path model was presented. More recently,
in [9], the authors study the impact of process variations on the system
performance and show, theoretically and experimentally, that 2D
MCD designs are more likely to meet performance constraints than
their FS counterparts. While 3D MCD systems assembled using a
conventional approach can be analyzed the same way as in [9], in this
paper we propose a new methodology to utilize the unique flexibility
of the post-fabrication 3D assembly process to obtain a variability-
aware integration strategy for 3D MCD designs that outperforms
conventional integration.



The only other work on the impact of process variations on
3D designs was published very recently by Ferri et al. [10]. As
opposed to that work, we provide analytical models of the impact
of parameter variations on 3D circuits that can be used by designers
to make variability aware system-level design decisions early in the
design process. In contrast, [10] uses simulation based models for
parameter variations, which cannot be utilized for the same purpose.
Furthermore, we propose and evaluate the use of 3D MCD designs
with variability-aware integration as opposed to [10] that concentrates
only on FS systems. Finally, as opposed to [10] that can only handle
3D systems with two device layers, the proposed integration strategy
works for an arbitrary number of device layers and, more importantly,
we do not assume that unpackaged bare die can be perfectly speed-
binned, since it has been shown to be prohibitively expensive [13].
Instead, as will be explained later in the paper, we use quiescent
leakage current test data to approximately predict the operating
frequency of the bare die before assembly.

III. PAPER CONTRIBUTIONS

As compared to previous research, the work proposed herein makes
the following novel contributions:
• We propose and experimentally verify an analytical system-level

model for the impact of process variations on the performance
of FS 3D designs.

• We propose and evaluate the use of variation-aware MCD 3D
designs, in which each device layer lies in a separate clock
domain, as a way to mitigate the loss in performance.

• We propose a novel, efficient die-level integration strategy to
further increase the performance yield of 3D MCD systems
beyond that achievable by a conventional integration strategy.
The integration strategy works for an arbitrary number of device
layers and does not assume perfect prior knowledge of frequency
bins.

IV. SYSTEM-LEVEL VARIABILITY MODELING

The authors of [3] have shown that the impact of process variations
on FMAX (maximum clock speed) can be captured by two micro-
architectural parameters: ncp, the number of logic stages in a critical
path in the circuit, and Ncp, the total number of critical paths in
the circuit. If Tmax,2D is a random variable (RV) that represents
the worst-case critical path delay of a 2D system under the impact
of process variations, TD2D is a RV that represents the variation in
delay of a critical path due to the impact of D2D variations, T i

WID is
the RV that represents the variation in path delay for the ith critical
path in the circuit (1 ≤ i ≤ Ncp), and Tcp,nom is the nominal delay
of a critical path, we can write:

Tmax,2D = Tcp,nom + TD2D + max
i∈(1,Ncp)

T i
WID (1)

Using this equation, the authors show that the probability density
function (pdf ) of maximum critical path delay, fTmax,2D (t) can be
written as:
fTmax,2D (t) = fTD2D (t′) ∗ {NcpFTW ID (t′)Ncp−1}fTW ID (t′) (2)

where ∗ represents convolution, t′ = t− Tcp,nom, FX(.) represents
the cumulative distribution function (cdf ) of R.V. X and fX(.)
represents its pdf. Furthermore, if σD2D and σWID are the standard
deviations of path delay due to D2D and WID variations respectively,
we can write:

σWID =
√
ncpσWID,gate σD2D = ncpσD2D,gate (3)

where σWID,gate (σD2D,gate) refers to the standard deviation of gate
delay due to WID (D2D) variations.

Fig. 1. (a) 3D design with only WIL critical paths. (b) 3D design with both
WIL and L2L critical paths.

A. FS 3D Architectures

As opposed to 2D systems, there are two possible types of critical
paths in a 3D system as shown in Figure 1 - Within-Layer (WIL)
paths are fully contained within one of the device layers in the system
while Layer-to-Layer (L2L) paths utilize TSVs to cross from one
layer to another. We note that the number of L2L critical paths in a 3D
system is likely to be smaller than the number of WIL paths since the
available layer-to-layer TSV based routing resources are significantly
fewer than the available within-layer routing resources, especially for
stacked 3D designs in which each module (either a PE or embedded
memory), and thereby all the critical paths within the module, lies
completely within one of the device layers [2] . Therefore, in the
proposed model, we start by assuming a 3D system with only WIL
critical paths. We then introduce a simple approximation to account
for any L2L critical paths in the system. As we will show in the results
section, the approximation provides extremely accurate results even
when as many as 50% of the critical paths in the system are L2L
paths.

Without any loss of generality, we assume that the 3D system is a
vertical stack of L dies (L > 1) and each layer i has N i

cp (1 ≤ i ≤ L)
critical paths. As in the previous case, we define T i

D2D (1 ≤ i ≤ L)
to be the RV corresponding to the variation in critical path delay due
to D2D variations in layer i, and T i,j

WID (1 ≤ i ≤ L, 1 ≤ j ≤ N i
cp)

to be the RV corresponding to the variation in delay of critical path j
in layer i due to WID variations. Since the entire system is driven by
a single global clock, we can write the maximum (i.e., worst-case)
critical path delay, Tmax,3D as:

Tmax,3D = Tcp,nom + max
i∈[1,L]

(T i
D2D + max

j∈[1,Ni
cp]
T ij

WID) (4)

Now, since the die for each layer in a 3D system comes from a
different wafer [2], the D2D RVs for the device layers in a system
can be assumed to be independent. Therefore, using Equation 4, we
can write the pdf of the maximum critical path delay for a FS 3D
system as:

fTmax,3D (t) = L[FTD2D (t′) ∗ (FTW ID (t′))N′cp ]L−1

×[fTD2D (t′) ∗N ′cpFTW ID (t′)N′cp−1fTW ID (t′)]

(5)

where × represents multiplication, and the rest of the notation is
consistent with Equation 2. To simplify the analytical form of the
equation, we assumed that the number of critical paths in each layer
of the system is the same, i.e., N i

cp = N j
cp = N ′cp for every pair

of layers i and j. However, an analytical solution, although a more
complex one, is as easily derived for the general case where the
number of critical paths in each layer is different. The important
thing to note in Equation 5 is that along with a dependence on the



Fig. 2. (a) 2D and 3D implementations of an MPSoC with three PEs.
(b) cdf of normalized maximum critical path delay for FS 2D and 3D
systems.

number of critical paths per layer (as in the 2D case), the maximum
critical path delay pdf also has a strong exponential dependence on
the number of layers, L, in the system.
L2L Critical Paths The model proposed above is, at least theo-
retically, perfectly accurate for 3D systems without any L2L critical
paths. Now, to model the case in which there are NL2L

cp layer-to-layer
critical paths in the system, we assume that each L2L critical path
impacts FMAX in the same way as a WIL path. Therefore, to account
for L2L paths, the number of critical paths in layer i (1 ≤ i ≤ L),
N i

cp, from Equation 4 is modified to a new value, N i
cp,approx as:

N i
cp,approx = N i

cp +
NL2L

cp

L
(6)

In the experimental results section we demonstrate that this approx-
imation works extremely well in practice, even for the case of 3D
systems with a large fraction of L2L paths.

B. FS 2D Vs. FS 3D Systems

One application of the proposed model is to compare the impact
of process variations on the clock frequency of FS 2D and stacked
3D implementation options for an MPSoC. Figure 2(a), for example,
shows a 2D implementation and a two layer 3D implementation of
a three processor system. As it can be seen, the number of critical
paths in each layers can simply be computed by summing up the
contribution from all the PEs in that layer. Now, using Equations
2, 5 and 6, we can compare various implementation options from a
variability perspective. As an example, we use the proposed model
to compare three implementations for a system with 10,000 critical
paths: a FS 2D design, a FS 3D design with two layers and a FS
3D design with four layers. The cdfs of maximum critical path delay
for the three systems are shown in Figure 2(b) and we observe that,
while the mean of maximum critical path delay for a 2D design is
only 8% worse than the nominal, it is 14% worse for a 3D design
with two layers and 17% worse for a 3D design with four layers.
In fact, we prove theoretically that, under certain assumptions, 3D
systems always lose more performance to process variations than
their 2D counterparts.

Lemma: The probability that the maximum critical path delay of a
2D system with Ncp,2D critical paths is less than a value τ is always
greater than the probability for a 3D system with L layers and N i

cp,3D

critical paths in layer i, assuming that Ncp,2D =
∑L

i=1N
i
cp,3D and

that the magnitude of D2D and WID process variation for the 2D
and 3D systems is the same.

Proof: The proof is based on the theorem presented in [7] on the
comparing the maximum of two Gaussian Random Vectors. While a
detailed exposition is excluded due to space constraints, we note that
comparing Equation 1 and Equation 4 using this theorem completes
the desired proof. �

V. VARIABILITY AWARE MCD 3D SYSTEMS

The primary reason for the susceptibility of FS 3D designs to
process variations is that the clock speed of the design is limited
by the slowest die layer in the stack, i.e., the layer that is the worst
hit by D2D variations, even if the other layers can support higher
clock speeds. By allowing each clock domain to run independently
at its optimal frequency, MCD architectures have previously been
shown to provide increased variability tolerance [9] in the context
of 2D systems. As we show in the experimental results, the same
argument holds for 3D MCD designs as well, i.e., we see an increase
in variability tolerance while moving from a 3D FS to a 3D MCD
design. However, the 3D die-to-die assembly process offers an
additional degree of flexibility that is not available in the 2D
case - i.e., the ability to decide post-fabrication which die should be
combined together so that the maximum number of assembled 3D
systems meet the desired performance specification. We formulate
computing the optimal post-fabrication variability-aware integration
strategy as an integer program which we then solve using a novel
linearization and relaxation approach. Before discussing the proposed
solution in greater detail, we briefly overview the implementation
details of 3D MCD systems assumed in the paper. Specifically we
assume that each layer in the system is implemented as a separate
clock-domain with its own local clock generator equipped with fine-
grained frequency control, for example, a digital PLL or voltage-
controlled ring oscillator. Since the clock-domains are asynchronous
with respect to each other, we assume that communication between
clock-domains occurs via point-to-point mixed-clock FIFOs [11]
between communicating PEs. Finally, we assume that there exists
an on-chip module in each die-layer to sense the impact of process
variations on the maximum critical path delay of that layer and
correspondingly set the frequency of its local clock generator at its
maximum possible value [12].

A. Variability-aware Die-level Integration

We begin by assuming that for a 3D design with L device
layers, we obtain Ntotal bare dies for each layer in the design
after fabrication. The bare dies are then typically functionally tested,
assembled and packaged to create Ntotal 3D systems. Now, due to
process variations, each die actually will have a different maximum
operating frequency (FMAX); however, in a conventional integration
scheme the bare dies are assembled without any knowledge of the
FMAX of each bare die. The variability-aware 3D integration
scheme takes advantage of the fact that if the FMAX of each bare
die can be estimated before assembly, the assembly can be performed
to maximize the number of assembled 3D systems that meet a certain
performance specification.

We first assume that there exists an oracle that correctly bins each
fabricated bare die into one of F frequency bins and later relax
this unrealistic assumption. Once each die has been allocated to its
respective bin, we can represent the number of dies in layer i that
are allocated to frequency bin j as Nij , (1 ≤ i ≤ L, 1 ≤ j ≤ F ).
Clearly, the total number of 3D systems that can be fabricated, Ntotal

can be written as Ntotal =
∑

j Nij ,∀i ∈ [1, L], which is the sum of
the number of dies in each frequency bin for any given layer. Given
this information, the proposed variability-aware integration strategy
can be conceptually described as follows:
• Die-level integration occurs in L steps, where L is the number

of active device layers. In each step, a new layer is added to
the system using pick-and-place techniques, starting from the
bottom to the top.



Fig. 3. Graphical depiction of a 3D die-level integration strategy.

• At step i (2 ≤ i ≤ L) , ni,j,k 3D systems with their top-most
layer (i.e., layer i−1) lying in frequency bin j are selected and
dies from layer i lying in frequency bin k are stacked on top of
them, thereby creating ni,j,k systems with i layers. This process
is repeated for all j, k : 1 ≤ j, k ≤ F .

This approach is graphically depicted in Figure 3, where each vertex
in the graph represents the number of dies in a given bin for a given
layer.

We can represent each assembled 3D system with an L dimensional
vector f = (f1, f2 . . . fL), where fi is the frequency bin of layer i
in the system. We assume that there exists a function P (f) that maps
the frequency bin allocations of each active die layer to a real valued
measure of system performance (for example, throughput or worst-
case execution latency), and that the performance constraint that the
design is expected to meet is represented by Pconstr . Therefore, the
goal of the optimal integration strategy is to choose the variables
ni,j,k to maximize the number of assembled 3D systems that meet
the performance constraint Pconstr .

Based on the integration strategy in Figure 3, the expected number
of 3D systems obtained after integration with a given frequency vector
f , af can be written as:

af = n1,f1,f2

L−1∏
i=2

ni,fi,fi+1∑F
j=1 ni,fi,fj

= n1,f1,f2

L−1∏
i=2

ni,fi,fi+1

Nifi

(7)

We can now write an optimization problem that tries to maximize
the number of systems with performance greater than the constraint
Pconstr by appropriately selecting the values of the ni,j,k variables
as follows:

max
n

∑
∀f

wfn1,f1,f2

L−1∏
i=2

ni,fi,fi+1

Nifi

(8)

where:
wf =

{
1 if P (f) ≥ Pconstr

0 otherwise
(9)

∑
1≤j≤F

ni,j,k ≤ N(i+1)k ∀i ∈ [1, L− 1], ∀k ∈ [1, F ] (10)∑
1≤k≤F

ni,j,k ≤ Nij ∀i ∈ [1, L− 1], ∀j ∈ [1, F ] (11)

ni,j,k ∈ Z (12)

Relaxation, i.e., removing the constraints for the variables to lie in
the set of integers, is a commonly used first step towards solving
Integer Programming problems efficiently. Unfortunately, in this case,
relaxing the problem (removing the constraint in Equation 12) is not
useful since the objective function (Equation 8) is the maximization
of a convex posynomial function, and therefore, does not admit an
efficient solution [15]. However, we observe that the ni,j,k variables
can be expressed as linear functions of the af variables, i.e.,:

ni,j,k =
∑

∀f :fi=j,fi+1=k

af (13)

Equation 8 can now simply be re-written as:

max
a,n

∑
∀f

wfaf (14)

such that:
af ∈ R, ∀f (15)

Based on the observation in Equation 13, we now have a standard
mixed Integer Linear Programming (mILP) problem with Equation
14 as an objective function and Equations 10, 11, 12, 13 and 15
as constraints. The mILP problem can now be relaxed to yield a
standard Linear Programming (LP) problem that can be efficiently
solved. However, the solution obtained from the LP, nLP , needs to
be converted back to an integral solution, n∗ without violating any
other constraints. This can be done using a simple floor operation:

n∗i,j,k = bnLP
i,j,kc ∀i, j, k (16)

Note that because we relaxed the original ILP to an LP problem
and took the floor of the resulting solution to obtain the final integer
solution, we cannot guarantee global optimality. However, we are
able to derive a guaranteed upper bound on the difference between
the optimal yield obtained from the mILP problem, Y mILP , and the
yield obtained from the proposed relaxation/flooring method Y ∗.

Lemma: The value of Y mILP−Y ∗ can be no greater than F2

Ntotal
.

Proof: If Y LP denotes the optimal (unachievable) yield obtained
from the LP relaxation of the mILP, we know that Y LP ≥ Y mILP ≥
Y ∗. Therefore we can write Y mILP −Y ∗ ≤ Y LP −Y ∗. Moreover,
using some algebraic manipulation and optimization, the maximum
value of Y LP −Y ∗ can be shown to be bounded by F 2/Ntotal, and
therefore, Y mILP − Y ∗ ≤ F 2/Ntotal. �

The F 2/Ntotal bound proven above is extremely tight for realistic
scenarios - for example, for F=8 frequency bins and Ntotal = 10, 000
manufactured systems, the maximum possible yield loss between the
proposed and optimal solution is 0.064%.

B. Frequency Bin Prediction

Having described the optimization procedure assuming an oracle
that can correctly predict the frequency bin of each bare die before
3D assembly (as assumed by [10]), we now consider a practical
scenario in which such information may not be readily available. As
mentioned before, at-speed testing of bare die before 3D assembly
can be prohibitively expensive [13]. On the other hand, burn-in testing
and IDDQ or quiescent leakage current tests are routinely performed
on bare die and are an integral part of the Known Good Die test
methodology [14].

Importantly, since there exists a strong correlation between the
variability in leakage power dissipation of a die and the variability
its maximum frequency [16], it is possible to use leakage mea-
surements from the IDDQ tests to predict the frequency bin of a
bare die. Specifically, we assume that there exists prior data, either
from previous fabrication runs or from statistical circuit/gate level
simulation, in the form of frequency bin and leakage measurement for
M instances of the design; i.e., 2-tuples of the form (f train

m , Itrain
m )

for 1 ≤ m ≤M , where f train
m and Itrain

m are the frequency bin and
leakage power of the mth training sample respectively. Given a new
bare die with measured leakage power dissipation Itest, we predict
its frequency bin, f test using a simple one nearest neighbor search,
i.e.,:

f test = f train
m∗ (17)

m∗ = min
m
|(Itrain

m − Itest)| (18)

Once the bare die have been binned using the proposed technique,
they are assembled using the optimization strategy described in the
previous section, optimistically assuming that the predicted frequency
bin values are correct. After assembly and packaging, the on-chip
speed testing modules set the frequency of each layer in every 3D



Fig. 4. (a) SPICE modeling of WIL and L2L critical paths. (b) % Error of
analytical model with respect to MC SPICE simulations (c) Predicted impact
of number of device layers on ratio of mean FMAX to nominal frequency

system to the maximum frequency that the die in that layer can safely
run at.

VI. EXPERIMENTAL RESULTS

A. Fully Synchronous 3D Architectures

We begin by validating the accuracy of the analytical models for
FS systems developed in Section 4 against SPICE based Monte Carlo
simulations. To be consistent with the methodology described in [3],
each critical path in the SPICE netlist is modeled as a chain of two-
input NAND gates in a 90 nm PTM technology. Wire and via delay
are inserted using a standard π model as shown in Figure 4(a). The
RC parameters associated with the wire models are computed using
the average dimensions for Metal 2 wires reported in [21], while vias
are assumed to be 1.2µm× 1.2µm, with a 2.4µm pitch and 20µm
length as reported in [22]. Finally, variations in process parameters
are modeled by introducing both D2D and random WID variations in
gate length, each with a σ of 5% of the nominal value. In Figure 4(b),
we plot the error between MC SPICE simulations and the proposed
analytical model in the mean, 20% yield point and 80% yield point
of maximum critical path delay obtained for a two layer design with
200 critical paths. To test the robustness of the proposed model, the
fraction of L2L critical paths in the design is varied from 0% to 50%.
As it can be seen, even for the case in which 50% of the paths are
L2L, the error in the mean critical path delay is only 0.7%, and drops
to 0.1% for the design with 10% L2L paths. Similarly, the average
errors in the 20% yield point and 80% yield point are only 0.4% and
0.5% respectively.

To investigate the impact of increasing number of device layers,
we conducted an experiment in which we varied the number of layers
in a 3D system from 1 to 4 and swept the variance of the WID delay
distribution from 20% to 80% of the total delay variance, for both
wafer-level and die-level integration. Ncp was assumed to be 10, 000
for the entire design. The results are graphed in Figure 4(c), where the
y-axis represents the mean of the FMAX distribution normalized to the
nominal frequency in the absence of variability. From the plot, we can
see that, as expected, the mean FMAX decreases significantly with
increasing number of layers, and that the decrease is more pronounced
when D2D variations are a large contributor to total variability.

Fig. 5. Accuracy of the proposed frequency-bin prediction technique for
F = {4, 8, 16} (a) The fraction of dies correctly binned by the proposed
technique. (b) The average number of bins by which the prediction technique
is off, given that it mispredicts.

B. 3D MCD Architectures

We now investigate the performance of the proposed multiple-
clock domain 3D architectures compared to FS 3D designs on a
set of embedded system benchmarks. We experimented with the
two benchmarks from the E3S benchmark suite [17] - the telecom
and consumer benchmarks - and the software-defined radio (SDR)
benchmark used in [18]. For the SDR benchmark, each task is
separately mapped on to an separate Hitachi SuperH core, resulting
in a 12 PE system that is implemented in four device layers, with
cycle counts obtained using the Sunflower tool suite [20]. For the
E3S benchmarks, we assumed a 12 (consumer) and 28 (telecom)
PE design, again with four layers and an equal number of PEs per
layer. Each PE is assumed to be an AMD ElanSC520 embedded
processor, and the cycle counts and communication volumes for
the tasks are taken from the pre-characterized data for the AMD
ElanSC520 processor included with the E3S suite.

For all the experiments in this section, we assume a total standard
deviation in gate delay to be 10% of its nominal value, and unless
otherwise mentioned, assume that D2D and WID variations contribute
equally to the total gate delay variations. Furthermore, in the absence
of pre-characterized critical path data for the PEs, we assumed the
number of logic stages, ncp = 9, as suggested by [19], and the
number of critical paths, Ncp = 10, 000, as suggested by [3]. Finally,
we use the models proposed by [18] to account for the communication
latency of the point-to-point inter-layer mixed-clock FIFOs.

We begin with results for the frequency-bin prediction algorithm
presented in Section V-B. Since we do not have access to the gate-
level net lists of the processors used, we generate training samples
for frequency bin prediction using 1,000 runs of Monte-Carlo (MC)
simulation on a synthetically generated gate-level net list that consists
of the same number of critical paths and logic stages as each die in
the design, and record the leakage and frequency information for each
MC sample. In Figure 5(a), we plot the accuracy of the prediction
algorithm, i.e., fraction of correctly binned dies, as a function of the
number of frequency bins F , and as a function of the contribution
of WID variations to the total gate delay variation. As expected,
the accuracy decreases as the WID variation increases (correlation
between leakage and frequency decreases) and as F increases. In
Figure 5(b), we plot the average number of bins by which the
prediction differs from its correct value when a mis-prediction occurs.
We can see that even though the frequency-bin prediction accuracy
can be as low as 52% for F = 16, i.e., almost half the dies are
binned incorrectly, the mis-predicted frequency bins are, on average,
only 1.2 bins away from their correct assignments.

Under these assumptions, we studied the performance (we use
worst-case execution time, or latency, as a performance measure)
of the three benchmarks for four 3D designs: (1) MCD-PER, A
3D MCD architecture assembled using the proposed variability-aware



Fig. 6. Yield as a function of latency constraint for four different imple-
mentation choices for the telecom, consumer and SDR benchmarks (F=8 in
each case). (d) Yield of the MCD-PROP architecture for F = 4, 8, 16 as a
function of the FS yield for the telecom benchmark.

die-level integration strategy with perfect knowledge of the frequency
of each bare die (though this is an unrealistic assumption, it serves
as an upper bound on the quality of the solution); (2) MCD-PROP,
A 3D MCD architecture assembled using the proposed variability-
aware die-level integration strategy in which the prediction algorithm
from Section V-B was used to determine the frequency of each die;
(3) MCD-CONV, A 3D MCD architecture using conventional die-
level assembly with no prior knowledge of frequencies of the bare dies
before assembly; (4) FS, A fully-synchronous 3D design assembled
using conventional integration.

For each MCD architecture, we considered three cases - F = 4,
F = 8 and F = 16. Finally, so as to not unfairly skew the results
in favor of the MCD designs, the fully-synchronous design (FS) is
allowed to choose from a continuous range of frequency values,
and therefore, represents the upper limit of performance yield that
is achievable by any FS 3D design.

In Figure 6, we plot the results from our experiments. Parts
(a), (b) and (c) of Figure 6 clearly indicate that the MCD-PROP
architecture is able to significantly outperform MCD-CONV when
the performance constraints are stringent - for example, at a latency
constraint that provides 50% yield for MCD-CONV, the MCD-PROP
yield is 21%, 8% and 18% higher for the consumer, telecom and
SDR benchmarks respectively. At the same latency constraint MCD-
PROP provides 58%, 43% and 30% higher yield than the FS design
for the same three benchmarks. We note that the curves for MCD-
PER demonstrate that the potential for further improving the yield of
MCD-PROP is substantial if more precise die frequency information
were available before 3D assembly.

Finally, we study the impact of varying the number of frequency
bins, F , on the performance yield of the proposed method by plotting
in Figure 6(d) the MCD-PROP yield as a function of the FS yield
with varying number of frequency bins, i.e., F = {4, 8, 16}. From
the plot, it is clear that though the MCD-PROP yield increases with
F , though there seems to be a trend of diminishing returns.

The results presented in this paper can be used by system-level
designers to determine, early in the design cycle, the architecture,
integration strategy and the number of frequency bins that provide
acceptable performance yield, while minimizing design complexity.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an analytical, system-level model for
the impact of process variation on the maximum frequency of FS 3D
designs. The model was experimentally validated against circuit-level
Monte Carlo simulations in SPICE and predicts that FS 3D designs
suffer larger performance degradation due to process variations
than their 2D counterparts. Furthermore, the extent of performance
degradation depends on the number of layers in the design and the
3D integration strategy used. Next, we proposed a variability-aware
multiple clock-domain architecture for 3D MPSoCs, and developed
a novel variability-aware integration strategy that maximizes the
number of assembled 3D systems that satisfy a specified performance
constraint. Our results indicate that the proposed technique can
provide significant performance yield improvement over 3D MCD
systems assembled using conventional system integration strategies,
especially for stringent performance constraints.

As future work, we plan to better model L2L paths and to include
the impact of leakage variations on 3D designs.
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