
Dynamic Functional Unit Assignment for Low Power

SteveHaga,NatashaReeves,Rajeev Barua
Deptof Electrical& ComputerEngineering

Universityof Maryland,CollegePark

DianaMarculescu
Deptof Electrical& ComputerEngineering

CarnegieMellon University

Abstract
A hardwaremethodfor functionalunit assignmentis pre-

sented,basedontheprinciplethata functionalunit’spower
consumptionis approximatedbytheswitchingactivityof its
inputs. Sincecomputingthe Hammingdistanceof the in-
putsin hardware is expensive, only a portion of the inputs
are examined.Integers oftenhavemanyidentical top bits,
dueto signextension,andfloatingpointsoftenhavemany
zeros in the least significantdigits, due to the castingof
integer valuesinto floatingpoint. Theaccuracyof theseap-
proximationsis studiedandtheresultsare usedto develop
a simple, but effective, hardware scheme.

1 Introduction
Power consumptionhasbecomea critical issuein mi-

croprocessordesign,dueto increasingcomputercomplex-
ity andclock speeds.Many techniqueshave beenexplored
to reducethepowerconsumptionof processors.Low power
techniquesallow increasedclockspeedsandbatterylife.

We presenta simple hardware schemeto reducethe
power in functionalunits, by examininga few bits of the
operandsandassigningfunctionalunits accordingly. With
this technique,wesucceededin reducingthepowerof inte-
gerALU operationsby 17%andthepowerof floatingpoint
operationsby 18%. In [4] it wasfoundthataround22%of
the processor’s power is consumedin the executionunits.
Thus,thedecreasein totalchippower is roughly4%. While
thisoverallgain is modest,two pointsareto benoted.First,
onewayto reduceoverallpower is to combinevarioustech-
niquessuchasours,eachtargetinga differentcritical area
of the chip. Second,reducingthe executionunits’ power
consumptionby 17% to 18% is desirable,independentof
the the overall effect, becausethe executioncoreis oneof
thehot-spotsof power densitywithin theprocessor.

We also presentan independentcompiler optimization
calledswappingthat further improvesthe gain for integer
ALU operationsto 26%.

2 Energy modeling in functional units
A seriesof approximationsareusedto developa simple

power consumptionmodel for many computationalmod-

F
U

F
U

F
U

F
U

F
U

F
U

Alternative routing (57% less energy)Default routing

0001 0001

FFF70A01

7F00

0111

0A71

0A01

7FFF

0001

cycle 2 cycle 1

0001 0001

FFF70A01

7F00

0111

0A71

0A01

7FFF

0001

cycle 2 cycle 1

Figure 1. Alternative dataroutesfor a3-wayprocessor

ules. To begin, it is known [15] that the most impor-
tant sourceof power dissipationin a module is the dy-
namic charging and discharging of its gates, called the
switched capacitance. This switchedcapacitanceis de-
pendentuponthe module’s input values[14]. It hasbeen
further shown [13, 6] that the Hammingdistanceof con-
secutive input patterns,definedasthe numberof bit posi-
tionsthatdiffer betweenthem,providesa suitablemeasure
of power consumption. In [13, 6], power is modeledas:���������
	 ���
 ������ ��� ��� � � 	 ���
 ������������ ���! #"!$&%('*)��!+ ,
where
 ��� = voltage,� = clockfrequency, � � = capacitance
of outputgate , , � � � = average# transitionsfor outputgate
, (called switching activity), ����� ���! -" = the total capaci-
tanceof the module,and $�%('*)��!+ = the Hammingdistance
of thecurrentinputsto thepreviousones.

Sincepowerconsumptionis approximatelylinearlypro-
portionalto $&%('*)��!+ , it is desirableto minimize $&%('*)��!+ . Such
a minimizationis possiblebecausemodernprocessorscon-
tain multiple integer arithmeticlogic units, or IALUs, and
multiple floating point arithmeticunits, or FPAUs. IALU
and FPAU are typesof functionalunits, or FUs. Current
superscalarsassignoperationsto the FUs of a given type
without consideringpower; a betterassignmentcanreduce
power, however, asillustratedby the examplein Figure1,
which shows the input operandsto threeidenticalFUs, in
two successive cycles.Thealternateroutingconsumesless
power becauseit reducesthe Hammingdistancebetween
cycles 1 and 2. Figure 1 assumesthat the router hasthe
ability to notonly assignanoperationto any FU, but alsoto
swaptheoperands,whenbeneficialandlegal. For instance,

it is legal to swaptheoperandsof anaddoperation,but not
thoseof a subtract.(A subtract’s operandscanbeswapped
if they arefirst inverted,but the costoutweighsthe bene-
fit). Becausesuperscalarsallow out-of-orderexecution,a
goodassignmentstrategy shouldbe dynamic. The caseis
lessclearfor VLIW processors,yet someof our proposed
techniquesarealsoapplicableto VLIWs.

Our approachhasalsobeenextendedto multiplier FUs;
theseunitspresenta differentsetof problems.Evenmod-
ernsuperscalarstendto only haveoneintegerandonefloat-
ing point multiplier. Somepower savingsarestill possible,
however, by switchingoperands.In the caseof the Booth
multiplier, the power is known to dependnot only on the
switchingactivity of the operands,but alsoon the number
of 1’s in the secondoperand[12]. Power awarerouting is
not beneficialfor FUsthatarenot duplicatedandnot com-
mutative,suchasthedividerFU.

3 Related work
A varietyof hardwaretechniqueshavebeenproposedfor

power reduction,however thesemethodshave not consid-
eredfunctional unit assignment.Existing hardware tech-
niquesaregenerallyindependentof ourmethod.For exam-
ple, implementinga clock-slowing mechanismalongwith
our methodwill not impacttheadditionalpower reduction
thatourapproachachieves.

Work hasalsobeendoneto reducethepowerof anappli-
cationthroughcompilertechniques[12], by suchmeansas
improvedinstructionscheduling,memorybankassignment,
instructionpackingandoperandswapping.We in factalso
considertheeffectof compile-timeoperandswappingupon
our results. But the difficulty of compile time methodsis
thatthepower consumedby anoperationis highly datade-
pendent[10], andthedatabehavior dynamicallychangesas
theprogramexecutes.

Theproblemof staticallyassigninga givensetof oper-
ationsto specificfunctionalunits hasalsobeenaddressed
in the context of high-level synthesisfor low power [6].
In [6], theauthorspresentanoptimalalgorithmfor assign-
ing operationsto existing resourcesin thecaseof dataflow
graphs(DFGs)without loops. More recently, [11] shows
that thecaseof DFGswith loopsis NP-complete,andpro-
posesanapproximatealgorithm.Thecaseof a modernsu-
perscalarprocessoremploying out-of-orderexecutionand
speculationis muchmorecomplicated,however.

Thesedifficultiespoint to theneedfor dynamicmethods
in hardwareto reducethepowerconsumption.

4 Functional unit assignment for low power
In this sectionwe presentanapproachfor assigningop-

erationsto specificFUs that reducesthe total switchedca-
pacitanceof theexecutionstage.As shown in Figure1, we
canchoosea power-optimalassignmentby minimizing the
switchingactivity on theinputs.

for . = 1 to Num(/)
for 0 = 1 to Num(1) 2354�687:9; = Ham(OP1(1 ;),OP1(/ 9))+Ham(OP2(1 ;),OP2(/ 9))
if (Commutative(1 ;))354�687:9; = Min (

354�687<9; , (Ham(OP1(1 ;),OP2(/ 9))+
Ham(OP2(1 ;),OP1(/ 9)))) =

Figure 2. Findsthecostof everypossibleassignment.

Ourmainassumptionis thatwheneveranFU is notused,
it haslittle or no dynamicpower consumption.This is usu-
ally achievablevia powermanagementtechniques[16, 1, 2]
whichusetransparentlatchesto keeptheprimaryinputval-
uesunchangedwhenever theunit is not used.We will also
usethis hardware featurefor our purposes,and thus, we
assumethatit is alreadyin placefor eachof theFUs.To re-
ducetheeffect of leakagecurrentwhenanFU is idle, tech-
niquessuchasthosein [9] mayalsobeused,if needed.
Somenomenclatureis helpful in the following discussion:
M > : the ? +A@ moduleof thegivenFU type.
I> : the ? +A@ instructionto executethiscycleonthisFU type.
Num(M), Num(I): # of modulesof typeM, or # of instruc-
tionsof thegiventype. Themaximumvaluefor Num(I) is
Num(M), indicatingfull usageof thatFU type.
OP1(M>), OP2(M>): thefirst andsecondoperandsof the
previousoperationperformedon thismodule.
OP1(I >), OP2(I>): the first and secondoperandsof the
giveninstruction.
Commutative(I>): indicatesif I > is commutative.
Ham(X,Y): theHammingdistancebetweenthenumbersX
andY. For floatingpoint values,only themantissaportions
of thenumbersareconsidered.

4.1 The optimal assignment
Althoughits implementationcostis prohibitive, we first

considerthe optimal solution, so as to provide intuition.
On a given cycle, the best assignmentis the one which
minimizesthe total Hammingdistancefor all inputs. To
find this, we computetheHammingdistanceof eachinput
operandto all previous input operands.The algorithmto
computethesecostsis shown in Figure2. Oncetheseindi-
vidual costshave beencomputed,we examineall possible
assignmentsandchoosetheonewhichhasthesmallesttotal
cost(definedasthesumof its individual costs).

This algorithmis not practical. Sincethe routing logic
lies on thecritical pathof theexecutionstage,suchlengthy
computationsaresureto increasethecycle time of thema-
chine. Moreover, the power consumedin computingso
many differentHammingdistancesis likely to exceedthe
powersavingsfrom insidethemodules.

4.2 Approximate Hamming distance computation
To reducetheoverheadof theabove strategy, full Ham-

ming distancecomputationsmustbe avoided. We achieve
this by exploiting certainpropertiesof numericaldata to
representanoperandby asingleinformationbit.

2

Integer bit patterns It is known [3], that most integer
operandsaresmall. As a consequence,mostof the bits in
a 2’s complementrepresentationareconstantandrepresent
the sign. It is likely that the Hammingdistancebetween
any two consecutive operandvalueswill be dominatedby
the differencein their sign bits. Thuswe canreplacethe
operandsby just their topbits, for thepurposesof Figure2.

Table1 validatesthis technique.This tablerecordsthe
operandbit patternsof our benchmarks. (Section6 de-
scribesthe benchmarksand how they are run.) By com-
bining the datafrom the table using probability methods,
we find thaton average,whenthetop bit is 0, soare91.2%
of thebits,andwhenthisbit is 1, soare63.7%of thebits.
Floating point bit patterns Although not ascommon,a
reasonablenumberof floating point operandsalsocontain
only a few bits of precision,for threemainreasons:(1) the
castingof integer valuesinto floating point representation,
suchas happenswhen incrementinga floating point vari-
able,(2) the castingof singleprecisionnumbersinto dou-
ble precisionnumbersby the hardware becausethereare
no separate,single-precisionregistersandFUs,and(3) the
commonuseof roundnumbersin many programs.

Hence,theHammingdistanceof floatingpoint numbers
mayalsobeapproximated.Floatingpointsthatdo not use
all of their precisionwill have many trailing zeroes.On the
otherhand,numberswith full-precisionhave a 50%proba-
bility of any givenbit beingzero.Thebitsof afull-precision
numbercan be consideredrandom,so the Hammingdis-
tancebetweena full-precisionnumberandanything elseis
about50% of the bits. The Hammingdistanceis only re-
ducedwhentwo consecutive inputshave trailing zeros.

OR-ing of the bottomfour bits of the operandis an ef-
fective meansof determiningwhich valuesdo not usethe
full precision.Simply examiningtheleastsignificantbit of
themantissais not sufficient, becausethis will capturehalf
of the full-precision numbers,in addition to the intended
numbersthathave trailing zeroes.But usingfour bits only
misidentifies

��CB of the full-precisionnumbers.We do not
wish to usemorethanfour bits,soasto maintaina fastcir-
cuit. Although we refer to an OR gatebecauseit is more
intuitive,aNORgateis equallyeffectiveandslightly faster.

Table 1 describesthe effectivenessof our approach.
From Table 1 we can derive that 42.4%of floating point
operandshave zeroesin their bottom4 bits, implying that
3.8% of theseare full precisionnumbersthat happento
have four zeroes(D8E�F*FHGJI�KML I�NPOQE�R) and that the re-
maining38.6%do indeedhave trailing zeroes(I�KSL ITGVUSL W).
This table also shows that, on average,when the bottom
four bitsarezero,86.5%of thebits arezero.

4.3 A lightweight approach for operand steering
In section4.2, the Hammingdistancecomputationsof

Figure 2 are reducedto just the Hamming distancesof
the information bits of the operands;this sectionexam-

O O Com- IALU FPAU
P P muta- Freq OP1 OP2 Freq OP1 OP2
1 2 tive (%) prob prob (%) prob prob
0 0 Yes 40.11 .123 .068 16.79 .099 .094
0 0 No 29.38 .078 .040 10.28 .107 .158
0 1 Yes 9.56 .175 .594 15.64 .188 .522
0 1 No 0.58 .109 .820 4.90 .132 .514
1 0 Yes 17.07 .608 .089 5.92 .513 .190
1 0 No 1.51 .643 .048 4.22 .500 .188
1 1 Yes 1.52 .703 .822 31.00 .508 .502
1 1 No 0.27 .663 .719 11.25 .507 .506

Table 1. Bit patterns in data The values in the first
threecolumnsareusedto separatethe resultsinto 8 rows.
Columns1 and2 show the informationbits of both oper-
ands;(for integers,the top bit; for floatingpoints,theOR-
ing of thebottomfour bitsof themantissa).Columns4 and
7 aretheoccurrencefrequenciesfor thegivenoperandbits
andcommutativity pattern,asapercentageof all executions
of theFU type.Columns5, 6, 8, and9 display, for thespec-
ified operand,theprobabilityof any singlebit beinghigh.

ines avoiding the computationof Figure 2 entirely. This
is achieved by predeterminingthe FU assignmentfor any
particularsetof instructionoperands– without comparison
to previousvalues.Someadditionaldefinitionsareuseful:
bit(operand): theinformationbit of theoperand.
case(I >): the concatenation of X<Y<Z[D:\ � E�D(]^>^N8N with
X_Y<Z[D:\ � K�D(]^>^N8N . `ba � � classifiestheinstructionsinto four pos-
sibletuples(00,01,10,11).
least: the `ca � � with thelowestfrequency, asfoundby ex-
aminingTable1 for all four cases,wherethecommutative
andnon-commutative rows arecombinedinto onevalue.
vector: the concatenationof (case(] �), case(] �), ...,
case(]^d � �fe-g�h)). The size of i � `<Z �j� is 2 k Num(M). If
Num(I) l Num(M), the remainingbit pairsof i � `<Z �j� are
setto the m � a � Z case.

Theinsightbehindanapproachof just usingpresentin-
putswithout consideringthe previous onesis that, by dis-
tributing the variousinstructioncasesacrossthe available
modules,subsequentinstructionsto that modulearelikely
to belongto the samecase,without needingto checkthe
previous values. For example, if we considera machine
whereNum(M)=4,andwith anequalprobabilityof eachof
the four cases(00, 01, 10, and11), it is logical to assign
eachof thecasesto a separatemodule. In cycleswhenno
morethanoneinstructionof eachcaseis present,this strat-
egy will placethemperfectly, evenwithout checkingprevi-
ousvalues.Whenmultiple instructionsof thesamecaseare
present,however, theassignmentwill benon-ideal.

The algorithmis implementedasfollows. During each
cycle, i � `<Z ��� is usedastheinputaddressto a look uptable,
or LUT. The output of that table encodesthe assignment
of the operationsto modulesof the given FU. Therefore,
the LUT containsthe assignmentstrategy. Although the
algorithmis conceptuallyvisualizedasusingan LUT, the
actuallyimplementedcircuit mayusecombinationallogic,

3

Num(I) = 1 2 3 4
IALU 40.3% 36.2% 19.4% 4.2%
FPAU 90.2% 9.2% 0.5% 0.1%

Table 2. Frequency that the functional unit uses a par-
ticular number of modules for a 4-way machinewith 4
IALUs and4 FPAUs. Thereis no Num(I) = 0 columnbe-
causewe only considercycleswhich useat leastonemod-
ule – theothercasebeingunimportantto power consump-
tion within amodule(ignoringleakage).

aROM, or anothermethod.
Thecontentsof theLUT aredeterminedasfollows. The

information from Table 1 – along with new information
from Table2, which lists the probabilitiesof multiple in-
structionsexecutingon thegivenFU type– is usedto com-
pute the probabilitiesof different input patterns. For in-
stance,in the IALU, case00 is by far the most common
(I�FSLnE�E�oqprK�sSL U�W�outwv�sML I�s�o), so we assignthreeof the
modulesasbeinglikely to containcase00, andwe usethe
fourthmodulefor all threeothercases(ourtestmachinehas
4 modules).For floatingpoint,case11 is themostcommon
(U�E^L F�F�oqpxE�E^L K*R�outqI*KSL K�R�o), but becauseit is unlikely
that two moduleswill beneededat once(seeTable2), the
beststrategy is to first attemptto assigna uniquecaseto
eachmodule.

Whenever thenumberof instructionsof aparticularcase
exceedsthenumberof modulesreservedfor thatcase,then
it is necessaryto placesomeof themin non-idealmodules.
Theseoverflow situationsaredealtwith in theorderof their
probabilityof occurring.Thestrategy for makingnon-ideal
assignmentsis to greedilychoosethemodulethat is likely
to incur thesmallestcost.

4.4 Operand Swapping
We alsoproposea methodfor swappingoperandswith-

out consideringthe previous inputs; the intuition of our
methodis asfollows. The mostpower-consuminginteger
computationsarethosewheretheinformationbits for both
operandsfail to matchthebits from thepreviousoperands
to that FU. Therearefour waysthat this may occur: case
00 follows case11, case11 follows case00, case10 fol-
lows case01, or case01 follows case10. In the last two
of these,swappingtheoperandsconvertsa worst-casesitu-
ationinto a best-casesituation,assumingthattheoperation
is commutative.

Therefore,weproposealwaysswappingtheoperandsfor
oneof thesecases.To minimize mismatches,the caseto
swap from shouldbe the onethat hasthe lower frequency
of non-commutative instructions. Only non-commutative
instructionsareconsidered,becausethesearetheonesthat
will not be flipped, and will thereforecausemismatches.
Table1 shows that for the IALU, the I +A@ row hasa lower
frequency than the v +A@ ; for the FPAU, the v +A@ row is the
smaller. Therefore,case01 instructionswill be swapped

for theIALU, andcase10 instructionsfor theFPAU.
Compiler-based swapping An alternative strategy for
swappingoperandsis to performit in software,by physi-
cally changingthe machineinstructionsin the binary exe-
cutable,usingprofiling. This approachis not particularly
novel, but is studiedso as to avoid the hardware cost of
dynamicoperandswapping. It is alsoinstructional,in that
our resultsshow thatthebenefitof our hardwaremethodis
fairly independentof this transformation.

Compiler-basedswapping has three advantagesover
hardwareswapping. First, it avoids the overheadof hard-
wareswapping.In fact, it offerssomepower improvement
even when our hardware mechanismis not implemented.
Second,thecompilercanafford to countthefull numberof
high bits in the operands,ratherthanapproximatingthem
by singlebit values.For example,a“1+511” anda“511+1”
operationbothlook like a case00 to our hardwaremethod.
A compile-timemethod,however, canrecognizethediffer-
enceandswap whenbeneficial. Third, certainoperations
arecommutableby the compilerbut not by the hardware.
An exampleis the“ y ” operation,which canbecomethe z
operationwhentheoperandsareswapped.Thecompileris
ableto changetheopcode,but thecurrenthardwarestrategy
cannot.

But thecompilerapproachalsohasthreemaindisadvan-
tages. First, eachinstruction’s operandsareeitheralways
swappedor alwaysnot. Thedecisionis madebasedon the
aci �8� a|{ � numberof high bits for thetwo operands.In con-
trast,thehardwaretechniquecapturesthedynamicbehavior
of theinstruction.Hardwarecanchooseto swapaninstruc-
tion’s operandson one cycle, and not to swap them on a
latercycle. Second,sincetheprogrammustbeprofiled,per-
formancewill vary somewhat for different input patterns.
Third, someinstructionsarenot commutative in software.
One exampleis the immediateadd. While this operation
is commutative, thereis no way to specify its operandor-
dering in the machinelanguage– the immediatevalue is
alwaystakento bethesecond.

Sinceboth hardwareandcompilerswappinghave their
advantages,thebestresultsareachievedwith both.

5 Practical considerations
We now considerthe costsof our method. The poten-

tial costsare(1) increasedpowerandareadueto additional
busesandlogic, and(2) increasedcycle time dueto more
complex routing logic. In fact, additional busesare not
needed,andtheincreasein logic is not large.

In appraisingthecostsof themethod,it is helpful to re-
view how FUsarecurrentlyassignedby a superscalarpro-
cessor. Themostcommonmethodsarelooselybasedupon
Tomasulo’s algorithm[8], whereeachFU typehasits own�M� � �8� i�a|Z:Y ��} � Zca|Z:Y �j} , RS. Oneachcycle,thoseinstructions
whoseoperandsbecomereadyareremovedfromRSandas-
signedto the FUs on a first-come-first-serve basis. Figure

4

Routing
Control
Logic

R
es

er
va

tio
n

S
ta

tio
ns

F
un

ct
io

na
l U

ni
ts

Crossbar

opnd 2

opnd 1
ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 2ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 2

opnd 1
ation
Oper−

opnd 1

Figure 3. Typical Tomasulo hardware On a particular
cycle,3 operationsareshadedto show they arereadyto ex-
ecute.Dottedlinesindicateinactivebuses,while solid lines
representactiveones.Operationsindicatetheir readinessto
the routingcontrol logic, which in turn schedulesthem,in
order, to theFUs. Thekey observation is that thecrossbar
impliesthatnonew buseswill beneededby ourmethod.

3 shows thebasichardwareusedin Tomasulo’s algorithm.
This algorithmallows instructionsto executeout of order,
so it requiresrouting logic anda crossbar. Since,on exist-
ing machines,moststationsmustalreadybeableto mapto
any module,wedonotneedto addnew wires.

It is unavoidable,however, thatourmethodincreasesthe
complexity of theroutingcontrol logic. We replacetheex-
isting simplerouting logic with thenot-as-simpleLUT de-
scribedabove. To make the LUT smallerand faster, we
proposereducingthe sizeof the vector. SinceNum(I) l
Num(M) for most cycles, it is reasonableto considera
smallervectorthatmaynotalwayscontainall of theinstruc-
tions. Reducingthesizeof the vectormakesthe proposed
hardwaremodificationfasterandthereforemoreattractive.
In the resultswe show that a 4-bit vectoryields goodper-
formance.With a 4-bit vector, our fully implementedalgo-
rithm for the IALU, on a machinewith 8 entriesin its RS,
requires58 small logic gatesand6 logic levels. With 32
entries,130gatesand8 levelsareneeded.This is a negli-
gible fractionof themany thousandsof gatespresentin the
IALU. Therefore,thepoweranddelayintroducedaresmall.

A third issueis thatthecrossbarcurrentlyusedin Toma-
sulo’s algorithmdoesnot allow operandswapping.To per-
form operandswapping,it would be necessaryto include
additionalwiring afterthecrossbarof Figure3. Thismakes
thecompiler-basedswappingmethodsmoreattractive.

6 Experimental Results
We have implementedthe methodologydescribedin

section4 using the sim-outorder simulatorfrom the Sim-
pleScalar2.0 suite [5], with the default configurationof 4
IALUs, 4 FPAUs, 1 integermultiplier, and1 floatingpoint

|~ |�
0

|�
10

|�
20

|�
30

|�
40

|�
50

|�
60

 E
n

er
g

y
R

ed
u

ct
io

n
 (

%
)

Full�
Ham� 1-Bit

Ham� 8-Bit
LUT� 4-Bit

LUT� 2-Bit
LUT� Original�

Base + Hardware + Compiler swapping

Base + Hardware swapping

Base (no operand swapping)

|~ |�0

|�5

|�10

|�15

|�20

|�25

|�30
|�35

 E
n

er
g

y
R

ed
u

ct
io

n
 (

%
)

Full�
Ham� 1-Bit

Ham� 8-Bit
LUT� 4-Bit

LUT� 2-Bit
LUT� Original�

Base + Hardware + Compiler swapping

Base + Hardware swapping

Base (no operand swapping)

Figure 4. Resultsfor the(a) IALU and(b) FPAU.

(a)

(b)

multiplier. SimpleScalarsimulatesa MIPS-like machine,
with 32-bit integerregistersand64-bit floatingpoint regis-
ters. The integer benchmarksusedare: 88ksim, ijpeg, li,
go,compress,cc1,andperl. Thefloatingpointbenchmarks
are:apsi,applu,hydro2d,wave5,swim,mgrid, turb3d,and
fpppp. The benchmarksare from SPEC95 [7], andwere
run to completionon largeinput files.

Figure 4 displays the power reduction of different
schemes,as a fraction of the total power consumptionof
the FU type underconsideration. Eachbar is a stackof
threevalues,soasto show theeffect of operandswapping
on the switchingactivity (which looselyapproximatesen-
ergy). Full Ham (section4.1) and1-bit Ham (section4.2)
arecost-prohibitive, but areincludedfor comparison.Full
Ham identifiesthe maximumpossibleimprovement. 1-bit
Hamis anupperboundon theimprovementpossiblesolely
throughtheinformationbits. The8 bit LUT representsthe
approachof section4.3.The4-bit and2-bit LUTs represent
shortenedvectors,as consideredin section5. The Orig-
inal column representsa first-come-first-serve assignment
strategy. The gain for Original is not zerosinceswapping
benefitsit aswell.

Figure4 providesfive insights.First,a4-bit LUT is rec-
ommended,becauseits power savings are comparableto
theupperbound(1-bit Ham),while beingsimpleto imple-
ment. From Figure4, the improvementfor the 4-bit LUT
with hardwareswappingis 18%for theFPAU and17%for
theIALU. With compilerswapping,it is26%,for theIALU.

5

Integer FloatingPoint
Freq OP1 OP2 Freq OP1 OP2

Case (%) prob prob (%) prob prob
00 93.79 0.116 0.056 20.12 0.139 0.095
01 1.07 0.055 0.956 15.52 0.160 0.511
10 2.76 0.838 0.076 21.29 0.527 0.090
11 2.38 0.71 0.909 43.07 0.274 0.271

Table 3. Bit patterns in multiplication data (Multiplier
power is relatedto how many 01casescanbecome10.)

If noswappingis providedby thehardwareor thecompiler,
thestill-rather-simple8-bit LUT yieldsaverysimilar result
to the4-bit LUT with hardwareswapping.Second,Figure
4 shows that the FPAU doesnot needoperandswapping,
dueto differencesbetweenintegersandfloats.For integers,
themajority of bits areusuallythesameastheinformation
bit; for floatingpoints,only aninformationbit of 0 hasthis
property. Thus,for the IALU, a case01 after a 10 causes
most bits to switch; whereas a case01 after another01
switchesfew bits. In contrast,for theFPAU, acase01after
a 10 switches

�� of the bits; whereas a case01 after an-
other01still switches

�� of thebits. Third, theFPAU is less
sensitive to thesizeof thevector, becausethefloatingpoint
unit is lessheavily loaded(Table2). Fourth,profile-based
swappingis moreeffective thathardware-basedswapping,
becausethe swap decisionis basedon the entirevalue,as
opposedto the information bits alone. In fact, “Base +
CompilerSwapping” (not shown) is nearlyaseffective as
“Base+ Hardware+ Compiler”. Fifth, implementingcom-
piler swappingdoesnotreducestheadditionalbenefitof our
hardwareapproach.Rather, the benefitof compilerswap-
ping is slightly higherwith an 8-bit LUT thanit is for the
originalprocessorthathasnohardwaremodifications.

Table3 displaysthebit patternsfor multiplicationdata.
This table,shows that 15.5%of floating point multiplica-
tionscanbeswappedfrom case01 to case10,certainlyre-
sultingin someadditionalpowersavings– thoughnotquan-
tifiablesincewehave nopower modelfor multiplication.

7 Conclusions
We presenta methodfor dynamicallyassigningopera-

tionsto functionalunits,soasto reducepowerconsumption
for thoseunitswith duplicatedmodules.We alsoexamined
operandswapping,bothin conjunctionwith ourassignment
algorithm,andon its own merits for non-duplicatedfunc-
tional units like themultiplier. Our resultsshow that these
approachescanreduce17% of the IALU and18% of the
FPAU switching,with only asmallhardwarechange.Com-
piler swappingincreasestheIALU gain to 26%.

References

[1] M. Alidina, J.Monteiro,S.Devadas,andM. Papaefthymiou.
Precomputation-BasedSequentialLogic Optimization for
Low Power. IEEETransactionsonVLSISystems, 2(4):426–
436,April 1994.

[2] L. Benini andG. D. Micheli. TransformationandSynthe-
sis of FSMs for Low Power GatedClock Implementation.
IEEE Transactionson Computer-AidedDesign, 15(6):630–
643,June1996.

[3] D. BrooksandM. Martonosi. DynamicallyExploiting Nar-
row Width Operandsto Improve ProcessorPower andPer-
formance.In Procof the5thInt’l SymponHigh Performance
ComputerArchitecture(HPCA), pages13–22,January1999.

[4] D. Brooks,V. Tiwari, andM. Martonosi.Wattch:A Frame-
work for Architectural-Level Power AnalysisandOptimiza-
tions. In Proceedingsof the 27th International Sympo-
siumon ComputerArchitecture (ISCA), Vancouver, British
Columbia,June2000.

[5] D. BurgerandT. Austin.TheSimpleScalarTool Set,Version
2.0. TechnicalReportTR 1342, University of Wisconsin,
Madison,WI, June1997.

[6] J.-M. ChangandM. Pedram.ModuleAssignmentfor Low
Power. In Proc of theEuropeanConferenceon DesignAu-
tomation(EDAC), pages376–381,September1996.

[7] S. P. E. Corporation. The SPEC benchmark suites.
http://www.spec.org/.

[8] J. Hennessyand D. Patterson. ComputerArchitecture A
QuantitativeApproach. MorganKaufmann,Palo Alto, CA,
secondedition,1996.

[9] M. Johnson,D. Somasekhar, andK. Roy. LeakageControl
with Efficient Useof TransistorStacksin SingleThreshold
CMOS. In DesignAutomationConference, pages442–445,
June1999.

[10] B. Klass,D. E.Thomas,H. Schmit,andD. E.Nagle.Model-
ing Inter-InstructionEnergy Effectsin a Digital SignalPro-
cessor. In Power-Driven Microarchitecture Workshop, in
conjunctionwith Int’l SymposiumonComputerArchitecture,
June1998.

[11] L. Kruse,E. Schmidt,G. Jochenshar, andW. Nebel. Lower
andUpperBoundson theSwitchingAvtivity in Scheduling
DataFlow Graphs. In Proc of the ACM Int’l Sympon Low
PowerDesign, pages115–120,August1999.

[12] T.-C.Lee,V. Tiwari,S.Malik, andM.Fujita. PowerAnalysis
andMinimization Techniquesfor EmbeddedDSPSoftware.
IEEETransactionsonVLSISystems, Mar. 1997.

[13] R. Marculescu,D. Marculescu,andM. Pedram. Sequence
compactionfor powerestimation:Theoryandpractice.IEEE
Transactionson ComputerAided Design, 18(7):973–993,
1999.

[14] J. MermetandW. Nebel. Low Power Designin DeepSub-
micron Electronics. Kluwer AcademicPublishers,Norwell,
MA, 1997.

[15] M. Pedram. Power Minimization in IC Design: Principles
andApplications.ACM TransactionsonDesignAutomation
of ElectronicSystems, 1(1):1–54,January1996.

[16] V. Tiwari,S.Malik, andP. Ashar. GuardedEvaluation:Push-
ing Power Managementto Logic Synthesis/Design.In Pro-
ceedingsof theACM/IEEEInternationalSymposiumonLow
PowerDesign, pages139–142,April 1994.

6

