Dynamic Functional Unit Assignment for L ow Power

Steve Hagp, Natashe&Reeves,Rajee Barua
Deptof Electrical& ComputerEngineering
University of Maryland,College Park

Abstract

A hardware methodor functionalunit assignmernis pre-
sentedpasedntheprinciplethata functionalunit’s power
consumptiors approximatedby the switching activity of its
inputs. Sincecomputingthe Hammingdistanceof the in-
putsin hardware is expensiveonly a portion of the inputs
are examined. Integers oftenhavemanyidentical top bits,
dueto sign extension,and floating pointsoftenhavemany
zeps in the least significantdigits, due to the casting of
integer valuesinto floatingpoint. Theaccuracy of theseap-
proximationsis studiedand the resultsare usedto develop
a simple but effective hardware scheme

1 Introduction

Pawver consumptionhasbecomea critical issuein mi-
croprocessodesign,dueto increasingcomputercomple-
ity andclock speedsMarny techniquesiave beenexplored
to reducethepower consumptiorof processorsl.ow power
techniquesllow increasedlock speedandbatterylife.

We presenta simple hardware schemeto reducethe
power in functional units, by examining a few bits of the
operandsindassigningfunctional units accordingly With
thistechniquewe succeedeth reducingthe power of inte-
gerALU operationdy 17%andthepower of floatingpoint
operationdy 18%. In [4] it wasfoundthataround22% of
the processos power is consumedn the executionunits.
Thus,thedecreasén total chip poweris roughly4%. While
this overall gainis modesttwo pointsareto benoted.First,
onewayto reduceoverall poweris to combinevarioustech-
niguessuchasours,eachtargetinga differentcritical area
of the chip. Secondreducingthe executionunits’ power
consumptiorby 17%to 18% is desirable independentf
the the overall effect, becausehe executioncoreis one of
the hot-spotsf power densitywithin the processar

We also presentan independentompiler optimization
called swappingthat further improvesthe gain for integer
ALU operationgo 26%.

2 Energy modeling in functional units

A seriesof approximationsreusedto developasimple
power consumptionmodel for mary computationaimod-

DianaMarculescu
Deptof Electrical& ComputerEngineering
Carngyie Mellon University

0001 —» 0001 —» 000 0001 —»
0A0lL — FFF7 —» 0AOQ FFF7 —
7FFF — 0A71 —» TFF 0A71 —»
0001 —» 7F00 —» 000 7F00 —»
0A0L —» 0A0L —»
0111 —» 0111 —»
cycle 2 cycle 1 cycle 2 cycle 1
Default routing Alternativerouting (57% less energy)

Figure 1. Alternative dataroutesfor a 3-way processor

ules. To begin, it is knowvn [15] that the most impor
tant sourceof power dissipationin a moduleis the dy-
namic chaging and dischaging of its gates, called the
switched capacitance This switched capacitancds de-
pendentuponthe modules input values[14]. It hasbeen
further shawn [13, 6] that the Hammingdistanceof con-
secutve input patterns,definedasthe numberof bit posi-
tionsthatdiffer betweerthem,providesa suitablemeasure
of power consumption. In [13, 6], power is modeledas:
Power =~ %dedf Zk Okswk ~ %Vfdfcmodulehinputr
whereV,, = voltage,f = clockfrequeng, C}, = capacitance
of outputgatek, sw;, = average# transitiongor outputgate
k (called switching activity), Cyoauie = the total capaci-
tanceof the module,and h;,,p.,; = the Hammingdistance
of thecurrentinputsto the previousones.

Sincepower consumptions approximatelylinearly pro-
portionalto A, pye, it is desirableo minimize h;y,py,:. Such
aminimizationis possiblebecausenodernprocessorson-
tain multiple integer arithmeticlogic units, or IALUs, and
multiple floating point arithmeticunits, or FFAUs. 1ALU
and FPAU aretypesof functionalunits, or FUs. Current
superscalargssignoperationsto the FUs of a given type
without consideringpower; a betterassignmentanreduce
power, however, asillustratedby the examplein Figurel,
which shaws the input operandgo threeidentical FUs, in
two successie cycles. Thealternaterouting consumesgess
power becausét reducesthe Hammingdistancebetween
cycles1 and 2. Figure 1l assumeghat the router hasthe
ability to notonly assigranoperatiornto ary FU, but alsoto
swaptheoperandswhenbeneficialandlegal. For instance,

it is legal to swapthe operandsf anaddoperation but not
thoseof a subtract.(A subtracts operandsanbe swapped
if they arefirst inverted,but the costoutweighsthe bene-
fit). Becausesuperscalarsllow out-of-orderexecution,a
goodassignmenstrategy shouldbe dynamic. The caseis
lessclearfor VLIW processorsyet someof our proposed
techniquesrealsoapplicableto VLIWS.

Our approacthasalsobeenextendedto multiplier FUs;
theseunits presenta differentsetof problems.Even mod-
ernsuperscalargendto only have oneintegerandonefloat-
ing point multiplier. Somepower savingsarestill possible,
however, by switchingoperands.In the caseof the Booth
multiplier, the power is known to dependnot only on the
switchingactvity of the operandsput alsoon the number
of 1'sin the secondoperand12]. Pawer awarerouting is
not beneficialfor FUsthatarenot duplicatedandnot com-
mutative, suchasthedivider FU.

3 Redated work

A varietyof hardwaretechniquefhave beenproposedor
power reduction,however thesemethodshave not consid-
eredfunctional unit assignment. Existing hardware tech-
niguesaregenerallyindependenof our method.For exam-
ple, implementinga clock-slawving mechanisrmalong with
our methodwill notimpactthe additionalpower reduction
thatour approactachiees.

Work hasalsobeendoneto reducethepower of anappli-
cationthroughcompilertechniqueg12], by suchmeansas
improvedinstructionschedulingmemorybankassignment,
instructionpackingandoperandswapping. We in factalso
considettheeffect of compile-timeoperandswappingupon
our results. But the difficulty of compile time methodsis
thatthe power consumedy anoperationis highly datade-
penden{l10], andthedatabehaior dynamicallychangess
the programexecutes.

The problemof staticallyassigninga given setof oper
ationsto specificfunctional units hasalso beenaddressed
in the context of high-level synthesisfor low power [6].
In [6], the authorspresentan optimal algorithmfor assign-
ing operationgo existing resourcesn the caseof dataflow
graphs(DFGs)without loops. More recently [11] shavs
thatthe caseof DFGswith loopsis NP-completeandpro-
posesan approximatealgorithm. The caseof a modernsu-
perscalamprocessoemplgying out-of-orderexecutionand
speculations muchmorecomplicatedhowever.

Thesedifficulties point to the needfor dynamicmethods
in hardwareto reducethe power consumption.

4 Functional unit assignment for low power

In this sectionwe presentan approactor assigningop-
erationsto specificFUs thatreduceghe total switchedca-
pacitanceof the executionstage.As shawvn in Figurel, we
canchoosea power-optimalassignmenby minimizing the
switchingactiity ontheinputs.

for ¢ =1 to Num(M)
for 57 =1 to Nun(I) {
Costé: Ham(OP1(I;) , OP1(M)) +Ham(OP2(;) , OP2(M;))
if (Commutative(I;))
cost;': M n (cost;ﬁ, (Ham(OPL(I;), OP2(M;)) +
Han(OP2(I;) , OP1(M;)))) }
Figure 2. Findsthe costof every possibleassignment.

Ourmainassumptiors thatwhenereranFU is notused,
it haslittle or no dynamicpower consumptionThis is usu-
ally achievablevia pover managemertechnique$16, 1, 2]
whichusetransparenitatcheso keepthe primaryinputval-
uesunchangedvhen&er the unit is not used.We will also
usethis hardware featurefor our purposesand thus, we
assumehatit is alreadyin placefor eachof theFUs. Tore-
ducethe effect of leakagecurrentwhenanFU is idle, tech-
niguessuchasthosein [9] mayalsobeused,if needed.
Somenomenclaturas helpful in the following discussion:
M;: thej,, moduleof thegivenFU type.

I;: thejy, instructionto executethis cycle onthis FU type.
Num(M), Num(l): # of modulesof typeM, or# of instruc-
tions of the giventype. The maximumvaluefor Num(l) is
Num(M), indicatingfull usageof thatFU type.

OP1(M;), OP2(M;): thefirst andsecondoperandf the
previousoperationperformedon this module.

OP1(l;), OP2(l;): the first and secondoperandsof the
giveninstruction.

Commutative(l ;): indicatesf |; is commutatve.
Ham(X,Y): theHammingdistancebetweerthenumbersX
andY. For floating point values,only the mantissgortions
of thenumbersareconsidered.

4.1 Theoptimal assignment

Althoughits implementatiorcostis prohibitive, we first
considerthe optimal solution, so as to provide intuition.
On a given cycle, the bestassignmenis the one which
minimizesthe total Hammingdistancefor all inputs. To
find this, we computethe Hammingdistanceof eachinput
operandto all previous input operands. The algorithmto
computethesecostsis shavn in Figure2. Oncetheseindi-
vidual costshave beencomputedwe examineall possible
assignmentandchooseheonewhich hasthesmallestotal
cost(definedasthe sumof its individual costs).

This algorithmis not practical. Sincethe routing logic
lies onthecritical pathof the executionstage suchlengtty
computationsresureto increasahe cycle time of the ma-
chine. Moreover, the power consumedin computingso
mary differentHammingdistancess likely to exceedthe
power savingsfrom insidethemodules.

4.2 Approximate Hammingdistancecomputation

To reducethe overheadof the above stratey, full Ham-
ming distancecomputationsnustbe avoided. We achieve
this by exploiting certain propertiesof humericaldatato
represenanoperandy a singleinformationbit.

Integer bit patterns It is known [3], that mostinteger
operandsaresmall. As a consequencanostof the bits in
a2'scomplementepresentatioareconstantandrepresent
the sign. It is likely that the Hammingdistancebetween
ary two consecutie operandvalueswill be dominatedby
the differencein their sign bits. Thuswe canreplacethe
operanddy justtheirtop bits, for the purpose®f Figure?2.

Table1 validatesthis technique. This tablerecordsthe
operandbit patternsof our benchmarks. (Section6 de-
scribesthe benchmarksand how they arerun.) By com-
bining the datafrom the table using probability methods,
we find thaton average whenthetop bit is 0, soare91.2%
of the bits, andwhenthis bit is 1, soare63.7%of thebits.
Floating point bit patterns Although not ascommon,a
reasonableumberof floating point operandsalso contain
only afew bits of precision for threemainreasons(1) the
castingof integer valuesinto floating point representation,
suchas happensvhenincrementinga floating point vari-
able, (2) the castingof single precisionnumbersinto dou-
ble precisionnumbershy the hardware becausehereare
no separatesingle-precisiorregistersandFUs, and(3) the
commonuseof roundnumbersn mary programs.

Hence the Hammingdistanceof floating point numbers
may alsobe approximated Floating pointsthatdo not use
all of their precisionwill have mary trailing zeroesOnthe
otherhand,numberswith full-precisionhave a 50% proba-
bility of ary givenbit beingzero. Thebits of afull-precision
numbercan be consideredandom,so the Hammingdis-
tancebetweena full-precisionnumberandarything elseis
about50% of the bits. The Hammingdistanceis only re-
ducedwhentwo consecutie inputshave trailing zeros.

OR-ing of the bottomfour bits of the operandis an ef-
fective meansof determiningwhich valuesdo not usethe
full precision.Simply examiningthe leastsignificantbit of
themantissds not sufiicient, becausehis will capturehalf
of the full-precision numbers,in additionto the intended
numbergshat have trailing zeroes.But usingfour bits only
misidentifies% of the full-precisionnumbers.We do not
wish to usemorethanfour bits, soasto maintainafastcir-
cuit. Although we referto an OR gate becauseét is more
intuitive,aNOR gateis equallyeffective andslightly faster

Table 1 describesthe effectivenessof our approach.
From Table 1 we canderive that 42.4% of floating point
operandshave zeroesin their bottom4 bits, implying that
3.8% of theseare full precisionnumbersthat happento
have four zeroes((100 — 42.4) + 15) andthatthere-
maining38.6%doindeedhave trailing zeroeq42.4 — 3.8).
This table also shavs that, on average,when the bottom
four bits arezero,86.5%of the bits arezero.

4.3 A lightweight approach for operand steering
In section4.2, the Hamming distancecomputationsof

Figure 2 are reducedto just the Hamming distancesof

the information bits of the operands;this sectionexam-

O|O|Com- IALU FRAU

P|P|muta- || Freq|OP1 OP2 Freq| OP1| OP2
1]|2] tive (%) | prob|prob (%) |prob|prob
0(0]| Yes 40.11§ .123|.068 || 16.79 .099|.094
00| No 29.38.078|.040 || 10.28.107|.158
0[1] Yes 9.56|.175/.594 || 15.64|.188|.522
01| No 0.58.109(.820 || 4.90|.132|.514
1|0]| Yes 17.07,.608|.089 || 5.92|.513|.190
1/0| No 1.51|.643(.048 || 4.22|.500|.188
1|1| Yes 1.52.703|.822 || 31.00 .508|.502
1|1 No 0.27|.663|.719 || 11.25/.507|.506

Table 1. Bit patterns in data The valuesin the first

threecolumnsare usedto separatehe resultsinto 8 rows.

Columns1 and 2 shav the information bits of both oper-
ands;(for integers,the top bit; for floating points,the OR-

ing of the bottomfour bits of the mantissa) Columns4 and
7 arethe occurrencdrequenciedor the given operandbits

andcommutatvity patternasapercentagef all executions
of theFU type. Columns5, 6, 8, and9 display for thespec-
ified operandthe probability of ary singlebit beinghigh.

ines avoiding the computationof Figure 2 entirely This
is achieved by predetermininghe FU assignmenfor ary
particularsetof instructionoperands- without comparison
to previousvalues.Someadditionaldefinitionsareuseful:
bit(operand): theinformationbit of theoperand.
case(l;): the concatenationof bit(OP1(1;)) with
bit(OP2(I;)). case classifiegheinstructionsgnto four pos-
sibletuples(00,01,10,11).

least: thecase with thelowestfrequeng, asfoundby ex-
amining Table 1 for all four caseswherethe commutatve
andnon-commutatie rows arecombinednto onevalue.
vector: the concatenationof (case(;), case(s), ...,
case{num(r)))- The size of vector is 2xNum(M). If
Num(l) < Num(M), the remainingbit pairsof vector are
setto theleast case.

Theinsightbehindan approactof just usingpresenin-
putswithout consideringthe previous onesis that, by dis-
tributing the variousinstructioncasesacrossthe available
modules,subsequeninstructionsto thatmodulearelikely
to belongto the samecase,without needingto checkthe
previous values. For example,if we considera machine
whereNum(M)=4,andwith anequalprobability of eachof
the four caseg00, 01, 10, and 11), it is logical to assign
eachof the casedo a separatanodule. In cycleswhenno
morethanoneinstructionof eachcaseis presentthis strat-
egy will placethemperfectly evenwithout checkingprevi-
ousvalues.Whenmultiple instructionsof thesamecaseare
presenthowever, theassignmenwvill benon-ideal.

The algorithmis implementedasfollows. During each
cycle,vector is usedastheinputaddresso alook uptable,
or LUT. The output of that table encodeghe assignment
of the operationsto modulesof the given FU. Therefore,
the LUT containsthe assignmenstratgy. Although the
algorithmis conceptuallyvisualizedasusingan LUT, the
actuallyimplementecircuit may usecombinationalogic,

Num(l) = 1 2 3 1
IALU | 40.3% | 36.2% | 19.4% | 4.2%
FRAU | 90.2% | 9.2% | 0.5% | 0.1%

Table 2. Frequency that the functional unit usesa par-

ticular number of modules for a 4-way machinewith 4

IALUs and4 FPAUs. Thereis no Num(l) = O columnbe-
causewe only considercycleswhich useat leastonemod-
ule — the othercasebeingunimportanto power consump-
tion within amodule(ignoringleakage).

aROM, or anothemethod.

Thecontentof the LUT aredeterminedasfollows. The
information from Table 1 — along with new information
from Table 2, which lists the probabilitiesof multiple in-
structionsexecutingon the given FU type— is usedto com-
pute the probabilitiesof different input patterns. For in-
stance,in the IALU, case00 is by far the mostcommon
(40.11% + 29.38% = 69.49%), so we assignthreeof the
modulesasbeinglikely to containcase00, andwe usethe
fourthmodulefor all threeothercasegourtestmachinehas
4 modules) For floating point, casel 1 is themostcommon
(31.00% + 11.25% = 42.25%), but becausat is unlikely
thattwo moduleswill be neededat once(seeTable?2), the
beststrategy is to first attemptto assigna unique caseto
eachmodule.

Wheneerthe numberof instructionsof aparticularcase
exceedghe numberof modulesreseredfor thatcasethen
it is necessaryo placesomeof themin non-idealmodules.
Theseoverflow situationsaredealtwith in theorderof their
probability of occurring. The strategyy for makingnon-ideal
assignmentss to greedilychoosethe modulethatis likely
to incurthe smallestcost.

4.4 Operand Swapping

We alsoproposea methodfor swappingoperandswith-
out consideringthe previous inputs; the intuition of our
methodis asfollows. The mostpowerconsuminginteger
computationsarethosewherethe informationbits for both
operanddail to matchthe bits from the previous operands
to that FU. Therearefour waysthat this may occur: case
00 follows casell, casell follows case00, caselO fol-
lows case01, or case01 follows casel0. In the lasttwo
of these swappingthe operandsonvertsa worst-casesitu-
ationinto a best-cassituation,assuminghatthe operation
is commutatve.

Thereforewe proposealwaysswappingtheoperandgor
one of thesecases. To minimize mismatchesthe caseto
swap from shouldbe the onethat hasthe lower frequeng
of non-commutatie instructions. Only non-commutatie
instructionsare consideredbecausehesearethe onesthat
will not be flipped, and will thereforecausemismatches.
Table 1 shavs that for the IALU, the 4, row hasa lower
frequeng thanthe 6;;,; for the FPAU, the 6;;, row is the
smaller Therefore,case01 instructionswill be swapped

for thelALU, andcaselOinstructionsfor the FPAU.
Compiler-based swapping An alternatve strateyy for
swappingoperandsds to performit in software, by physi-
cally changingthe machineinstructionsin the binary exe-
cutable,using profiling. This approachis not particularly
novel, but is studiedso asto avoid the hardware cost of
dynamicoperandswapping. It is alsoinstructional,in that
our resultsshav thatthe benefitof our hardware methodis
fairly independenof this transformation.

Compilerbased swapping has three advantagesover
hardware swapping. First, it avoids the overheadof hard-
wareswapping. In fact, it offers somepower improvement
even when our hardware mechanisnis not implemented.
Secondthecompilercanafford to countthefull numberof
high bits in the operandsratherthanapproximatingthem
by singlebit values.For example,a“1+511” anda“511+1"
operationbothlook like a case00 to our hardwaremethod.
A compile-timemethod however, canrecognizethe differ-
enceand swap when beneficial. Third, certainoperations
are commutableby the compiler but not by the hardware.
An exampleis the*>" operationwhich canbecomethe <
operationwhenthe operandsreswapped.The compileris
ableto changdeheopcodebut thecurrenthardwarestrateyy
cannot.

But thecompilerapproactalsohasthreemaindisadwan-
tages. First, eachinstructions operandsare either always
swappedor alwaysnot. The decisionis madebasedon the
average numberof high bits for the two operandsin con-
trast,thehardwaretechniquecaptureshedynamicbehaior
of theinstruction.Hardwarecanchooseo swapaninstruc-
tion’s operandson one cycle, and not to swap themon a
latercycle. Secondsincetheprogrammustbeprofiled,per
formancewill vary somavhat for differentinput patterns.
Third, someinstructionsare not commutatve in software.
One exampleis the immediateadd. While this operation
is commutatve, thereis no way to specifyits operandor-
deringin the machinelanguage- the immediatevalueis
alwaystakento bethe second.

Sinceboth hardware and compiler swappinghave their
adwantagesthe bestresultsareachiezedwith both.

5 Practical considerations

We now considerthe costsof our method. The poten-
tial costsare(1) increasegower andareadueto additional
busesandlogic, and (2) increasectycle time dueto more
comple routing logic. In fact, additional busesare not
neededandtheincreaseén logic is notlarge.

In appraisinghe costsof the methodi,it is helpful to re-
view how FUsarecurrentlyassignedy a superscalapro-
cessar The mostcommonmethodsarelooselybasedupon
Tomasulaos$ algorithm[8], whereeachFU type hasits own
reservation station, RS. Oneachcycle,thoseinstructions
whoseoperandbecomeeadyareremovedfrom RSandas-
signedto the FUs on a first-come-first-ser basis. Figure

T
Oper—, opnd 1. H
ation 1o 4. Routing
& [operiopnad -~ | Control
O | ation Uopnd . l
"c_'U‘ Operf: opnd 1 o Loglc
& [2on Fopnad e £
T - -
Oper— opnd N~
[l | 22 L CLETEL
Is) ation I'gpn 2
"(.B' Oper—: opnd 1 @©
L | ation 1 opna 4 S
j t =
@ [oparjopna]) 5
g ation!opnd‘.,‘) c
xx Oper—:_ogngz_l LE
ation I o 4
,opnd g\
Oper-opna g ... T \/
alion Fopng oo S
Crossbar

Figure 3. Typical Tomasulo hardware On a particular
cycle, 3 operationsareshadedo shaw they arereadyto ex-
ecute.Dottedlinesindicateinactive buseswhile solid lines
represenactive ones.Operationsndicatetheir readinesso
the routing controllogic, which in turn scheduleshem,in
order to the FUs. The key obsenationis thatthe crossbar
impliesthatno new buseswill be neededy our method.

3 shaws the basichardware usedin Tomasulos algorithm.
This algorithmallows instructionsto executeout of ordet
soit requiresroutinglogic anda crossbar Since,on exist-
ing machinesmoststationsmustalreadybe ableto mapto
ary module,we do not needto addnew wires.

It is unavoidable however, thatour methodincreaseshe
compleity of theroutingcontrollogic. We replacethe ex-
isting simpleroutinglogic with the not-as-simpld.UT de-
scribedabove. To make the LUT smallerand faster we
proposereducingthe size of the vector SinceNum(l) <
Num(M) for most cycles, it is reasonablego considera
smallervectorthatmaynotalwayscontainall of theinstruc-
tions. Reducingthe size of the vectormakesthe proposed
hardware modificationfasterandthereforemoreattractve.
In the resultswe shawv thata 4-bit vectoryields good per
formance.With a 4-bit vector, our fully implementedalgo-
rithm for the IALU, on a machinewith 8 entriesin its RS,
requires58 small logic gatesand 6 logic levels. With 32
entries,130 gatesand8 levels areneeded.This is a negli-
gible fraction of the mary thousand®f gatespresenin the
IALU. Thereforethepoweranddelayintroducedaresmall.

A third issueis thatthe crossbarcurrentlyusedin Toma-
sulo’s algorithmdoesnot allow operandswapping. To per
form operandswapping, it would be necessaryo include
additionalwiring afterthecrossbaof Figure3. This makes
thecompilerbasedswappingmethodsmoreattractie.

6 Experimental Results

We have implementedthe methodologydescribedin
section4 using the sim-outoder simulatorfrom the Sim-
pleScalar2.0 suite[5], with the default configurationof 4
IALUs, 4 FRAUSs, 1integermultiplier, and1 floatingpoint

/\; - Base + Hardware + Compiler swapping
=

T:/ soff- Base + Hardware swapping

g “ . [Base (no operand swapping)

o

>

e}

s 0

2

5 HE

o) 20

=

(8]

o]

Full 1-Bit 8-Bit 4-Bit
Ham Ham LUT LUT LUT

2-Bit Original

@
sr — - Base + Hardware + Compiler swapping
30 Base + Hardware swapping
25 F . Base (no operand swapping)

20K

15

hlo) o

Energy Reduction (%)

Full 1-Bit 8-Bit 4-Bit
Ham Ham LUT LUT LUT

_ (b)

Figure 4. Resultsfor the(a) IALU and(b) FPAU.

2-Bit Original

multiplier. SimpleScalaisimulatesa MIPS-like machine,
with 32-bitintegerregistersand64-bit floating point regis-
ters. The integer benchmarkaisedare: 88ksim, ijpeg, li,
go,compressegcl,andperl. Thefloating pointbenchmarks
are:apsi,applu,hydro2d,wave5, swim, mgrid, turb3d,and
fpppp. The benchmarksare from SPEC95 [7], andwere
runto completionon largeinputfiles.

Figure 4 displays the power reduction of different
schemesas a fraction of the total power consumptionof
the FU type under consideration. Eachbar is a stack of
threevalues,so asto shav the effect of operandswapping
on the switchingactiity (which loosely approximateen-
ergy). Full Ham (section4.1) and 1-bit Ham (section4.2)
are cost-prohibitve, but areincludedfor comparison.Full
Ham identifiesthe maximumpossibleimprovement. 1-bit
Hamis anupperboundon theimprovementpossiblesolely
throughtheinformationbits. The 8 bit LUT representshe
approactlof sectiord.3. The4-bit and2-bit LUTs represent
shortenedvectors,as consideredn section5. The Orig-
inal columnrepresents first-come-first-sery assignment
stratgy. The gain for Original is not zerosinceswapping
benefitst aswell.

Figure4 providesfive insights.First,a4-bit LUT is rec-
ommendedbecausdts power savings are comparableto
the upperbound(1-bit Ham), while beingsimpleto imple-
ment. From Figure 4, the improvementfor the 4-bit LUT
with hardwareswappingis 18%for the FPAU and17%for
thelALU. With compilerswapping,it is 26%,for thelALU.

Integer FloatingPoint
Freq| OP1| OP2 Freq| OP1| OP2
Case || (%) | prob| prob (%) | prob | prob
00 93.790.116/0.056 || 20.12/0.139 0.095
01 1.07|0.055/0.956 || 15.52/0.160/0.511
10 2.76|0.8380.076 || 21.290.527/0.090
11 2.38| 0.71]0.909 || 43.07/0.274{0.271

Table 3. Bit patternsin multiplication data (Multiplier
power is relatedto how mary 01 casesanbecomelO.)

If noswappingis providedby thehardwareor thecompiler
thestill-rathersimple8-bit LUT yieldsavery similarresult
to the 4-bit LUT with hardware swapping. SecondFigure
4 shaws that the FPAU doesnot needoperandswapping,
dueto differencesetweerntegersandfloats. For integers,
the majority of bits areusuallythe sameasthe information
bit; for floating points,only aninformationbit of O hasthis
property Thus,for thelALU, a case01 aftera 10 causes
most bits to switch; whereas a case01 after another01
switchesfew bits. In contrastfor the FPAU, acase0l after
alo switches% of the bits; whereas a case01 after an-
other01 still switchesﬁ of thebits. Third, the FFAU is less
sensitve to the sizeof thevector becausehefloating point
unit is lessheavily loaded(Table?2). Fourth, profile-based
swappingis more effective that hardware-basedwapping,
becausdhe swap decisionis basedon the entirevalue, as
opposedto the information bits alone. In fact, “Base +
Compiler Swapping” (not shovn) is nearly as effective as
“Base+ Hardware+ Compiler”. Fifth, implementingcom-
piler swappingdoesnotreducesheadditionalbenefitof our
hardware approach.Rather the benefitof compiler swap-
ping is slightly higherwith an 8-bit LUT thanit is for the
original processothathasno hardwaremodifications.
Table 3 displaysthe bit patternsfor multiplication data.
This table, shavs that 15.5% of floating point multiplica-
tions canbe swappedfrom case01to caselO, certainlyre-
sultingin someadditionalpower savings—thoughnotquan-
tifiable sincewe have no power modelfor multiplication.

7 Conclusions

We presenta methodfor dynamicallyassigningopera-
tionsto functionalunits,soasto reducepower consumption
for thoseunitswith duplicatedmodules.We alsoexamined
operandswapping,bothin conjunctionwith ourassignment
algorithm, andon its own merits for non-duplicatedunc-
tional unitslike the multiplier. Our resultsshav thatthese
approachesanreducel7% of the IALU and 18% of the
FPAU switching,with only asmallhardwarechange Com-
piler swappingincreaseshelALU gainto 26%.

References

[1] M. Alidina, J.Monteiro,S. DevadasandM. Papaeftlymiou.
Precomputation-Base8equentialLogic Optimization for
Low Pawer. IEEE Transactionon VLS| Systems2(4):426—
436,April 1994.

[2] L. BeniniandG. D. Micheli. Transformationand Synthe-
sis of FSMsfor Low Pawver GatedClock Implementation.
IEEE Transactionson ComputerAided Design 15(6):630—
643,Junel996.

[3] D.BrooksandM. Martonosi. DynamicallyExploiting Nar-
row Width Operandgo Improve ProcessoPower and Per
formanceln Procofthe5thInt’l SymponHigh Performance
ComputerArchitectue (HPCA), pagesl3—22 Januaryl 999.

[4] D.Brooks,V. Tiwari, andM. Martonosi. Wattch: A Frame-
work for Architectural-Leel Paver AnalysisandOptimiza-
tions. In Proceedingsof the 27th International Sympo-
siumon ComputerArchitecture (ISCA) Vancouer, British
Columbia,June2000.

[5] D.BurgerandT. Austin. TheSimpleScalaifool Set,Version
2.0. TechnicalReportTR 1342, University of Wisconsin,
Madison,WI, Junel997.

[6] J.-M. ChangandM. Pedram.Module Assignmenfor Low
Pawer. In Proc of the EuropeanConfeenceon DesignAu-
tomation(EDAC), pages376—381Septembefl 996.

[71 S. P E. Corporation. The SPEC benchmark suites.
http://wwwspec.og/.

[8] J. Hennessyand D. Patterson. ComputerArchitectue A
QuantitativeAppmoad. Morgan Kaufmann,Palo Alto, CA,
seconckdition, 1996.

[9] M. JohnsonD. SomasekhamandK. Roy. LeakageControl
with Efficient Useof TransistorStacksin Single Threshold
CMOS. In DesignAutomationConfeence pagesi42—-445,
Junel999.

[10] B.Klass,D. E.ThomasH. Schmit,andD. E. Nagle.Model-
ing Inter-InstructionEnegy Effectsin a Digital SignalPro-
cessor In PowerDriven Microarchitecture Workshop, in
conjunctionwith Int'l Symposiunon ComputerArchitecture,
Junel998.

[11] L. Kruse,E. Schmidt,G. JochenshaandW. Nebel. Lower
andUpperBoundson the Switching Avtivity in Scheduling
DataFlow Graphs. In Proc of the ACM Int'l Sympon Low
PowerDesign pagesl15-120 August1999.

[12] T.-C.Lee,V. Tiwari, S.Malik, andM.Fujita. Ponver Analysis
andMinimization Techniquesor EmbeddedSP Software.
IEEE Transactionon VLS| SystemdaMar. 1997.

[13] R. Marculescu,D. Marculescuand M. Pedram. Sequence
compactiorfor powerestimation:Theoryandpractice IEEE
Transactionson ComputerAided Design 18(7):973-993,
1999.

[14] J.MermetandW. Nebel. Low Power Designin DeepSub-
micron Electronics Kluwer AcademicPublishersNorwell,
MA, 1997.

[15] M. Pedram. Power Minimization in IC Design: Principles
andApplications.ACM Transactionson DesignAutomation
of Electonic Systemsl(1):1-54 Januaryl996.

[16] V. Tiwari, S.Malik, andP. Ashar Guarded=valuation:Push-
ing Pover Managemento Logic Synthesis/Designln Pro-
ceeding®fthe ACM/IEEE InternationalSymposiunon Low
PowerDesign pagesl39—-142 April 1994.

