Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Power Efficient Processors Using Multiple Supply Voltages*

Diana Marculescu
Dept. of Electrical and Computer Engineering
Center for Electronic Design Automation
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract -This paper presents a study of different power metric®pPtimization, the authors of [10] present an architectural
for varying microarchitectural configurations and proposes an €nhancement to reduce the extra work or energy in the pipeline
efficient scheme to reduce the energy requirements of a superscalar processor due to mispredicted branches, without
superscalar, out-of-order processors. Specifically, we proposéignificant loss in performance. In [11] a technique for reducing
the use of multiple supply voltages at microarchitectural level byhe average power consumption for the pipeline structure is
exploiting the difference in latencies of different pipeline stage®resented. Other approaches target techniques for energy
or modules. The proposed scheme is a simple and efficient way&fficient memory systems, such as the use of selective cache

reducing the energy requirements by up to 27%, without affecting’ayS [12], filter-caches [13] or code compression [14]. Several
the effective performance of the processor. pproaches in the most recent literature on power efficient

. architecture point out that different microarchitectural settings do
1 Introduction provide different values for energy per instruction [25] or energy

In recent years, power dissipation has become a critical desigiflay product [8]. It has also been observed that there exists a
concern not only for designers of battery powered or wireles¥ide variation from one application to another, as well as
electronics, but also in the case of high-performanceetween different parts of the same application [26] both in terms
microprocessors, multimedia and digital signal processors d?f the inherent parallelism and in terms of the necessary
high-speed networking. While it is generally agreed that tools fofesources to sustain a given performance level. S
power estimation and optimization do exist for hardware In this paper we address the problem of power optimization
specifications at different levels of abstraction (circuit, gate0f processors usinguultiple supply voltageswWhile the same
register-transfer or behavioral) [1], less has been done in the arégchnique has been proposed for the case of high level synthesis
of power analysis or optimization at microarchitecture,for low power [16,17,18], its use has not been explored in the
architecture or system level [2]. Having tools that are able t¢ase of low power microprocessors. Since the dynamic
quantify the effect of different performance or power component of energy consumption is quadratically dependent on
optimization schemes for a piece of code running on a giverhe supply voltage § 0 CVgyf), moderate reductions in the
processor is of extreme importance for computer architects angpply voltage will produce great savings in the power
compiler engineers who can characterize different arCh'teCtur§onsumption. However, the price that needs to be paid is higher
styles not only in terms of their performance, but also in terms o lav'D 0 Vad(VarV p hereV- is the threshold vol d
the corresponding energy efficiency. This will also enable thél€lay: dd (Vagr V7)™ whereVy is the threshold voltage an
fine tuning of any existing energy/performance trade-offs. a is strongly dependent on the mobility degradation of electrons
Relevant previous work comes from several different arealf) transistors (with typical value between 1 and 2 [19]).
such as software power modeling for general purpose, embedd&tpWever, as we shall see later, it is possible to get power savings
or Digital Signal Processing (DSP) applications, compilationithout performance penalty since some pipeline stages may
techniques for power optimized software, pipeline scheduling foflictate the operating clock frequency (such as I-cache or D-cache
low power, and energy efficient memory systems. Specifically2CC€Sses, register file accesses, wake-up and selection logic for
[3] proposes goer-instruction base power modéat can be ~out-of-order processors), whereas others may be off of the
easily used to find an aggregate power estimate for a se(:1uencecﬁ'>\’:'Cal path (such as ALUs, etc.). As pointed out in [27,28,29],
instructions. Theinter-instruction overheadiue to changes in e Most important in determining the clock speed are the cache
circuit state are also taken into account, but their effect is foungj”d register file cycle times and the scheduling logic
to be negligible. The approach presented in [4] targets instructiofff€Pendence check, wake-up and select, bypass logic). However,
scheduling to reduce circuit state overhead. The proposidd s We will see in the sequel, there exists a lot of variation among
schedulingechnigue reduces the switching activity in the controldifférent microarchitectural configurations as far as the latency
path by reordering the instructions based on the inter-instructioff €ach of the modules is concerned. This variation can be
energy overhead. For the special case of real-time systems, §ploited to reduce the power consumption by selectively
approach for reducing energy via scheduling, while still meetinPPlying lower voltages to pipeline stages or modules that are
the deadlines, has been presented in [5]. In [6], the case of DSjparanteed to have a lower latency than the critical one. A
applications is addressed. There, while the same type of modetdnilar problem has been addressed in [30] where the problem of
as in [3] have been developed, the inter-instruction effects turfP!Nt Optimization of performance and clock rate has been

out to be much more prevalent, thus making possible to developddressed and Complexity-Adaptive Processors (CAPs) are
instruction scheduling techniques that target powe roposed. CAPs provide many different performance/clock rate

minimization. In [7] a more efficient model with space trade-off points within a single hardware implementation, but do

complexity linear in the instruction set size has been presented.S° while maintaining the high clock rate of _a_flxed architecture.
More recently, [8] and [9] present two more advanced As pointed out in [27], when characterizing the performance
microarchitectural power simulators. In [8], a very accurate®f modern processors, @RI (Cycles per Instruction) is only
parameterized power simulator (within 10% when compared t@"€ Of the two parameters that needs to be considered, the second
three different high-end microprocessors) is presented, as well £§€ being the actual cycle time. Indeed, it is shown that with
some interesting trade-offs between energy and performandBCréasing complexities of modern architectures (wider issue
under varying microarchitecture settings. In [9], the case of@tes, larger instruction windows, etc.) @Rl does decrease, but
datapath dominated architectures is considered, as well as 4f$0 the critical path delay increases at a higher rate GRdn
analysis of the impact of compiler optimizations and memoryd€creases. Thus, the produPl*Teqe is a more accurate

design on power consumption values. In the area of energjeasure for characterizing the performance of modern
processors that use a significant amount of dynamic scheduling
and out-of-order execution to achieve high levels of

*This research was supported in part by NSF CAREER Award MIP-0084479.

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

performance. In the case of power consumption, mosbroadcast operations on long wires and thus their delay will not
researchers have concentrated on the problem of estimation stale with shrinking device sizes [27]. In addition, their
optimization ofenergy per committed instructi¢gPI) orenergy =~ complexity and delay is quadratically dependent oniskae

per cycle (EPC) [8,9,25,26]. While in the case of embeddedwidth (IW) andinstruction window sizé/NS.

computer systems with tight power budgets some performancRename logic

may be sacrificed for lowering the power consumption, in the_,
cas)cle of high performance prgcessoF;s this is not gesirable aﬁ is structure is responsible for mapping logical registers into

: L ; ical registers and uses a map table and dependency check
solutions that jointly address the problem of low power and highf' 'YS!¢a : .
; logic that detects true dependenciesad after writeor RAW
erformance are needed. To this end, we proposerth " -))
gelay product per _instruction (EDPPI) P d%fined B_:]gs dependencies), that is, whether a current source register is one of

EPIFCPPT,qe as a measure that characterizes both thdhe previous destination registers that has been already renamed

- ; . in a previous clock cycle. The complexity of the rename logic
performance and power efficiency of a given architecture. Such greases quadratically withV due to dependency check logic.
measure can identify microarchitectural configurations that kee

h o ; A s shown in [27], the delay of the renaming logic is determined
the power consumption to a minimum, without significantly j, the ‘map table since the dependency checking is done in
affecting the performance. In addition to classical metrics (suc

. vt arallel and typically is faster than accessing the map table. The
asEPCandEPI), we use this measure to assess the efficiency of 3, "taple is assumed to have a CAM (content addressable
our power optimization technique and to compare differenty,

: : gt emory) structure. The delay of the renaming logic has the form
configurations as far as power consumption is concerned. .

To validate our results, we use a microarchitecture-leve 9
power simulator developed recently [8]. The underlying tool isDelay,qame= 8+ 81IW + a,IW Q)
SimpleScalar, a widely-used detailed performance simulator
[20], augmented with information about both dynamic and statidVN€redo, a, anda, are technology dependent constawtake-
power consumption. As the experimental results showup logic
significant savings can be obtained in both energy and powefhe \ake-up logic is responsible for updating source
consumption, ranging from 10% to 27%, depending on th§ependencies of instructions in the window waiting for their
microarchitectural settings of the processor. source operands to become available. It relies on broadcasting
The paper is organized as follows: in Section 2 we preserfroduced results to all instructions in the instruction window, and
the rationale for using multiple supply voltages atthus it's complexity is a function of the windows six#g. The

microarchitectural level. In Section 3, we present ourynderlying structure is again a CAM and the delay for accessing
assumptions and basic approach for reducing powegn entry has the form:

consumption. Section 4 shows our experimental results for the
proposed technique applied on a subset of Specint9®elay,, e up = bg + (by + byl W)WS)
benchmarks. We conclude in Section 5 with some final remarks. AW

+(bg+ by W + bg W)W

2 Delay variation with microarchitectural settings As it can be seen, as larger windows and wider issue widths are
In what follows, we consider a typical superscalar configurationused, the delay increases quadratically. However, the gain in
based on the reservation station model (Fig.1). This structure jgerformance (i.e., decrease @PI) increases at a much lower
used in modern processors like Pentium Pro and PowerPC 60¢ate and tapers off after a while. Agalgy-bg are technology

The main difference between this structure and the one used fependent constants.

other processors (like MIPS R10000, DEC 21264, HP PA'SOOOéeIection logic

is that the reorder buffer holds speculative values and the register ; . . .
file holds only committed, non-speculative data, whereas for thd he selection logic selects instructions to be executed from the
second case, both speculative and non-speculative values arep@ol of ready instructions in the issue window. Since more
the register file. However, the wake-up, select and bypass logi@structions than available resources may be ready for execution,
are common to both types of architectures and, as pointed out §®me sort of policy for selecting a subset of them is needed, such
[27], their complexity increases significantly with increasing asoldest ready firstFor a scheme that assumes selection is done
issue widths and window sizes. based on the position of the ready instruction in the issue window
(as it is done in HP PA-8000), the delay of the selection logic
increases with the window size as follows:

T Issue Delaysgect = Co + C1109,(WS (3)
- 3 £ window S) . _ _
5 3 g @ D g Assuming a 0.35um technology, withVyq = 2.5V andVy =
e 2 x S = | g <> 0.67V, the following variation with issue width and window size
Wake-up} EN /D—L a is observed for the delay of various structures of dynamic
select scheduler (Table 1). Some of the delay values have been reported

in [27] whereas other were obtained using the models in (1)-(3).
Fetch | Decode Rename Reg-riéad Wake-up Exgcute Dtache jeg-wri_lﬂs it can be seen, the wake-up and select logic are the bottleneck
ROBread Select Bypass atcess Commilgince they have to be completed in the same cycle. Also, the

Fig.1 The reservation station model corresponding delay grows fast with the increa$i\fgor IW.

We review in the following the analytical delay models that have/nalytic delay models for the execute-bypass stage

been previously proposed for the most critical modules or stageBhe data bypass logic is responsible for bypassing result values
in a typical out-of-order superscalar processor. As it will be seefP subsequent instructions from instructions that have completed
in the sequel, the latency that dictates the clock period of thexecution, but have not yet written their results into the register
processor is highly dependent on microarchitectural features théte. However, the delay of bypass logic may become dominant
are used to increase performance, such as issue width amdth shrinking technology sizes and increasitWy. This is)
instruction window size. because the key factor that determines the speed of bypass logic
. . is the delay of the result wires that are used to transmit bypassed
Analytical delay models for the dynamic scheduler ~ values. The wire length is proportionall# and to the height of
This mainly concerns the dispatch and issue logic and basicallyinctional units available for execution during each clock cycle.
determines the amount of parallelism that can be exploited. Thg is also a function of the layout used; for example, a clustered
main issue with these structures is the fact that they rely omyout (with bypassing within a group of functional units and

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

registers) can be more suitable and able to overcome thHenctional units are considered pipelined). However, with

increasing contribution of bypass logic delay. . shrinking technologies, the delay of the ALU scales down, but
Table 1: Delay of dynamic scheduling logic the bypass logic delay will be unchanged since wire delays do
not scale with smaller feature sizes.
WS (Instr.) | IW (Instr./cycle dRename Wake-up Select (ps Delay models for the register file and caches
elay (ps) delay (ps) . o . . .
The register file is accessed in the register and commit stages
8 214.4 1112.9 when either operands have to be read or results are committed
16 218.8 1113.0 into the architected register file. It has been shown in [28] that
1 625.4 ’ ' the register file delay increases Wit since the number of ports
32 2226 1997.5 needed is proportional to the issue width. The model is similar to
64 2485 1997.4 the one for the CAM structure used in the wake-up logic, but
uses bitlines and wordlines instead of taglines and matchlines.
8 255.8 1112.9 For the case of |-cache and D-cache, we consider the model
16 263.7 1113.0 developed in [29] which provides a complete analysis of the
2 649.4 access and cycle time as a function of the cache size, block size
32 274.1 19975 and associativity. To minimize the access time, the cache
64 308.3 1997.4 hardware organization is determined us@arti tools [29]. The
8 3326 11129 same model has been used in [8] to reorganize caches for
i . minimum access time. We provide in Table 3 the cycle times for
16 345.4 1113.0 a register file of size 32, a direct mapped I-cache of size 16K
32 4 6985 o671 10975 with a block size matching the fetch rate (varying between 8, 16,
; i 32, 64B) and a 4-way set associative D-cache of size 16K with
64 419 1997.4 32B blocks. The values have been scaled down from the reported
) 4632 1112.9 values in [28,29] from a Opn (register file) and a O8n
(cache) technology to the 0§35 case considered by us.
16 476.9 1113.0 .)
8 800.8 Table 3: Delay of register file and caches
32 510.1 1997.5 Register D-cache
64 605.0 1997.4 IW (Instr./cycle file (ns) I-cache (ns) (ns)
Table 2: Delay of bypass logic 1 20 21
Bypass
WS (Instr)| IW (Instr./cycle) delay (ps 2 23 3.6 49
4 2.5 35
8 12.1 8 2.9 33
16 14.9 . X .
1 As it can be seen in Tables 1-3, the stages that have the highest
32 214 latency for the considered configurations are the D-cache, I-
64 381 cache, bypass and execute, register file, wake-up and select and
rename, in this order. However, as pointed out in [27], the wake-
8 44.1 up and select logic have to be performed atomically, whereas the
16 50.4 delay of all the others can be reduced either by pipelining (e.g.,
2 cache accesses) or by clustering (bypass logic). In addition, with
32 644 shrinking feature sizes, some of the delays will scale differently,
64 97.6 depending on the breakdown in terms of gate and wire delay.
P 1681 Nonetheless, it is clear that there exists a wide variation in terms
: of latencies across different pipeline stages. This variation can be
16 184.5 exploited for running slower stages at a lower voltage, while
32 4 2195 keeping the operating clock frequency the same. The next section
examines how this can be achieved.
64 298.82
3 5564 3 Using multiple supply voltages at microarchitectural level
: The problem of using multiple supply voltages for reducing the
16 8 704.7 power requirements of a given design has been studied in the
32 806.5 area of high level synthesis for low power [16,17]. It has been
pointed out that, while it is theoretically possible to have many
64 1030.6 supply voltages available, or voltage values that are exactly

Analytically, for a scheme that does not use clustering, the delajatched with the latency of each module, such a scenario is too

of the bypass logic has the form: expensive to use in practice. Instead, from a practical point of
W view, the availability of a small number of supply voltages
0 . (typically two or three) is a reasonable assumption.
Delay,ypass= doBVS d + dyIW) + Z heigh(FY)O (4) In the case of low power high level synthesis using multiple
U i=1 U supply voltages the slack available in the scheduling of different

where the first term account for the height of the register file an@Perations in a dataflow graph (DFG) is exploited so that
the summation accounts for the height of all functional units thafodules not on the critical path can be run at a lower voltage,
are available to execute in parallel during every cycle. Assumingoss'bly over many clock cycles. The DFG is assumed scheduled
that all functional units are ALUs performing general @nd allocated and voltages are assigned so that the total energy
computations (adding, shifting, logic operations), we get th&onsumption is optimized under given performance constraints
values in Table 2 in a 0.A/ technology. Thus, when 17]. The problem of both pipelined and non-pipelined DFGs has
considering the latency of the execute-bypass stage, one hask@en addressed and savings of up to 60-70% in some cases have
consider the delay of an ALU plus the bypass logic (all otheP€en reported.

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

In the case of out-of-order superscalar processors, the badit addition, the power model used in [8parameterizedo that
structure is a linear pipeline with some feedback due to bypagke power consumption is scaled down according to the number
logic and reading/writing of registers. Assigning voltages toof resources (in the case of multiple functional units) or ports
reduce power consumption can be done since, as showrsed (for the register file or caches) during a given clock cycle.
previously, there exists some slack between the slowest pipelirieor the purpose of reporting the results, the simulator was run in
stages and the rest. In addition, as it will be shown in thehe high-performance mode which uses a fairly accurate branch
experimental part, the optimal energy configuration (defined byprediction mechanism. We consider the configurations specified
either minimumEPI or EDPPI) is in most of the cases not the In Table 4 for a typical superscalar microprocessor. Some of the
one that uses large issue widths or window sizes. Thus, a largericroarchitecture settings are the default values in the
slack between the cache accesses and other stages of the pipeirapleScalar [20] simulation environment. Every given value of
can become manifest, thus providing more opportunities fothe fetch rate (1-8) is matched with a corresponding issue,
running faster stages at a lower voltage. Our goal is to keegispatch and commit rate, as well as a corresponding number of
everything within the given cycle time, so that there is noavailable functional units. In addition, for all configurations the
performance penalty. I-cache size is 16K, but with varying line size to match the

While we do consider assigning different voltages for theincreasing fetch rate.
purpose of reducing power consumption, we do keep the global The purpose of our experimental study is twofold:
clock lines powered at the highégy. This will limit the amount (i) To compare various microarchitectural configurations
of savings that can be achieved since the clock powein terms of power consumption.
consumption can be significant (up to 40% [2]). In what follows, (i To assess the efficiency of our proposed multiple
we consider the following simplifying assumptions: supply voltage scheme in different architectural settings.

» The power and delay overhead due to voltage leveEnergy metrics
converters is negligible; In the following, we present our results on a subset of the

» The power and delay overhead of the multiple voltageSpecint95 benchmark suite. In Fig.2-3 we report the normalized
DC-DC converter compared to the single voltage DC-DCvalues forCPI (cycles per instructionzPC (energy per cycle),

converter is negligible. EPI (energy per instruction) arliDPPI (energy delay product
4E . | | per instruction). All values have been obtained assuming a
xperimental results 0.35um technology, with/qq = 2.5V.

To report our experimental results, we have used the | g cases reported, the best performance is obtained when
SimpleScalar microarchitecture simulator [20] augmented withy \yiger issue rate and/or a large instruction window is (G&d.
information about power ~ consumption Wdttch [8]). teadily decreases whéW is increased, although in some cases
SimpleScalar performs fast, flexible and accurate simulation c\)zﬁ_g_ gco), the dependence &M Sis more prevalent. However, in
modern processors that implement a derivative of the MIPS-I\f o5t cases, going from a window size of 32 to 64 brings almost
architecture [22]Wattchassumes that aggressive clock gating ispq improvement in terms of performance. This actually confirms
used to reduce the dynamic power consumption whenever @at increasing complexity comes at an increasing price in both

hardware unit is not in use [23]. area and delay, but does not provide a significant improvement of

Table 4: Processor configurations performance [27]. On the other hand, the average power
consumption EPQ) is usually minimized for lower values bW/

Parameter Value and WS but this reduction comes at the price of decreased

RUU size 8-64 InStructions performance. In fact, the total energy consumed during the

execution of a given benchmark may actually increase due to

LSQ size 4-32 instructions increased idleness of different modules. To characterize the

actual energy consumption, the energy per committed instruction

Fetch queue size 1-8 instructions . h L
: (EPI) is a more appropriate measure. While in some cases
Fetch width (compress, ijpegEPI decreases with highdW and increases
Decode width 1-8 instructions/cycle with higher values ofNS there are cases wheE®| decreases
Issue width with increasingW (gco or oscillates when eithéw or WSare
Commit width varied (isp). This shows that there is no clear relationship

between the microarchitectural settings and the energy needed to

Functional units 1- 8 IntALUs, 1 IntMult/Div accomplish a given task. The energy-optimal configuration is

1- 8 FPALUs, 1 FPMult/Div very different from one application to another, as it can also be
Branch prediction Bimodal, 2K table among different parts of the same application [26]. For example,
BTE K a an issue width of 8 with a window size of 8 minimiZRI for
» A-way ijpeg, whereas the others have varying optimal configurations. If,
Return-address stack | 8 entry however, the highest energy reduction with lowest performance
- - penalty is sought, in all cases but ongcd the optimal
Mispredict penalty | 3 cycles configuration (i.e., lowest EDPPI) i®W = 8 andWS = 16.
L1 D-cache 16K, 32B blocks, 4-way, LRU Although the energy is not minimized in this cases, the penalty in
1 cycle latency performance is less than in other cases with similar energy
L1 I-cache 16K, (8, 16, 32, 64)B blocks, direct-mapped, savings.
LRU, 1 cycle latency
L2 256K, 64B blocks, 4-way, LRU
6 cycles latency
Memory 10 cycles latency
DTLB 512K, 4K blocks, 4-way, LRU
10 cycles miss latency
ITLB 256K, 4K blocks, 4-way, LRU

10 cycles miss latency

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Normalized values Normalized values

Normalized values

Normalized values

compress
25
OCPI
2 OEPC
HEPI
W EDPPI

=
3
\

[
|

o
3]

o
¢

Issue width x Window size

ijpeg

Issue width x Window size

Issue width x Window size

Fig.2 Detailed analysis for some SpecInt95 benchmarks

i Normalized values
Normalized values

Normalized values

Normalized values

compress
2511 D EDPPI with 2.5V
EEDPPI with 2.5V and 2.2V
2l MEDPPI with 2.5V, 2.2V, 1.9V
12|48
8 |16|16 |16 |16 |32|32|32|32 |64 | 64| 64|64

Issue width x Window size

ijpeg
3.5¢
O EDPPI for 2.5V
3J @ EDPPI for 2.5Vand 2.2V
@ EDPPI for 2.5V, 2.2V, 1.9V
2.5+
2,
1.5
1,
0.5
0,
Issue width x Window size
gce
1.8
164 O EDPPI with 2.5V
DEDPPIwith 25Vand 2.2V |
1.44 @ EDPPI with 2.5V, 2.2V, 1.9V
1.2
14
0.8+
0.6
0.4
0.2
0,‘

Issue width x Window size

lisp

2| EDPPIwith 2.5V
W EOEDPPIwith 2.5Vand 2.2V
EEDPPI with 2.5V, 2.2V, 1.9V| |

Issue width x Window size
Fig.3 Energy savings using multiple supply voltages

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Energy reduction using multiple supply voltages
To this end, we will consider the effect of using multiple voltages
assuming that up to three supply voltages are availslg:=

2.5V, Vyp = 2.2V, V4g = 1.9V. We report in Fig.4-5 the savings

in EDPPI obtained when using multiple supply voltages When[lO
compared to the original single voltage scheme. Since changing
the voltage does not change BBl or Teycle the same savings (19
will be obtained forEPI or EPC. The energy savings obtained
using an additional, lower voltage supply of 2.2V reduces the
energy consumption by about 10%, whereas adding another
voltage supply (1.9V) further reduces power by another 17%l12]
The savings obtained have little variation from one benchmark to
another, the main reason residing in the fact that the power
breakdown among different stages does not vary much. IR
addition, since the clock power (up to 40% or more in some
cases) is not scaled down, the savings are limited by the differefit}]
modules that have an available slack that can be exploited.
However, these savings come with no performance penalty and
the throughput is maintained, while preserving b6l and 1
cycle time Teycle Also, by choosing different voltage values
(lower than what has been considered) it is conceivable that ti}@ﬁl
reduction observed when using this scheme will further increase:

(9]

Kol

5 Conclusion and discussion 17]

In this paper, we have presented a study of different powe[r
metrics for varying microarchitectural configurations and a 8]
promising scheme to reduce the energy requirements o[il
superscalar, out-of-order processors. The variation of energy (or
energy delay product) per committed instruction with different
architectural settings provides an insight into finding energy{19]
optimal settings for a given application. Such a configuration
could be found in a run-time environment either for a given
application, or on a finer grain, for a given computational kernel20]
belonging to an application. The multiple voltage supply scheme
is a simple and efficient way of reducing the energy requirementgi]
by up to 27% (for the given set of voltage values) of a processor,
with no performance overhead. Since a completely synchronous
scheme requires the existence of a global clock with high powelp2]
overhead, to achieve more significant savings the multiple
voltage supply solution could be applied in a globally [23]
asynchronous, locally synchronous architecture where the
overhead of communication among different modules is
minimized. Nonetheless, the paradigm of running slower stageig4]
at a lower voltage could be employed in a run-time
environment that is able to adjust the voltage and clock
frequency dynamically, on a fine grain, to fit the application [25]
needs.

References
[26]
[1] J. Mermet and W. Nebel, ‘Low Power Design in Deep Submicron Electronics,’
Kluwer Academic, Norwell, MA, 1997.

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, F. Baez, ‘Reducingl27]
Power in High-Performance Microprocessors, Aroc. ACM/IEEE Design
Automation Conferen¢@p.732-737, June 1998.

V. Tiwari, S. Malik, and A. Wolfe, ‘Power Analysis of Embedded Software: A
First Step Toward Software Power Minimization,” [BEE Trans. on VLSI
Systemsvol.2, no.4, pp.437-445, April 1994.

C.L. Su, C.-Y. Tsui, and A.M. Despain, ‘Saving Power in the Control Path of
Embedded Processors,’ IBEE Design and Test of Computev®l.11, no.4,
Dec. 1994.

(2]

[28]
[3

[29]
(4]

[30]
5

S.T. Cheng, C.M. Chen, J.W. Huang, ‘Low-Power Design for Real-Time
Systems,’ inReal-Time Systemgol.15, no.2, pp.131-148, Sept. 1998.

M.T.-C. Lee, V. Tiwari, S. Malik and M. Fujita, ‘Power Analysis and
Minimization Techniques for Embedded DSP Software,[HEE Trans. on
VLSI Systemwol.5, no.1, pp.123-135, Jan. 1997.

B. Klass, D.E. Thomas, H. Schmit, D.E. Nagle, ‘Modeling Inter-Instruction
Energy Effects in a Digital Signal Processor,” iRower-Driven
Microarchitecture Workshagp in conjunction with Intl. Symposium on
Computer ArchitectureBarcelona, Spain, June 1998.

6]

[7

[8

D. Brooks, V. Tiwari, and M. Martonosi, ‘Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” roc. Intl.
Symposium on Computer Architectuvancouver, BC, Canada, June 2000.

N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, and W. Ye, ‘Energy-
Driven Integrated Hardware-Software Optimizations Using SimplePower,’ in
Proc. Intl. Symposium on Computer Architectusancouver, BC, Canada,
June 2000.

S. Manne, A. Klauser, and D. Grunwald, ‘Pipeline Gating: Speculation Control
for Energy Reduction,” ifProc. Intl. Symposium on Computer Architecture
Barcelona, Spain, June 1998.

T.M. Conte, K.N. Menezes, S.W. Sathaye, and M.C. Toburen, ‘System-Level
Power Consumption Modeling and Trade-off Analysis Techniques for
Superscalar Processor Design,’ to appealBBEE Transactions on VLSI
Systems.

D. Albonesi, ‘Selective Cache Ways: On-Demand Cache Resource
Allocation,” in Proc. Intl. Symposium on Microarchitecture (MICRO-32)
Haifa, Israel, pp.248-259, Nov. 1999.

3] J. Kin, M. Gupta, and W. Mangione-Smith, ‘The Filter Cache: An Energy

Efficient Memory Structure,” iItEEE Micro, Dec.1997.

H. Lekatsas, J. Henkel, and W. Wolf, ‘Code Compression for Low Power
Embedded System Design,” iProc. ACM/IEEE Design Automation
ConferencelLos Angeles, CA, June 2000.

T. Ishihara and H. Yasuura, ‘Voltage Scheduling Problem for Dynamically
Variable Voltage Processors,” Proc. ACM Intl. Symposium on Low Power
Electronics and Desigmpp.197-202, Monterey, CA, Aug. 1998.

J.-M. Chang and M. Pedram, ‘Energy Minimization Using Multiple Supply
\oltages,” inIEEE Trans. on VLSI Systemeol.5, no.4, pp.425-435, Dec.
1997.

S. Raje and M. Sarrafzadeh, ‘Variable Voltage Schedulindrde. ACM Intl.
Symposium on Low Power Desigp.9-14, Dana Point, CA, April 1995.

T. Pering, T. Burd, and R. Brodersen, ‘Dynamic Voltage Scaling and the
Design of a Low-Power Microprocessor System,” Power-Driven
Microarchitecture Workshap in conjunction with Intl. Symposium on
Computer ArchitectureBarcelona, Spain, June 1998.

G. Cai and C.H. Lim, ‘Architectural Level Power/Performance Optimization
and Dynamic Power Estimation,’” inProc. Intl. Symposium on
Microarchitecture (MICRO-32), Cool Chips tutorjdfaifa, Israel, Nov. 1999.

D. Burger, T.M. Austin, ‘The SimpleScalar Tool Set, Version 20SD
Technical Report #1342niversity of Wisconsin-Madison, June 1997.

‘Advanced Configuration and Power Interface Specification,” Intel, Microsoft,
Toshiba, Revision 1.0b, Feb. 2, 1999, kitp://www.teleport.com/~acpi/
DOWNLOADS/ACPIspec10b.pdf.

C. Price, ‘MIPS IV Instruction Set, revision 3.1.,” MIPS Technologies, Inc.,
Mountain View, CA, Jan. 1995.

S. Gary, ‘Low-Power Microprocessor Design,’” ibow Power Design
Methodologies(Eds. J.M. Rabaey and M. Pedram), pp.255-288, Kluwer
Academic, Norwell, MA, 1996.

C. Svensson and D. Liu, ‘Low Power Circuit Techniques,Low Power
Design Methodologie€Eds. J.M. Rabaey and M. Pedram), pp.37-64, Kluwer
Academic, Norwell, MA, 1996.

V. Zyuban, P. Kogge, ‘Optimization of High-Performance Super-Scalar
Architectures for Energy-Delay Product,” in Proc. Intl. Symposium on Low
Power Electronics and Desigduly 2000, Portofino, Italy.

D. Marculescu, ‘Profile-Driven Code Execution for Low Power Dissipation,’
in Proc. Intl. Symposium on Low Power Electronics and Desigly 2000,
Portofino, Italy.

S. Palacharla, N.P. Jouppi, and J.E. Smith, ‘Quantifying the Complexity of
Superscalar Processors,” CS-TR-1996-1328, Univ. of Wisconsin, Nov. 1996.

K.l. Farkas, N.P. Jouppi, and P. Chow, ‘Register File Design Considerations in
Dynamically Scheduled Processors,” WRL Research Report 95/10, Digital
Equipment Corp., Nov. 1995.

S.J.E. Wilton and N.P. Jouppi, ‘An Enhanced Access and Cycle Time Model
or On-Chip Caches,” WRL Research Report 93/5, Digital Equipment Corp.,

f
July 1994.

D.H. Albonesi, ‘Dynamic IPC/Clock Rate Optimization,” iRroc. Intl.
Symposium on Computer Architectulane 1998.

