
Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Power Efficient Processors Using Multiple Supply Voltages*

Diana Marculescu
Dept. of Electrical and Computer Engineering

Center for Electronic Design Automation
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract -This paper presents a study of different power metrics
for varying microarchitectural configurations and proposes an
efficient scheme to reduce the energy requirements of
superscalar, out-of-order processors. Specifically, we propose
the use of multiple supply voltages at microarchitectural level by
exploiting the difference in latencies of different pipeline stages
or modules. The proposed scheme is a simple and efficient way of
reducing the energy requirements by up to 27%, without affecting
the effective performance of the processor.

1 Introduction
In recent years, power dissipation has become a critical design
concern not only for designers of battery powered or wireless
electronics, but also in the case of high-performance
microprocessors, multimedia and digital signal processors or
high-speed networking. While it is generally agreed that tools for
power estimation and optimization do exist for hardware
specifications at different levels of abstraction (circuit, gate,
register-transfer or behavioral) [1], less has been done in the area
of power analysis or optimization at microarchitecture,
architecture or system level [2]. Having tools that are able to
quantify the effect of different performance or power
optimization schemes for a piece of code running on a given
processor is of extreme importance for computer architects and
compiler engineers who can characterize different architecture
styles not only in terms of their performance, but also in terms of
the corresponding energy efficiency. This will also enable the
fine tuning of any existing energy/performance trade-offs.

Relevant previous work comes from several different areas
such as software power modeling for general purpose, embedded
or Digital Signal Processing (DSP) applications, compilation
techniques for power optimized software, pipeline scheduling for
low power, and energy efficient memory systems. Specifically,
[3] proposes a per-instruction base power model that can be
easily used to find an aggregate power estimate for a sequence of
instructions. The inter-instruction overhead due to changes in
circuit state are also taken into account, but their effect is found
to be negligible. The approach presented in [4] targets instruction
scheduling to reduce circuit state overhead. The proposed cold
scheduling technique reduces the switching activity in the control
path by reordering the instructions based on the inter-instruction
energy overhead. For the special case of real-time systems, an
approach for reducing energy via scheduling, while still meeting
the deadlines, has been presented in [5]. In [6], the case of DSP
applications is addressed. There, while the same type of models
as in [3] have been developed, the inter-instruction effects turn
out to be much more prevalent, thus making possible to develop
instruction scheduling techniques that target power
minimization. In [7] a more efficient model with space
complexity linear in the instruction set size has been presented.

More recently, [8] and [9] present two more advanced
microarchitectural power simulators. In [8], a very accurate
parameterized power simulator (within 10% when compared to
three different high-end microprocessors) is presented, as well as
some interesting trade-offs between energy and performance
under varying microarchitecture settings. In [9], the case of
datapath dominated architectures is considered, as well as an
analysis of the impact of compiler optimizations and memory
design on power consumption values. In the area of energy

optimization, the authors of [10] present an architectural
enhancement to reduce the extra work or energy in the pipeline
of a superscalar processor due to mispredicted branches, without
significant loss in performance. In [11] a technique for reducing
the average power consumption for the pipeline structure is
presented. Other approaches target techniques for energy
efficient memory systems, such as the use of selective cache
ways [12], filter-caches [13] or code compression [14]. Several
approaches in the most recent literature on power efficient
architecture point out that different microarchitectural settings do
provide different values for energy per instruction [25] or energy
delay product [8]. It has also been observed that there exists a
wide variation from one application to another, as well as
between different parts of the same application [26] both in terms
of the inherent parallelism and in terms of the necessary
resources to sustain a given performance level.

In this paper we address the problem of power optimization
of processors using multiple supply voltages. While the same
technique has been proposed for the case of high level synthesis
for low power [16,17,18], its use has not been explored in the
case of low power microprocessors. Since the dynamic
component of energy consumption is quadratically dependent on
the supply voltage (E ∝ CVdd

2), moderate reductions in the
supply voltage will produce great savings in the power
consumption. However, the price that needs to be paid is higher
delay: D ∝ Vdd/(Vdd-VT)α where VT is the threshold voltage and
α is strongly dependent on the mobility degradation of electrons
in transistors (with typical value between 1 and 2 [15]).
However, as we shall see later, it is possible to get power savings
without performance penalty since some pipeline stages may
dictate the operating clock frequency (such as I-cache or D-cache
accesses, register file accesses, wake-up and selection logic for
out-of-order processors), whereas others may be off of the
critical path (such as ALUs, etc.). As pointed out in [27,28,29],
the most important in determining the clock speed are the cache
and register file cycle times and the scheduling logic
(dependence check, wake-up and select, bypass logic). However,
as we will see in the sequel, there exists a lot of variation among
different microarchitectural configurations as far as the latency
of each of the modules is concerned. This variation can be
exploited to reduce the power consumption by selectively
applying lower voltages to pipeline stages or modules that are
guaranteed to have a lower latency than the critical one. A
similar problem has been addressed in [30] where the problem of
joint optimization of performance and clock rate has been
addressed and Complexity-Adaptive Processors (CAPs) are
proposed. CAPs provide many different performance/clock rate
trade-off points within a single hardware implementation, but do
so while maintaining the high clock rate of a fixed architecture.

As pointed out in [27], when characterizing the performance
of modern processors, the CPI (Cycles per Instruction) is only
one of the two parameters that needs to be considered, the second
one being the actual cycle time. Indeed, it is shown that with
increasing complexities of modern architectures (wider issue
rates, larger instruction windows, etc.) the CPI does decrease, but
also the critical path delay increases at a higher rate than CPI
decreases. Thus, the product CPI*Tcycle is a more accurate
measure for characterizing the performance of modern
processors that use a significant amount of dynamic scheduling
and out-of-order execution to achieve high levels of

.*This research was supported in part by NSF CAREER Award MIP-0084479.

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

performance. In the case of power consumption, most
researchers have concentrated on the problem of estimation or
optimization of energy per committed instruction (EPI) or energy
per cycle (EPC) [8,9,25,26]. While in the case of embedded
computer systems with tight power budgets some performance
may be sacrificed for lowering the power consumption, in the
case of high performance processors this is not desirable and
solutions that jointly address the problem of low power and high
performance are needed. To this end, we propose the energy
delay product per instruction (EDPPI) defined as
EPI*CPI*Tcycle as a measure that characterizes both the
performance and power efficiency of a given architecture. Such a
measure can identify microarchitectural configurations that keep
the power consumption to a minimum, without significantly
affecting the performance. In addition to classical metrics (such
as EPC and EPI), we use this measure to assess the efficiency of
our power optimization technique and to compare different
configurations as far as power consumption is concerned.

To validate our results, we use a microarchitecture-level
power simulator developed recently [8]. The underlying tool is
SimpleScalar, a widely-used detailed performance simulator
[20], augmented with information about both dynamic and static
power consumption. As the experimental results show,
significant savings can be obtained in both energy and power
consumption, ranging from 10% to 27%, depending on the
microarchitectural settings of the processor.

The paper is organized as follows: in Section 2 we present
the rationale for using multiple supply voltages at
microarchitectural level. In Section 3, we present our
assumptions and basic approach for reducing power
consumption. Section 4 shows our experimental results for the
proposed technique applied on a subset of SpecInt95
benchmarks. We conclude in Section 5 with some final remarks.

2 Delay variation with microarchitectural settings
In what follows, we consider a typical superscalar configuration,
based on the reservation station model (Fig.1). This structure is
used in modern processors like Pentium Pro and PowerPC 604.
The main difference between this structure and the one used in
other processors (like MIPS R10000, DEC 21264, HP PA-8000)
is that the reorder buffer holds speculative values and the register
file holds only committed, non-speculative data, whereas for the
second case, both speculative and non-speculative values are in
the register file. However, the wake-up, select and bypass logic
are common to both types of architectures and, as pointed out in
[27], their complexity increases significantly with increasing
issue widths and window sizes.

Fig.1 The reservation station model
We review in the following the analytical delay models that have
been previously proposed for the most critical modules or stages
in a typical out-of-order superscalar processor. As it will be seen
in the sequel, the latency that dictates the clock period of the
processor is highly dependent on microarchitectural features that
are used to increase performance, such as issue width and
instruction window size.

Analytical delay models for the dynamic scheduler
This mainly concerns the dispatch and issue logic and basically
determines the amount of parallelism that can be exploited. The
main issue with these structures is the fact that they rely on

broadcast operations on long wires and thus their delay will not
scale with shrinking device sizes [27]. In addition, their
complexity and delay is quadratically dependent on the issue
width (IW) and instruction window size (WS).
Rename logic
This structure is responsible for mapping logical registers into
physical registers and uses a map table and dependency check
logic that detects true dependencies (read after write or RAW
dependencies), that is, whether a current source register is one of
the previous destination registers that has been already renamed
in a previous clock cycle. The complexity of the rename logic
increases quadratically with IW due to dependency check logic.
As shown in [27], the delay of the renaming logic is determined
by the map table since the dependency checking is done in
parallel and typically is faster than accessing the map table. The
map table is assumed to have a CAM (content addressable
memory) structure. The delay of the renaming logic has the form
[27]:

 (1)

where a0, a1, and a2 are technology dependent constants. Wake-

up logic
The wake-up logic is responsible for updating source
dependencies of instructions in the window waiting for their
source operands to become available. It relies on broadcasting
produced results to all instructions in the instruction window, and
thus it’s complexity is a function of the windows size (WS). The
underlying structure is again a CAM and the delay for accessing
an entry has the form:

 (2)

As it can be seen, as larger windows and wider issue widths are
used, the delay increases quadratically. However, the gain in
performance (i.e., decrease in CPI) increases at a much lower
rate and tapers off after a while. Again, b0-b5 are technology
dependent constants.
Selection logic
The selection logic selects instructions to be executed from the
pool of ready instructions in the issue window. Since more
instructions than available resources may be ready for execution,
some sort of policy for selecting a subset of them is needed, such
as oldest ready first. For a scheme that assumes selection is done
based on the position of the ready instruction in the issue window
(as it is done in HP PA-8000), the delay of the selection logic
increases with the window size as follows:

 (3)

Assuming a 0.35 µm technology, with Vdd = 2.5V and VT =
0.67V, the following variation with issue width and window size
is observed for the delay of various structures of dynamic
scheduler (Table 1). Some of the delay values have been reported
in [27] whereas other were obtained using the models in (1)-(3).
As it can be seen, the wake-up and select logic are the bottleneck
since they have to be completed in the same cycle. Also, the
corresponding delay grows fast with the increasing WS or IW.

Analytic delay models for the execute-bypass stage
The data bypass logic is responsible for bypassing result values
to subsequent instructions from instructions that have completed
execution, but have not yet written their results into the register
file. However, the delay of bypass logic may become dominant
with shrinking technology sizes and increasing IW. This is
because the key factor that determines the speed of bypass logic
is the delay of the result wires that are used to transmit bypassed
values. The wire length is proportional to IW and to the height of
functional units available for execution during each clock cycle.
It is also a function of the layout used; for example, a clustered
layout (with bypassing within a group of functional units and

F
e

tc
h

D
e

co
d

e

R
e

n
a

m
e

R
eg

fil
e

R
eo

rd
er

B
yp

a
ss

D
a

ta
-c

a
ch

e

 b
uf

fe
r

 Issue
window

Wake-up+
 select

Fetch Decode Rename Reg.read Wake-up Execute Dcache Reg.write
 ROB read Select Bypass access Commit

Delayrename a0 a1IW a2IW
2

+ +=

Delaywake up– b0 b1 b2IW+()WS

b3 b4IW b5IW
2

+ +()WS
2

+

+

=

Delayselect c0 c1log4 WS()+=

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

registers) can be more suitable and able to overcome the
increasing contribution of bypass logic delay. .

Analytically, for a scheme that does not use clustering, the delay
of the bypass logic has the form:

 (4)

where the first term account for the height of the register file and
the summation accounts for the height of all functional units that
are available to execute in parallel during every cycle. Assuming
that all functional units are ALUs performing general
computations (adding, shifting, logic operations), we get the
values in Table 2 in a 0.35µm technology. Thus, when
considering the latency of the execute-bypass stage, one has to
consider the delay of an ALU plus the bypass logic (all other

functional units are considered pipelined). However, with
shrinking technologies, the delay of the ALU scales down, but
the bypass logic delay will be unchanged since wire delays do
not scale with smaller feature sizes.

Delay models for the register file and caches
The register file is accessed in the register and commit stages
when either operands have to be read or results are committed
into the architected register file. It has been shown in [28] that
the register file delay increases with IW since the number of ports
needed is proportional to the issue width. The model is similar to
the one for the CAM structure used in the wake-up logic, but
uses bitlines and wordlines instead of taglines and matchlines.
For the case of I-cache and D-cache, we consider the model
developed in [29] which provides a complete analysis of the
access and cycle time as a function of the cache size, block size
and associativity. To minimize the access time, the cache
hardware organization is determined using Cacti tools [29]. The
same model has been used in [8] to reorganize caches for
minimum access time. We provide in Table 3 the cycle times for
a register file of size 32, a direct mapped I-cache of size 16K
with a block size matching the fetch rate (varying between 8, 16,
32, 64B) and a 4-way set associative D-cache of size 16K with
32B blocks. The values have been scaled down from the reported
values in [28,29] from a 0.5µm (register file) and a 0.8µm
(cache) technology to the 0.35µm case considered by us.

As it can be seen in Tables 1-3, the stages that have the highest
latency for the considered configurations are the D-cache, I-
cache, bypass and execute, register file, wake-up and select and
rename, in this order. However, as pointed out in [27], the wake-
up and select logic have to be performed atomically, whereas the
delay of all the others can be reduced either by pipelining (e.g.,
cache accesses) or by clustering (bypass logic). In addition, with
shrinking feature sizes, some of the delays will scale differently,
depending on the breakdown in terms of gate and wire delay.
Nonetheless, it is clear that there exists a wide variation in terms
of latencies across different pipeline stages. This variation can be
exploited for running slower stages at a lower voltage, while
keeping the operating clock frequency the same. The next section
examines how this can be achieved.

3 Using multiple supply voltages at microarchitectural level
The problem of using multiple supply voltages for reducing the
power requirements of a given design has been studied in the
area of high level synthesis for low power [16,17]. It has been
pointed out that, while it is theoretically possible to have many
supply voltages available, or voltage values that are exactly
matched with the latency of each module, such a scenario is too
expensive to use in practice. Instead, from a practical point of
view, the availability of a small number of supply voltages
(typically two or three) is a reasonable assumption.

In the case of low power high level synthesis using multiple
supply voltages the slack available in the scheduling of different
operations in a dataflow graph (DFG) is exploited so that
modules not on the critical path can be run at a lower voltage,
possibly over many clock cycles. The DFG is assumed scheduled
and allocated and voltages are assigned so that the total energy
consumption is optimized under given performance constraints
[17]. The problem of both pipelined and non-pipelined DFGs has
been addressed and savings of up to 60-70% in some cases have
been reported.

Table 1: Delay of dynamic scheduling logic

WS (Instr.) IW (Instr./cycle)
Rename

delay (ps)
Wake-up
delay (ps)

Select (ps)

8

1 625.4

214.4 1112.9

16 218.8 1113.0

32 222.6 1997.5

64 248.5 1997.4

8

2 649.4

255.8 1112.9

16 263.7 1113.0

32 274.1 1997.5

64 308.3 1997.4

8

4 698.5

332.6 1112.9

16 345.4 1113.0

32 366.7 1997.5

64 419 1997.4

8

8 800.8

463.2 1112.9

16 476.9 1113.0

32 510.1 1997.5

64 605.0 1997.4

Table 2: Delay of bypass logic

WS (Instr.) IW (Instr./cycle)
Bypass

delay (ps)

8

1

12.1

16 14.9

32 21.4

64 38.1

8

2

44.1

16 50.4

32 64.4

64 97.6

8

4

168.1

16 184.5

32 219.5

64 298.82

8

8

656.4

16 704.7

32 806.5

64 1030.6

Delaybypass d0 WS d1 d2IW+() height FUi()
i 1=

IW

∑+
 
 
  2

=

Table 3: Delay of register file and caches

IW (Instr./cycle)
Register
file (ns)

I-cache (ns)
D-cache

(ns)

1 2.2 4.1

4.9
2 2.3 3.6

4 2.5 3.5

8 2.9 3.3

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

In the case of out-of-order superscalar processors, the basic
structure is a linear pipeline with some feedback due to bypass
logic and reading/writing of registers. Assigning voltages to
reduce power consumption can be done since, as shown
previously, there exists some slack between the slowest pipeline
stages and the rest. In addition, as it will be shown in the
experimental part, the optimal energy configuration (defined by
either minimum EPI or EDPPI) is in most of the cases not the
one that uses large issue widths or window sizes. Thus, a larger
slack between the cache accesses and other stages of the pipeline
can become manifest, thus providing more opportunities for
running faster stages at a lower voltage. Our goal is to keep
everything within the given cycle time, so that there is no
performance penalty.

While we do consider assigning different voltages for the
purpose of reducing power consumption, we do keep the global
clock lines powered at the higher Vdd. This will limit the amount
of savings that can be achieved since the clock power
consumption can be significant (up to 40% [2]). In what follows,
we consider the following simplifying assumptions:

• The power and delay overhead due to voltage level
converters is negligible;

• The power and delay overhead of the multiple voltage
DC-DC converter compared to the single voltage DC-DC
converter is negligible.

4 Experimental results
To report our experimental results, we have used the
SimpleScalar microarchitecture simulator [20] augmented with
information about power consumption (Wattch [8]).
SimpleScalar performs fast, flexible and accurate simulation of
modern processors that implement a derivative of the MIPS-IV
architecture [22]. Wattch assumes that aggressive clock gating is
used to reduce the dynamic power consumption whenever a
hardware unit is not in use [23].

In addition, the power model used in [8] is parameterized so that
the power consumption is scaled down according to the number
of resources (in the case of multiple functional units) or ports
used (for the register file or caches) during a given clock cycle.
For the purpose of reporting the results, the simulator was run in
the high-performance mode which uses a fairly accurate branch
prediction mechanism. We consider the configurations specified
in Table 4 for a typical superscalar microprocessor. Some of the
microarchitecture settings are the default values in the
SimpleScalar [20] simulation environment. Every given value of
the fetch rate (1-8) is matched with a corresponding issue,
dispatch and commit rate, as well as a corresponding number of
available functional units. In addition, for all configurations the
I-cache size is 16K, but with varying line size to match the
increasing fetch rate.

The purpose of our experimental study is twofold:
(i) To compare various microarchitectural configurations

in terms of power consumption.
(ii To assess the efficiency of our proposed multiple

supply voltage scheme in different architectural settings.
Energy metrics
In the following, we present our results on a subset of the
SpecInt95 benchmark suite. In Fig.2-3 we report the normalized
values for CPI (cycles per instruction), EPC (energy per cycle),
EPI (energy per instruction) and EDPPI (energy delay product
per instruction). All values have been obtained assuming a
0.35µm technology, with Vdd = 2.5V.

In all cases reported, the best performance is obtained when
a wider issue rate and/or a large instruction window is used. CPI
steadily decreases when IW is increased, although in some cases
(e.g., gcc), the dependence on WS is more prevalent. However, in
most cases, going from a window size of 32 to 64 brings almost
no improvement in terms of performance. This actually confirms
that increasing complexity comes at an increasing price in both
area and delay, but does not provide a significant improvement of
performance [27]. On the other hand, the average power
consumption (EPC) is usually minimized for lower values of IW
and WS but this reduction comes at the price of decreased
performance. In fact, the total energy consumed during the
execution of a given benchmark may actually increase due to
increased idleness of different modules. To characterize the
actual energy consumption, the energy per committed instruction
(EPI) is a more appropriate measure. While in some cases
(compress, ijpeg) EPI decreases with higher IW and increases
with higher values of WS, there are cases where EPI decreases
with increasing IW (gcc) or oscillates when either IW or WS are
varied (lisp). This shows that there is no clear relationship
between the microarchitectural settings and the energy needed to
accomplish a given task. The energy-optimal configuration is
very different from one application to another, as it can also be
among different parts of the same application [26]. For example,
an issue width of 8 with a window size of 8 minimizes EPI for
ijpeg, whereas the others have varying optimal configurations. If,
however, the highest energy reduction with lowest performance
penalty is sought, in all cases but one (gcc) the optimal
configuration (i.e., lowest EDPPI) is IW = 8 and WS = 16.
Although the energy is not minimized in this cases, the penalty in
performance is less than in other cases with similar energy
savings.

Table 4: Processor configurations

Parameter Value

RUU size 8-64 instructions

LSQ size 4-32 instructions

Fetch queue size 1-8 instructions

Fetch width
Decode width
Issue width

Commit width

1-8 instructions/cycle

Functional units 1- 8 IntALUs, 1 IntMult/Div
1- 8 FPALUs, 1 FPMult/Div

Branch prediction Bimodal, 2K table

BTB 2K, 4-way

Return-address stack 8 entry

Mispredict penalty 3 cycles

L1 D-cache 16K, 32B blocks, 4-way, LRU
1 cycle latency

L1 I-cache 16K, (8, 16, 32, 64)B blocks, direct-mapped,
LRU, 1 cycle latency

L2 256K, 64B blocks, 4-way, LRU
6 cycles latency

Memory 10 cycles latency

DTLB 512K, 4K blocks, 4-way, LRU
10 cycles miss latency

ITLB 256K, 4K blocks, 4-way, LRU
10 cycles miss latency

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Fig.2 Detailed analysis for some SpecInt95 benchmarks
Fig.3 Energy savings using multiple supply voltages

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

ijpeg

CPI
EPC
EPI
EDPPI

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

compress

CPI
EPC
EPI
EDPPI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

gcc

CPI
EPC
EPI
EDPPI

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

lisp

CPI
EPC
EPI
EDPPI

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

compress

EDPPI with 2.5V
EDPPI with 2.5V and 2.2V
EDPPI with 2.5V, 2.2V, 1.9V

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

ijpeg

EDPPI for 2.5V
EDPPI for 2.5V and 2.2V
EDPPI for 2.5V, 2.2V, 1.9V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue width x Window size

gcc

EDPPI with 2.5V
EDPPI with 2.5V and 2.2V
EDPPI with 2.5V, 2.2V, 1.9V

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 v
al

ue
s

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

8 8 8 8 16 16 16 16 32 32 32 32 64 64 64 64

Issue w idth x Window size

lisp
EDPPI with 2.5V
EDPPI with 2.5V and 2.2V
EDPPI with 2.5V, 2.2V, 1.9V

Submitted to the Workshop on Compilers and Operating Systems for Low Power, in conjunction with PACT 2000

Energy reduction using multiple supply voltages
To this end, we will consider the effect of using multiple voltages
assuming that up to three supply voltages are available: Vdd1 =
2.5V, Vdd2 = 2.2V, Vdd3 = 1.9V. We report in Fig.4-5 the savings
in EDPPI obtained when using multiple supply voltages when
compared to the original single voltage scheme. Since changing
the voltage does not change the CPI or Tcycle, the same savings
will be obtained for EPI or EPC. The energy savings obtained
using an additional, lower voltage supply of 2.2V reduces the
energy consumption by about 10%, whereas adding another
voltage supply (1.9V) further reduces power by another 17%.
The savings obtained have little variation from one benchmark to
another, the main reason residing in the fact that the power
breakdown among different stages does not vary much. In
addition, since the clock power (up to 40% or more in some
cases) is not scaled down, the savings are limited by the different
modules that have an available slack that can be exploited.
However, these savings come with no performance penalty and
the throughput is maintained, while preserving both CPI and
cycle time Tcycle. Also, by choosing different voltage values
(lower than what has been considered) it is conceivable that the
reduction observed when using this scheme will further increase.

5 Conclusion and discussion
In this paper, we have presented a study of different power
metrics for varying microarchitectural configurations and a
promising scheme to reduce the energy requirements of
superscalar, out-of-order processors. The variation of energy (or
energy delay product) per committed instruction with different
architectural settings provides an insight into finding energy-
optimal settings for a given application. Such a configuration
could be found in a run-time environment either for a given
application, or on a finer grain, for a given computational kernel
belonging to an application. The multiple voltage supply scheme
is a simple and efficient way of reducing the energy requirements
by up to 27% (for the given set of voltage values) of a processor,
with no performance overhead. Since a completely synchronous
scheme requires the existence of a global clock with high power
overhead, to achieve more significant savings the multiple
voltage supply solution could be applied in a globally
asynchronous, locally synchronous architecture where the
overhead of communication among different modules is
minimized. Nonetheless, the paradigm of running slower stages
at a lower voltage could be employed in a run-time
environment that is able to adjust the voltage and clock
frequency dynamically, on a fine grain, to fit the application
needs.
References

[1] J. Mermet and W. Nebel, ‘Low Power Design in Deep Submicron Electronics,’
Kluwer Academic, Norwell, MA, 1997.

[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, F. Baez, ‘Reducing
Power in High-Performance Microprocessors,’ in Proc. ACM/IEEE Design
Automation Conference, pp.732-737, June 1998.

[3] V. Tiwari, S. Malik, and A. Wolfe, ‘Power Analysis of Embedded Software: A
First Step Toward Software Power Minimization,’ in IEEE Trans. on VLSI
Systems, vol.2, no.4, pp.437-445, April 1994.

[4] C.L. Su, C.-Y. Tsui, and A.M. Despain, ‘Saving Power in the Control Path of
Embedded Processors,’ in IEEE Design and Test of Computers, vol.11, no.4,
Dec. 1994.

[5] S.T. Cheng, C.M. Chen, J.W. Huang, ‘Low-Power Design for Real-Time
Systems,’ in Real-Time Systems, vol.15, no.2, pp.131-148, Sept. 1998.

[6] M.T.-C. Lee, V. Tiwari, S. Malik and M. Fujita, ‘Power Analysis and
Minimization Techniques for Embedded DSP Software,’ in IEEE Trans. on
VLSI Systems, vol.5, no.1, pp.123-135, Jan. 1997.

[7] B. Klass, D.E. Thomas, H. Schmit, D.E. Nagle, ‘Modeling Inter-Instruction
Energy Effects in a Digital Signal Processor,’ in Power-Driven
Microarchitecture Workshop, in conjunction with Intl. Symposium on
Computer Architecture, Barcelona, Spain, June 1998.

[8] D. Brooks, V. Tiwari, and M. Martonosi, ‘Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,’ in Proc. Intl.
Symposium on Computer Architecture, Vancouver, BC, Canada, June 2000.

[9] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, and W. Ye, ‘Energy-
Driven Integrated Hardware-Software Optimizations Using SimplePower,’ in
Proc. Intl. Symposium on Computer Architecture, Vancouver, BC, Canada,
June 2000.

[10] S. Manne, A. Klauser, and D. Grunwald, ‘Pipeline Gating: Speculation Control
for Energy Reduction,’ in Proc. Intl. Symposium on Computer Architecture,
Barcelona, Spain, June 1998.

[11] T.M. Conte, K.N. Menezes, S.W. Sathaye, and M.C. Toburen, ‘System-Level
Power Consumption Modeling and Trade-off Analysis Techniques for
Superscalar Processor Design,’ to appear in IEEE Transactions on VLSI
Systems.

[12] D. Albonesi, ‘Selective Cache Ways: On-Demand Cache Resource
Allocation,’ in Proc. Intl. Symposium on Microarchitecture (MICRO-32),
Haifa, Israel, pp.248-259, Nov. 1999.

[13] J. Kin, M. Gupta, and W. Mangione-Smith, ‘The Filter Cache: An Energy
Efficient Memory Structure,’ in IEEE Micro, Dec.1997.

[14] H. Lekatsas, J. Henkel, and W. Wolf, ‘Code Compression for Low Power
Embedded System Design,’ in Proc. ACM/IEEE Design Automation
Conference, Los Angeles, CA, June 2000.

[15] T. Ishihara and H. Yasuura, ‘Voltage Scheduling Problem for Dynamically
Variable Voltage Processors,’ in Proc. ACM Intl. Symposium on Low Power
Electronics and Design, pp.197-202, Monterey, CA, Aug. 1998.

[16] J.-M. Chang and M. Pedram, ‘Energy Minimization Using Multiple Supply
Voltages,’ in IEEE Trans. on VLSI Systems, vol.5, no.4, pp.425-435, Dec.
1997.

[17] S. Raje and M. Sarrafzadeh, ‘Variable Voltage Scheduling,’ In Proc. ACM Intl.
Symposium on Low Power Design, pp.9-14, Dana Point, CA, April 1995.

[18] T. Pering, T. Burd, and R. Brodersen, ‘Dynamic Voltage Scaling and the
Design of a Low-Power Microprocessor System,’ in Power-Driven
Microarchitecture Workshop, in conjunction with Intl. Symposium on
Computer Architecture, Barcelona, Spain, June 1998.

[19] G. Cai and C.H. Lim, ‘Architectural Level Power/Performance Optimization
and Dynamic Power Estimation,’ in Proc. Intl. Symposium on
Microarchitecture (MICRO-32), Cool Chips tutorial, Haifa, Israel, Nov. 1999.

[20] D. Burger, T.M. Austin, ‘The SimpleScalar Tool Set, Version 2.0,’ CSD
Technical Report #1342, University of Wisconsin-Madison, June 1997.

[21] ‘Advanced Configuration and Power Interface Specification,’ Intel, Microsoft,
Toshiba, Revision 1.0b, Feb. 2, 1999, at http://www.teleport.com/~acpi/
DOWNLOADS/ACPIspec10b.pdf.

[22] C. Price, ‘MIPS IV Instruction Set, revision 3.1.,’ MIPS Technologies, Inc.,
Mountain View, CA, Jan. 1995.

[23] S. Gary, ‘Low-Power Microprocessor Design,’ in Low Power Design
Methodologies (Eds. J.M. Rabaey and M. Pedram), pp.255-288, Kluwer
Academic, Norwell, MA, 1996.

[24] C. Svensson and D. Liu, ‘Low Power Circuit Techniques,’ in Low Power
Design Methodologies (Eds. J.M. Rabaey and M. Pedram), pp.37-64, Kluwer
Academic, Norwell, MA, 1996.

[25] V. Zyuban, P. Kogge, ‘Optimization of High-Performance Super-Scalar
Architectures for Energy-Delay Product,’ in Proc. Intl. Symposium on Low
Power Electronics and Design, July 2000, Portofino, Italy.

[26] D. Marculescu, ‘Profile-Driven Code Execution for Low Power Dissipation,’
in Proc. Intl. Symposium on Low Power Electronics and Design, July 2000,
Portofino, Italy.

[27] S. Palacharla, N.P. Jouppi, and J.E. Smith, ‘Quantifying the Complexity of
Superscalar Processors,’ CS-TR-1996-1328, Univ. of Wisconsin, Nov. 1996.

[28] K.I. Farkas, N.P. Jouppi, and P. Chow, ‘Register File Design Considerations in
Dynamically Scheduled Processors,’ WRL Research Report 95/10, Digital
Equipment Corp., Nov. 1995.

[29] S.J.E. Wilton and N.P. Jouppi, ‘An Enhanced Access and Cycle Time Model
for On-Chip Caches,’ WRL Research Report 93/5, Digital Equipment Corp.,
July 1994.

[30] D.H. Albonesi, ‘Dynamic IPC/Clock Rate Optimization,’ in Proc. Intl.
Symposium on Computer Architecture, June 1998.

