
Pre-characterization Free, Efficient Power/Performance Analysis of Embedded
and General Purpose Software Applications

�

Venkata Syam P. Rapaka, Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email:
�
vp,dianam � @ece.cmu.edu

Abstract

This paper presents a novel approach for an efficient, yet
accurate estimation technique for power consumption and per-
formance of embedded and general purpose applications. Our
approach is adaptive in nature and is based on detecting sec-
tions of code characterized by high temporal locality (also called
hotspots) in the execution profile of the benchmark being executed
on a target processor. The technique itself is architecture and in-
put independent and can be used for both embedded, as well as
for general purpose processors. We have implemented a hybrid
simulation engine which can significantly shorten the simulation
time by using on-the-fly profiling for critical sections of the code
and by reusing this information during power/performance esti-
mation for the rest of the code. By using this strategy, we were
able to achieve up to 20X better accuracy compared to a flat,
non-adaptive sampling scheme and a simulation speed-up of up
to 11.84X with a maximum error of 1.03% for performance and
1.92% for total energy on a wide variety of media and general
purpose applications.

1 Introduction

Embedded or portable computer systems play an increasingly
important role in today’s quest for achieving true ubiquitous com-
puting. Since power consumption and performance have a direct
impact on the success of not only embedded, but also high per-
formance processors, designers need efficient and accurate tools
to evaluate the efficacy of their software and architectural innova-
tions.

A designer can make a choice from a variety of simulators to
estimate the power consumption and performance, which are at
various levels of abstraction ranging from transistor- or layout-
level [1] to architectural- [2, 3] and instruction-level [4, 5, 6, 7].
The lowest level simulators provide the most detailed and accu-
rate statistics, while the higher level simulators trade off accuracy
for simulation speed and portability. Although high-level simula-
tors offer high speedup when compared to low-level simulators,
they are still time consuming and may take days to simulate very
large, practical benchmarks. At the same time, acceptable ranges

�
This research has been supported in part by NSF Career Award CCR-

008479.

of accuracy are subject to change when refining the design in var-
ious stages of the design cycle. Hence, it is desirable to speed-up
existing simulators at various levels of abstraction without com-
promising on their accuracy.

In this paper, we describe our strategy for accelerating simu-
lation speed, without significant loss in accuracy. Such a strategy
has the additional benefit of being able to adapt itself to the behav-
ior of the benchmark being simulated. Hence, it can predict the
power consumption and performance statistics without complete
detailed analysis of the execution profile of the application being
executed and without any pre-characterization of the benchmark
being simulated. Our strategy is generic and can be adopted by
any simulator, at any level of abstraction, to accelerate the simula-
tion process.

1.1 Prior Work

At software or architecture-level, various schemes and strate-
gies have been proposed for speeding-up the power estimation pro-
cess. Techniques like macromodelling [8, 9], function level power
estimation [10] and energy caching [9] are some of the proposed
strategies used for accelerating power simulators, while keeping
the accuracy within acceptable range. Macromodelling and func-
tional level power estimation provide speedup at the cost of time
consuming pre-characterization of programs. Energy caching is
based on the energy and delay characteristics of a code segment,
and can be used only when these statistics are uniform across the
entire execution of the code segment.

A two-level simulation approach has been described in [16]
for estimating energy and performance with sufficient accuracy.
The technique uses a flat, fixed-window sampling scheme, coupled
with a program phase detection technique which decides on-the-
fly when to use a detailed vs. a non-detailed mode of simulation.
However, the approach does not adapt the sampling window size to
the application profile to achieve better accuracy, nor does it try to
detect finer-grain changes in program phase that could be exploited
for better speed-up. In this paper, we introduce a hybrid simula-
tion engine which is able to fully adapt to the application behav-
ior and provide up to 20X better accuracy than the fixed-window
sampling technique presented previously. Our work complements
existing techniques for gate and RT-level power estimation based
on sequence compaction [11] by recognizing the effect of fine and
coarse grain temporal dependencies, present in common software
applications.

1.2 Paper Overview and Contributions

Our main goal is to accelerate existing simulators, by predict-
ing power and performance values accurately. This scheme can
be applied to simulators at various levels of abstraction to reduce
the simulation time without compromising accuracy. To validate
our strategy, as a baseline simulator, we have chosen Wattch [2],
a framework for architectural-level power analysis and optimiza-
tions. Wattch has been implemented on top of SimpleScalar [12]
tool set and is based on a suite of parameterizable power mod-
els. Based on these power models, Wattch can estimate power
consumed by the various hardware structures based on per-cycle
resource usage counts, generated through cycle-accurate simula-
tion. Wattch has considerable speedup (1000X) when compared to
circuit-level power estimation tools, and yet can estimate results
within 10% of the results generated by Spice. But even with this
speedup, it can take very long time to simulate most benchmarks
of practical interest. It is thus, desirable to further reduce the sim-
ulation time without trading off accuracy.

Wattch uses per cycle statistics generated by SimpleScalar to
estimate the power consumed by various components of the ar-
chitecture being simulated. As in most other cycle-accurate tools,
to get sufficiently accurate statistics, one must perform a detailed
simulation of the benchmark program, at the cost of increased sim-
ulation time. In both Wattch and SimpleScalar, the program can
also be executed in a fast mode, in which the program will be ex-
ecuted correctly, but without cycle accurate information.

Our strategy involves using a hybrid simulator which is capable
of switching between the detailed and fast modes of simulation.
The rationale for using such a simulation strategy stems from the
inherent behavior of most programs of practical interest. In fact,
most benchmark programs are made up of tightly coupled regions
of code or hotspots [13], in which the program behaves in a pre-
dictable manner, by executing sections of code with high temporal
locality. Once the program enters a hotspot, one can identify criti-
cal sections of the code that should be simulated in detailed mode,
record per cycle information like Instructions Per Cycle (IPC) and
Energy Per Cycle (EPC), and complete functional simulation of
the hotspot by switching into fast mode. While this strategy has
been used before in the context of a fixed-size sampling window
[16], we identify the shortcomings associated with such a scheme
and propose a truly application-adaptive sampling scheme with up
to 20X better accuracy. Our scheme provides up to 11.8X speed-up
compared to the baseline, cycle-accurate simulation engine, while
keeping accuracy within 2% on average for both performance and
power consumption. In addition, the proposed approach offers su-
perior accuracy for fine-grain, per module energy estimates (less
than 2% compared to up to 18% estimation error), as well as en-
ergy and performance run-time profiles that closely follow the ac-
tual, detailed profile for benchmarks under consideration.

1.3 Organization of the Paper

The rest of this paper is organized as follows: Section 2 dis-
cusses hotspots and the behavior of code inside hotspots. We de-
scribe our proposed approach for identifying program regularity
and present our strategy in greater detail in Section 3. Practical
considerations are discussed in Section 4. We present our experi-
mental results and discuss them in Section 5. Section 6 concludes
the paper with some final remarks.

2 Program Behavior

As it is well know, most common applications exhibit sections
of code with high temporal locality. Such characteristics define the
so-called hotspots which are collections of tightly coupled basic
blocks, executing together most of the time. When an application
program enters a hotspot, it executes only the basic blocks belong-
ing to that hotspot, and only rarely steps out of this set of basic
blocks. Two typical hotspots are shown in Figure 1. In this case,
the code executes the basic blocks of hotspot A for a significant
portion of the total execution time, before it starts executing those
of hotspot B. The program maintains a very high temporal local-
ity once it enters a hotspot, and, due to high temporal locality, it
behaves in a predictable manner while running inside the hotspot.

1

2

3 4

5

6

7 8

9

Hotspot B

Hotspot A

Figure 1. An example of two hotspots [16]

2.1 Hotspot Properties

Hotspots are typically tight loops or series of instructions that
are executed repetitively for the entire duration of the hotspot. This
repetitive behavior is reflected in how performance and power-
related statistics behave. In fact, inside a hotspot, all functional
units along with other hardware blocks are accessed in a specific
repetitive pattern. This is true even for architectures supporting
out-of-order execution as the dynamic schedule for the same set
of instructions almost always results in the same scheduled trace
of instructions inside of the given hotspot.

Hotspots create regular patterns of execution profiles during the
course of execution of a benchmark. Due to these execution pat-
terns, it is not essential to do a cycle accurate detailed simulation
for the entire duration of each of the hotspots. Thus, one can use
the IPC and EPC values of a sampling window to predict the future
behavior of the program. We exploit this feature of the program
execution behavior in order to accelerate micro-architectural sim-
ulation. In Section 3, we describe how metrics of interest can be
obtained via sampling inside detected hotspots.

2.2 Hotspot Detection

Hotspots are mainly characterized by the behavior of the
branches inside the hotspot. A hotspot can be detected by keep-
ing track of the branches being encountered during the execution
of the program. To keep track of branches, we use a cache-like
data structure called the Branch Behavior Buffer (BBB) [13]. Each
branch has an entry in the BBB, consisting of an Execution Counter
and a one-bit Candidate Flag (CF). The execution counter is in-
cremented each time the branch is taken, and once the counter
exceeds a certain threshold (512, in our case), the branch in ques-
tion is marked as a candidate branch by setting the CF bit for
that branch. The simulator also maintains a saturating counter
called the hotspot detection counter (HDC) which keeps track of

candidate branches. Initially, the counter is set to a maximum
value (64K in our case); each time a candidate branch is taken,
the counter is decremented by a value D, and each time a non-
candidate branch is taken, it is incremented by a value I. When
the HDC decrements down to zero, we are in a hotspot. For our
implementation we chose D as 2 and I as 1, such that exiting the
hotspot is twice as slow as entering it.1 The details of the hotspot
detection scheme can be found in [13], [16].

3 Hybrid Simulation

As described previously, common programs exhibit high tem-
poral locality in various sections of their code and behave in a
predictable manner inside hotspots. Our strategy is to employ a
two-level hybrid simulation paradigm which can perform archi-
tectural simulation at two different levels of abstraction and with
different speed/accuracy characteristics.

� A low level simulation environment, which can perform cy-
cle accurate simulation and provide accurate metrics associ-
ated with the program execution.

� A high level simulation environment, which can perform cor-
rect functional simulation without providing cycle accurate
metrics.

detailed simulation
Flat sampling with

outside a hotspot
Detailed simulation

Hotspot detected

the whole benchmark
Update statistics for

Hotspot lost

Warm-up period

outside a hotspot
Detailed simulation

Fast profiling

NoYes

Hotspot lost

Hotspot lost

Metrics converge

Hotspot detected

Hotspot matched

Warm-up period

detailed simulation
Adaptive sampling with

the whole benchmark
Update statistics for

Fast profiling

Hotspot lost

(a) Flat scheme (b)Adaptive scheme

Figure 2. Hybrid simulation

Our chosen strategy is to achieve considerable speedup by ex-
ploiting the predictable behavior inside the hotspots. We employ
the hotspot detection strategy described in [13] for determining the
entry and exit points for a hotspot. We use the low-level simula-
tion engine for the code outside a hotspot and for a fraction of the
code executed inside a hotspot (also called the sampling window)
and use high level simulation for the remainder of the hotspot. To
estimate the metrics for the entire hotspot, we use the metrics ac-
quired during the detailed simulation of the sampling window. The
time spent by a program inside a hotspot is dependent on the pro-
gram itself and the specific input being used, but we have observed
that the average fraction of time spent inside detected hotspots is
92%. Thus, accelerating simulation of the code inside the hotspots
should provide considerable speedup for the entire benchmark.

1This is done to prevent false exits from a hotspot.

For estimating the statistics associated to a hotspot, it is imper-
ative to select a suitable sampling window. We will describe our
proposed sampling techniques in the remainder of this section.

3.1 Flat Sampling

This scheme corresponds to the sampling strategy employed
in [16] and is illustrated in more detail in Figure 2(a). Once the
program enters a hotspot, a fixed window of 128K instructions is
selected as the sampling window. The metrics collected in this
window are used for estimating the metrics of the whole hotspot.
This window is selected after skipping a warm-up window of 100K
instructions.

3.2 Convergence based sampling

The flat scheme blindly chooses a fixed window size and as-
sumes that such a window will be enough for achieving conver-
gence for power and performance inside all hotspots, across vari-
ous applications. However, such an assumption is far from being
valid. To account for these different behaviors, a convergence-
based sampling scheme is proposed. In such a scheme, the simula-
tor starts off in detailed mode and switched to fast mode only upon
convergence. To check for convergence, a sampling window w is
employed. Convergence is declared only if the metrics sampled
in a number of consecutive windows of w instructions are within
a threshold of p (the precision for convergence). If convergence
is not satisfied, the window size w is increased and the process is
repeated.

There are two possible ways of increasing the window size w:
� Exponentially increasing window size. In this case, the cur-

rent window size w is doubled if the convergence condition
was not satisfied (possible window sizes are w, 2w, 4w, 8w,
16w....).

� Linearly increasing window sizes. In this case, the current
window size is incremented by a fixed size of w if the con-
vergence condition was not satisfied (possible window sizes
are w, 2w, 3w, 4w, 5w....).

In our case, convergence is declared when metrics are main-
tained within a threshold p for 3 consecutive windows of size w.
The exponential approach attains large window sizes in smaller
number of iterations, so it starts with a smaller window size w
of 2.5K, while the linear approach starts with 128K. Both the
approaches can be used with three different threshold values for
checking convergence (0.001, 0.0005 and 0.0001). The overall
hybrid simulation strategy is illustrated in Figure 2(b).

As it can be expected, there is a trade-off between speed and
accuracy in both cases. While an exponentially window size may
suit some applications better, it may happen that the sampling
window size is increasing too fast and fine-grain program phase
changes may be missed. At the same time, a linearly increasing
window size may prove inappropriate in cases where convergence
is achieved only for large window sizes. To find a good compro-
mise between the two, we have developed an adaptive sampling
mechanism which tries to identify fine-grain program phases, also
called microhotspots.

3.3 Adaptive Sampling

While the hotspot detection scheme makes sure that tightly
coupled basic blocks are detected, it does not ensure that the se-
quencing information is also maintained. For example, for the

ABBC ABBC ADEG ADF ADEG

ABBC ABBC ADEG ADF ADEG

ABBC ABBC ADEG ADF ADEG

ABBC ABBC ADEG ADF ADEG

1 19

20 38

39 57

58 76

A

E

HG

F

DB

C

(a) Control flow graph (b) Execution trace in the hotspot

Figure 3. Microhotspot Detection

control flow graph in Figure 3(a), the set of basic blocks A, B,
C, D, E, F, G is identified as being part of a hotspot. In effect,
this means that the occurrence probability of any of these blocks
is sufficiently high (related to the execution counter value in Sec-
tion 2.2). However, second (or higher) order effects related to the
sequencing information for these basic blocks are completely ig-
nored. In fact, these effects determine whether a slower or faster
increasing sampling window size should be used. For example, if
during the execution of the hotspot, the basic blocks are executed
as

���
ABnC � mADEGADFADEG ��� ,2 the sampling window size w

should be directly related to the values of m and n. The adaptive
sampling scheme tries to match the window size with the run-time
sequencing information of the basic blocks. Such an application-
adaptive window is called a microhotspot.

For the example shown in Figure 3(a), a possible series of can-
didate branches being executed in this typical hotspot is shown
in Figure 3(b), where each letter represents the basic block corre-
sponding to a candidate branch. In this example, the trace ABB-
CABBCADEGADFADEG represents the repeating microhotspot.
We detect the microhotspot by keeping track of the most recent oc-
currence of every candidate branch. Whenever the difference be-
tween two consecutive occurrences of a candidate branch is larger
than the current window size, a potential microhotspot is declared.
The window size is changed to this new difference and the sim-
ulator checks this window for convergence. If the same branch
is occurred again and the metrics of interest (EPC, IPC) have not
converged yet, the window size is stretched to accommodate the
new occurrence of the candidate branch. This process continues
by checking for microhotspots for other candidate branches until
convergence is achieved or the hotspot ends.

In practice, the simulator starts with an exponential conver-
gence scheme with p = 0.0001 and w = 2.5K. It first tries to achieve
convergence using the exponential scheme until it encounters the
first potential microhotspot, defined as the set of instructions be-
tween two occurrences of a candidate branch. Then the simulator
continues with microhotspot detection and stops doubling the cur-
rent window size. Once metrics of interest converge, the simulator
switches to the fast mode of profiling. The detailed diagram for
the adaptive sampling scheme is shown in Figure 2(b).

Identifying microhotspots has not only the advantage of being
able to select the right size for the sampling window, but offers
additional potential for speeding-up the simulation, as described
next.

2Classic notations from formal language theory have been used.

4 Practical Considerations

To further speed-up the simulation, we also maintain a monitor
table to reuse the information about earlier visited hotspots. This
monitor table is similar to the one described in [13], and can be
used to cache information and for determining whether the current
hotspot has been visited earlier. The monitor table consists of en-
tries corresponding to a unique hotspot. Each unique hotspot is
identified by a unique number (HSP id) and it has it’s own charac-
teristic signature. This signature is made up of the top seven most
frequently executed branches after the hotspot period. The signa-
ture consists of the addresses of these branches, along with their
corresponding frequencies. This entry also contains the necessary
information required for estimating the statistics for a matched
hotspot. It includes the average IPC and EPC values for the en-
tire hotspot, along with the average per component EPC values.
These are required to accurately determine per component energy
values for the entire benchmark. These IPC and EPC values are
the recorded values before the simulator switches to fast mode of
profiling and after adaptive sampling converges.

Whenever the program enters a hotspot, the simulator tries to
match the current hotspot with one of the entries in the monitor ta-
ble both in terms of branch addresses and occurrence probability.
At the end of the warm-up period, the simulator stores informa-
tion about the most frequent branches of the present hotspot and
tries to match the current hotspot with one of the hotspots from
the monitor table. This is done by comparing each of the top five
branches of the current hotspot with the signature of each hotspot
entry in the monitor table. 3

The monitor table entries are used in conjunction with the hy-
brid simulation mechanism shown in Figure 2(b).The simulation
starts in the detailed mode and continues to monitor branch be-
havior. Once a hotspot is detected, the simulator tries to match the
current hotspot with one of the entries of the monitor table after the
initial warmup period. If the current hotspot is not matched, then
the simulator tries to find an appropriate sampling window, which
can be used for the estimation of various values. Once this window
is determined through adaptive sampling, the simulator switches to
the fast mode of profiling after recording the necessary values for
estimation of power and performance. The simulator keeps track
of the branch behavior and once the hotspot is lost, it reverts back
to the detailed mode of simulation after updating the global power
and performance metrics. If the hotspot is lost before adaptive
sampling finds the required sampling window, the simulator waits
until a new hotspot is detected and starts all over again. If the sim-
ulator finds a matching hotspot it directly switches over to the fast
mode of profiling. The various parameters of the matching hotspot
are used for updating the metrics after the current hotspot ends. If
the current hotspot does not match any of the existing entries, it
is added as a new entry into the monitor table after the hotspot is
sampled partially or completely. This entry is created irrespective
of whether the metrics had converged during adaptive sampling.
Thus, hotspots which do not achieve convergence of metrics dur-
ing adaptive sampling, can be simulated in fast mode if they are
encountered again.

The exponential and linear convergence based sampling

3We compare only the top five branches of the hotspot as we have ob-
served that the frequencies of the candidate branches are very close in the
sampling period and the least frequent two branches may change with dif-
ferent execution contexts of the hotspot.

(a) Speedup

(b) IPC Error

(c) EPC Error

Figure 4. Results for 4-way, out-of-order processors

schemes are similar and only differ in the way they check for con-
vergence of metrics.

5 Experimental Results

We have tested our hybrid simulation strategy on various
benchmarks for both single instruction issue, in-order processors
and for 4-way out-of-order superscalar processor. We have com-
pared the performance of the four schemes of hybrid simulation
described in this paper (flat sampling, linear and exponential win-
dow sampling, and adaptive sampling with a monitor table). Both
configurations for the in-order, single instruction issue and 4-way,
out-of-order superscalar processors assume a 512K direct mapped
I-cache and a 1024K 4-way set-associative D-cache. In case of
the superscalar machine, the width of the pipeline and the number
of ALUs is assumed to be four. In addition, a 32-entry Register
Update Unit (RUU) and a 16-entry Load Store Queue (LSQ) are
considered in this case. In both cases, we have used benchmarks
from SpecInt95 (ijpeg, go), SpecInt2000 (gzip) and MediaBench
(mpeg, pegwit, and epic).

(a) Speedup

(b) IPC Error

(c) EPC Error

Figure 5. Results for 1-way, in-order processors

To assess the viability of our proposed hybrid simulation ap-
proach, the following set of experiments have been considered:

� The speed-up and accuracy for energy (EPC) and perfor-
mance (IPC) metrics for the set of benchmarks under con-
sideration.

� A comparative, detailed study of the flat and adaptive sam-
pling schemes in terms of per module accuracy.

� A comparative study of all sampling schemes in terms of pre-
dicting the run-time profile of a given benchmark.

We show in Figures 4 and 5 our results for the accuracy and
speed-up achieved for all sampling schemes proposed. The lin-
ear and exponential convergence schemes have been considered
for three different precision thresholds: 0.001, 0.0005, 0.0001
(E0.001, E0.0005, E0.0001 for exponential and similar for the lin-
ear case). As it can be seen, the flat sampling case offers the high-
est speed-up, but at the expense of a very large error in some cases
(e.g., 20% for IPC estimation in case of go or 11% error for EPC
in case of epic when run on a 4-way, superscalar processor). While

Component go flat go adp epic flat epic adp
Rename N/A N/A 12.40% 0.64%
Bpred 18.25% 0.00% 6.05% 0.31%
Window N/A N/A 12.34% 0.81%
LSQ N/A N/A 7.91% 0.44%
Regfile 6.93% 0.00% 8.56% 0.58%
Icache 2.75% 0.00% 9.39% 0.53%
Dcache 3.21% 0.00% 11.58% 0.49%
Dcache2 2.36% 0.00% 2.44% 0.07%
ALU 0.05% 0.00% 7.63% 0.50%
Resultbus 9.80% 0.00% 12.00% 0.83%
Clock 18.25% 1.52% 14.25% 0.41%

Table 1. Per Component Power Errors

0 1 2 3 4 5

x 10
8

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

Instructions

A
ve

ra
ge

 E
P

C
 in

 H
ot

sp
ot

s

(a) go inorder

Original
Adaptive
Flat

0 0.5 1 1.5 2 2.5

x 10
8

26

28

30

32

34

36

Instructions

A
ve

ra
ge

 E
P

C
 in

 H
ot

sp
ot

s
(b) epic 4way

Original
Adaptive
Flat

Figure 6. Comparison of the two schemes

the exponential and linear convergence cases outperform the adap-
tive sampling scheme in some cases in terms of accuracy, they have
unpredictable behavior, depending on the benchmark. The adap-
tive sampling scheme is the only one that offers consistent low
error (less than 2% for both energy and performance estimates),
irrespective of the type of processor being considered. The same
cannot be said about the linear or exponential sampling schemes,
showing their lack of adaptability to the application being run.

For the worst case achieved in the case of flat sampling scheme
(i.e., benchmark go in case of single issue, in-order processors and
epic in case of 4-way superscalar processors), we also show in
Table 1 the estimation error for the energy cost per module. As it
can be seen, adaptive sampling case (denoted by adp in Table 1)
consistently produces results that are less than 2% away from the
exact, cycle-accurate values, while the flat sampling (denoted by
flat in Table 1) scheme can generate up to 18.25% error in some
cases.

Finally, we have analyzed how the sampling schemes proposed
in this paper track the actual run-time profile of the application
being run. We show in Figure 6 the estimated EPC values for the
adaptive and flat sampling cases, compared to the original results
provided by Wattch. As it can be seen, the adaptive case preserves
the actual run-time profile much better (within 2% of the original),
while the flat sampling results can be off by as much as 12%.

6 Conclusion

In this paper we have presented a hybrid simulation strategy,
which can accelerate the microarchitectural simulation without
trading off accuracy. The strategy is based on the detection of
hotspots and determining the exact sampling window size, which
can be used for estimation of various metrics. We also presented
how these features can be exploited for simulation acceleration
along with using a monitor table for reusing know information.
By using these techniques we have been able to obtain substantial
speedup, with negligible errors in IPC and EPC values. The pro-
posed adaptive sampling scheme not only offers superior accuracy

when compared to a simpler, flat sampling scheme, but also pro-
vides per module estimation error of less than 2% and faithfully
tracks the run-time profile of the application under consideration.

References

[1] C. X. Huang, B. Zhang, A. C. Deng and B. Swirski, ‘The Design and
Implementation of Powermill,’ in Proc. Intl. Workshop on Low Power
Design, pp. 105-110, April 1995.

[2] D. Brooks, V. Tiwari and M. Martonosi, ‘Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,’ in Proc. Intl.
Symp. Computer Architecture, pp. 83-94, Vancouver, BC, Canada,
June 2000.

[3] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, ‘The De-
sign and Use of SimplePower: A Cycle-Accurate Energy Estimation
Tool’ in Proc. ACM/IEEE Design Automation Conference, Los Ange-
les, CA, USA, June 2000.

[4] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, ‘An instruction-
level functionality-based energy estimation model for 32-bit micro-
processors,’ in Proc. Design Automation Conf., pp. 346-351, June
2000.

[5] J. Russell and M. Jacome, ‘Software power estimation and optimiza-
tion for high-performance 32-bit embedded processors,’ in Proc. Int.
Conf. Computer Design, pages 328-333, October 1998.

[6] A. Sama, M. Balakrishnan and J. F. M. Theeuwen, ‘Speeding up
Power Estimation of Embedded Software,’ in Proc. Int. Symp. Low
Power Electronics and Design, Rapallo, Italy, 2000.

[7] V. Tiwari, S. Malik and A. Wolfe, ‘Power analyasis of embedded soft-
ware: A first step towards software power minimization,’ in IEEE
Tran. VLSI Systems, 2(4):437-445, December 1994.

[8] T. K. Tan, A. Raghunathan, G. Lakshminarayana and N. K. Jha, ‘High-
level Software Energy Macro-modelling,’ in Proc. ACM/IEEE Design
Automation Conference, Las Vegas, Nevada, USA, June 2001.

[9] M. Lajolo, A. Raghunathan and S. Dey, ‘Efficient Power Co-
Estimation Techniques for System-on-Chip Design,’ in Proc. Design
& Test Europe, pp.27-34, March 2000.

[10] G. Qu, N. Kawabe, K. Usami and M. Potkonjak, ‘Function-
Level Power Estimation Methodology for Microprocessors,’ in Proc.
ACM/IEEE Design Automation Conference, Los Angeles, CA, USA,
June 2000.

[11] R. Marculescu, D. Marculescu and M. Pedram, ‘Sequence Com-
paction for Power Estimation: Theory and Practice,’ in IEEE Tran.
on Computer-Aided Design of Integrated Circuits and Systems,
18(7):973-993, July 1999.

[12] D. Burger and T. M. Austin, ‘The Simplescalar Tool Set, Version
2.0,’ in Computer Architecture News, pp. 13-25, June 1997.

[13] Matthew C. Merten, Andrew R. Trick, Christopher N. George, John
C. Gyllenhaal, and Wen-mei W. Hwu ‘A Hardware-Driven Profiling
Scheme for Identifying Program Hot Spots to Support Runtime Op-
timization,’ in Proc. Int. Symp. Computer Architecture, pp. 136-147,
May, 1999.

[14] M. Sami, D. Sciuto, C. Silvano and V. Zaccaria, ‘Instruction -level
power estimation for embedded VLIW cores,’ in Proc. Intl. Wrkshp.
Hardware/Software Codesign, pp. 34-37, March 2000.

[15] A. Sinha and A. P. Chandrakasan, ‘JouleTrack - A Web Based Tool
for Software Energy Profiling,’ in Proc. ACM/IEEE Design Automa-
tion Conference, Las Vegas, Nevada, USA, June 2001.

[16] D. Marculescu and A. Iyer, ‘Application-Driven Processor Design
Exploration for Power-Performance Trade-off Analysis,’ in Proc.
IEEE/ACM Intl. Conf. on Computer-Aided Design, San Jose, USA,
Nov. 2001.

