Mixed-Clock Issue Queue Design for Energy Aware, High-Performance Cores

Venkata Syam P. Rapaka

Mentor Graphics Corp.
Wilsonville, OR 97070

e-mail: shyam_rapaka@mentor.com

Abstract - Globally-Asynchronous, Locally-Synchronous (GALS)
design style has started to gain interest recently as a possible solution
to the increased design complexity, power and thermal costs, as well
as an enabler for allowing fine grain speed and voltage management.
Due to its inherent complexity, a possible driver application for such
a design style is the case of superscalar, out-of-order processors. This
paper proposes a novel mixed-clock issue queue design, and
compares and contrasts this new implementation with existing
synchronous or mixed-clock versions of issue queues, used in stand-
alone mode or in conjunction with mixed-clock FIFO (First-In, First-
Out) buffers for inter-domain synchronization. Both transistor level,
SPICE simulation, as well as cycle-accurate, microarchitectural
analysis, show that cores using mixed-clock issue queues are able to
provide better energy-performance operating points when compared
to their synchronous or asynchronous FIFO-based counterparts.

I. INTRODUCTION

Moore’s Law, which predicted a trend of exponential growth in
transistor density and performance, still holds for current generation
systems and it is expected to hold for the next few generations. In
synchronous design, the master clock acts as a timing reference signal for
all basic modules of the design. However, due to the increasing number of
transistors and complexity of today’s designs, it becomes desirable to
have the capability of designing complex systems without the
requirement of global synchronization. Such systems can be comprised
of modules running at almost the same frequency (requiring only
mesochronous or plesiochronous synchronization [8]) or can have
multiple clock domains, with different parts of the chip running at
different speeds. In the latter case, no assumptions can be made regarding
the relative phase difference of different clock signals.

The individual domains of GALS systems may not only differ in clock
frequencies, but also in supply voltages and threshold voltages of devices,
thus coupling nicely with the recently introduced concept of voltage
islands [12]. In such cases, the performance of each block, in terms of
throughput and power consumption, can be optimized by choosing
appropriate gate sizes, threshold voltages and supply voltages [2].
Frequencies and voltages of individual blocks or islands may be scaled
(statically or dynamically) for optimal power or performance of the
overall system. Nonetheless, to cope with inter-domain communication in
heterogeneous systems, it is imperative to devise reliable communication
design methodologies.

While being first introduced by Chapiro [6], the Globally
Asynchronous, Locally Synchronous (GALS) design style has been
recently explored to tackle this problem [11][15]. Such a solution
eliminates the requirement of a global reference clock signal by assuming
that the system is comprised of several synchronous blocks
communicating asynchronously. One of the most important pieces in the
overall GALS design of a superscalar, out-of-order processor is the issue
queue.

In this paper, we describe and evaluate different mixed-clock issue
queue designs, able to sustain different clock speeds for incoming and
outgoing traffic. In addition, we demonstrate via detailed circuit level
simulation, the role of the issue queue as a communication interface
between the dispatch and execute clock domains. We also compare and
contrast the power consumption and throughput of our implementations
with existing synchronous or mixed-clock versions of issue queues used
in stand alone mode or in conjunction with mixed-clock FIFOs for inter-
domain synchronization.

The rest of the paper is organized as follows. Section 2 describes
existing work in this area, while in Section 3, we describe the baseline
superscalar pipeline organization considered. Our approach for using the
issue queue for communication are illustrated in Section 4. In Section 5
we compare our approach with prior art and present the experimental
results. Section 6 concludes the paper and discusses possible directions
for future research.

II. PRIOR WORK

Issue logic plays an important role in the performance of superscalar
processors. Its functionality is achieved through the use of two important
functions, namely wakeup and select. A detailed analysis of complexity-
effective superscalar processors has been presented in [14]. Only the tag-
matching part of the wakeup logic and a hierarchical position based
selection scheme have been described there. A possible alternative for a
high speed four-way issue queue has been presented in [13]. In the
proposed solution, the issue queue is partitioned into smaller parts and
one instruction is selected from each part, thus reducing the available
parallelism in the pipeline drastically. A moderate speed two-way issue

Emil Talpes, Diana Marculescu

Carnegie Mellon University
Dept. of Electrical and Computer Engineering
Pittsburgh, PA 15213
e-mail: {etalpes,dianam}@ece.cmu.edu

queue design has been presented in [10], but it requires a large number of
interconnects in an asymmetric manner. This entails the usage of strong
buffers for some signals, while the overall structure can lead to an
inefficient layout. While our developed wake-up logic is based on the
scheme described in [14], our selection logic is similar to the one
described in [10], but with some significant changes.

Synchronization is crucial for a mixed-clock design and various
schemes have been proposed to address this problem. A robust FIFO-
based approach has been presented in [7]. In this case, synchronizing
latches are used for communication of handshake signals between clock
domains. Although it has a low latency in steady state operation, the
worst case latency is two clock cycles. The use of such a FIFO for inter-
domain synchronization seems to be feasible, but it increases the number
of transistors in the circuit and introduces an additional stage in the
pipeline. A stretchable clock approach has been proposed in [16].
However, such a technique cannot be used if the producer and consumer
clocks are very different in speed. Our synchronization approach is
similar to the one described in [7], in the sense that it is based on
synchronizers for inter-domain communication, but we use the issue
queue as the interfacing structure, without the need of additional storage
structures. A mixed-clock issue queue design has been proposed recently
[19], but although the power cost is reduced when compared with the
FIFO based implementation, its performance penalty is three cycles in the
worst case. This paper introduces three new different designs for such a
mixed-clock issue queue and shows available energy-performance trade-
offs at both circuit and microarchitectural level.

III. THE BASELINE SUPERSCALAR PIPELINE
For the purpose of our study, we consider a superscalar, out-of-order
processor, as shown in Fig. 1. The architecture of our processor is based
on the MIPS R10000 Superscalar processor [18][19].

Il

FETCH DECODE

DISPATCH

EXECUTE WRIJEBACK COMMIT

CLK1 CLK2 CLK1

Fig. 1 The basic pipeline

In this paper, we only concentrate on the interplay between the
dispatch and issue stages where it has been suggested that an
asynchronous interface may be introduced in GALS processors [11] [15].
To this end, we consider the underlying microarchitecture organization
from Fig. 1 and concentrate on the interface between the dispatch and
issue logic in three cases: (i) the fully synchronous case, where both
dispatch and issue stages run at the same, globally generated clock signal,
(ii) a GALS case, in which the dispatch and issue stages are placed in
different clock domains and interfaced via an asynchronous FIFO [7],
(iii) another GALS case, in which the issue queue itself is mixed-clock
and supports dispatching from and issuing instructions to different clock
domains. We will describe different methodologies for designing the
mixed-clock issue queue.These designs assume that instructions have
been decoded and renamed, and the availability of the source operands is
known.

Without loss of generality, we consider a 32-entry issue queue with an
issue width of two. However, our implementation is scalable and can be
easily extended to more entries or wider pipelines. The issue logic has
two primary functions, namely Wakeup and Select. An entry in the issue
queue waits until its source operands become ready and is selected for
execution.

Wakeup and Select Logic

A typical entry in the issue queue is illustrated in Fig. 2 [14]. It is made
up of five components, the physical mappings of the two source registers,
the two availability flags for these two registers and a valid bit for the
whole entry. The source registers (implemented as CAM cells) are
compared with the tags of destination registers being written back during
each cycle, and they become ready if a match occurs. A request signal is
generated when both (or the only) source operand(s) become ready.

m;s{ l

CAM Cell A

=T
ms{ l

camcel B

=il

Fig. 2 Request generation logic

l

WORD LINES

l

WORD LINES

The valid bit is set when the instruction enters the issue queue and is
reset when it has been selected for execution. The CAM Cells consist of
two four-ported SRAMs with a matching circuitry similar to the one
presented in [14]. In the CAM Cells, the first two ports as used for writing
entries and the other two are used for sending selected instructions to the
execution units. Each entry in the issue queue generates a request signal
and receives a grant signal from the selection logic. This grant signal is
used as the word signal and the positive phase of the clock signal is used
as the read signal while reading the data. This signal is reset to LOW after
the falling edge of the clock to allow precharge of the bit lines before the
next read.

The 32-entry issue queue generates up to 32 request signals during the
positive phase of each cycle. In a two-way wide pipeline, the selection
logic has to select up to two of the available activated request signals. We
have assumed the implementation of the selection unit proposed recently
[19][20].

IV. THE MIXED-CLOCK SUPERSCALAR PIPELINE

We have assumed a simplified mixed clock pipeline as illustrated in
Fig. 1. In the synchronous version of the pipeline, Clk! and Clk2 are the
same. In the GALS version of the pipeline, Clk/ and Clk2 are different.
The interface between the two clock domains is ensured by a mixed-clock
issue queue. For comparison, we also consider the case when the
synchronization is done via a generic mixed-clock FIFO [7]. In all cases,
we have assumed a 32-entry, 2-way wide issue queue.

A. Mixed-Clock Issue Queue

In this case, the Dispatch logic writes entries into the issue queue in the
negative phase of Clkl. The issue queue wakes up the instructions by
comparing the source operands with the tags, which are available in the
positive phase of the C/k2. Comparison of tags without synchronizing the
written data to C/k2 might lead to erroneous behavior. The data (physical
addresses of the source operands) can be synchronized to CIlk2 by
synchronizing the Valid bit, which is set when new data is written into the
CAM cells.

The Valid Bit

The Valid bit implementation is illustrated in Fig. 3. Similar to the
design of CAM Cells, it also has four ports and four word signals. No
explicit data signals are required as the Valid bit is set when an entry is
written into the issue queue and it is reset when the entry is read. Hence,
if one of wl or w2 is HIGH, the Valid bit is set to HIGH, and is reset to
LOW when either w3 or w4 goes HIGH. Since the Valid bit has to be
initialized to LOW during reset, the negative pulse of the reset is also
used to reset the valid bit to LOW. The Valid bit plays the crucial role for
synchronization between the two clock domains. To achieve this, we use
a two-latch synchronizer to increase the Mean Time-to-Failure (MTF) of
the Valid bit while using it in the clock domain of issue logic. Since its
value is set to LOW in the issue clock domain, it need not be
synchronized again. So, the falling edge of the Valid bit is used for
generating a negative pulse which resets the two synchronizers to LOW.
The pulse generator circuit is illustrated in Fig. 4

Jr—
HM MH
A g e

w

Fig. 3 The Valid bit

Fig. 4 The pulse generator

Tag Match Synchronization

The performance of a superscalar processor depends on its ability to
execute the maximum number of instructions in the minimum possible
time. The instructions waiting in the issue queue for other instructions to
complete can be issued only after a tag match occurs for the
corresponding source operand(s). The synchronization delay introduced

due to running the Wakeup logic and the execution units on different
clocks can introduce some penalty in performance. Thus, it is desirable to
have the Wakeup logic of the issue queue in the same clock domain as the
execution units.

However, we still have to synchronize the tags generated by the
execution units with the write-back and dispatch units running on CIkI.
Consider the worst case situation in the pipeline illustrated in Fig. 5. The
execution units generate the results of destination register X (say) in the
negative phase of clock cycle a0 of Cik2, and the tags are broadcast in the
positive phase of a/. The tags are synchronized to Clkl by using two
synchronizers and they can be used only after two rising edges of Cikl. In
the worst case, the rising edge of clock cycle b/ just misses the generated
tags. In this case, tags become available in the positive phase of clock
cycle b3 of Clkl. Thus, any instruction entered into the issue queue
before b3 and requiring the result of X marks the corresponding source
register as unavailable. If an instruction requiring the result of X is
entered into the issue queue in the negative phase of clock cycle b2, it
becomes valid in the domain of C/k/ in b3 and in the domain of C/k2 in
a4. So, this instruction is waiting in the issue queue for a tag which has
been generated four cycles ago and was missed.Hence, this instruction
can never be issued and a deadlock occurs.

clka
22 e T T 7 L P
Vaid_Clk1 i i |4)

vaid_Clk2

b o = = [= = [=

Fig. 5 Synchronizing tag matches

B. Tag storing

A straightforward solution to this problem is to delay the tag matching
by three cycles [19][20]. The tags generated in the cycle a0 are made
available for comparison in cycle a4. However, if there are other
instructions in the issue queue waiting for the result of X, which could
have been potentially woken up in cycles al, a2 or a3 can become awake
only from clock cycle a4. This not only introduces a considerable delay
in issuing the instructions, but also increases the probability of having
more than two requests (the width of the pipeline) in each clock cycle.

Our proposed way to tackle this problem instead, is to store the tags for
four clock cycles (al, a2, a3 and a4) and expand the tag matching
capability from two to eight. The tag which was initially available for
comparison in cycle al is now available for comparison in al, a2, a3 and
a4. Consider the situation in Fig. 5 again. The instruction written into the
issue queue in b2 requires the results of two destination registers X and Y
(say). The result of X becomes available in the negative phase of a0, and
the tag can be broadcast in the positive phase of a/. The result of ¥
becomes available in the negative phase of @3 and the tag can be
broadcast in the positive phase of a4. So, delaying the broadcast of tags
by three cycles would have resulted in the first operand becoming ready
in a4, but the second operand would become ready in a7. Hence, the
instruction can generate a request for selection only four rising edges
after a3, and can be selected for execution in a8. In the synchronous case,
it could have been selected in a5. In the worst case, such an approach
introduces a synchronization delay of two cycles, thus the overall latency
in the worst case would be three cycles.

C. Clock Cycle Stealing

In the synchronous pipeline the Valid bit is set to HIGH when the
instruction is written into the issue queue. In Fig. 5, D2 is written in the
negative phase of b2, but cannot be used before b4. It is to be noted that
there are two extreme ways in which the Valid bit can be set to HIGH in
the domain of Clk2: one in which the rising edge of CIk2 just misses the
rising edge of Valid_Clkl, and the other extreme in which the rising edge
just meets the setup time requirement. In the former case the Valid_Clk2
bit is seen as HIGH after two cycles of C/k2, and in the latter case it is
seen as HIGH after one cycle of Clk2. So, the Valid_CIk2 bit will take at
least one cycle of Clk2 after Valid_CIkI is set before it can be used, and at
most two cycles in the worst case.

The issue logic of the pipeline is very complex and is likely to be the
most critical structure of the pipeline [14]. Hence, it can be assumed that
the front end of the pipeline running on C/kI can run faster than the issue
logic running on CIlk2. In this case, we can further reduce the
synchronization latency by setting the Valid bit to HIGH one cycle before
the actual data is written into the issue queue. This can be done since the
data is written into the issue window one clock cycle (of CIk!l) after the
Valid_CIkl bit is set to HIGH. At the same time, the Valid_CIk2 bit will
be set to HIGH at least one clock cycle (of Clk2) after Valid_Clkl bit is
set to HIGH. Since the clock period of Cik! is less than C/k2, data can be
used immediately without any timing violation.

0 a a2 B3 £y al 2 ad & * ar EY al a2 a a4 & *
\ —i= — — —— I - e — — = — — —
o T e s e e e e e e e e
- 1 1]
i & s {iaiid Wodd
S T T = Y@id-word o Yalid-Wofd
\
[' — \ - P ﬁmm?mm/f‘ FaN P i alid_Ck1Y 1
§ ,)
Aid 4 2 f
"1 s Wiord i } sam | Word \ i
e S [#— 0], I s i |
g o - = - - = = - o 50 bl ek b4 3
o | Reatly n] Gk Nl] /
1 - it 2 = frk 1l X N
: e " vaiid ik /
"‘"q’ Ready B i i s Yalid_Clk2 \\‘ y s an \ e \ /
1 I Ry 1/ 7\ s [REY 7] \
I - ¥ I X n {Ready. W
m [WA R e — " s e S |
' / — s Readly B ¥ { | aon JDM B ¥ YT]
sl e T - | fazich il 7 1 1 /‘ ' t7 /J : ‘\ /l \
3 " o icch L i i “n Imatch V4 L)] C
iy \ L \ T = T
R iest L AL INT - i
- }‘L f,l](™ e I AL y J - }M’"U \(v 1 - {
! '
T N Y mﬂ st il R MR ous eI (A
=1 / ¢ I I .
oy frant | ¥ P G / 4
Tine (i) (TIME) "
o F F E

Fig. 7 Mixed-clock wi
stealing (IQSD)

Fig. 6 The synchronous case

This case is illustrated in Fig. 5 by the dashed lines. By following
similar reasoning as in the tag storing case, it can be deduced that the
broadcast of the tags has to be delayed by two cycles (instead of three), or
the tag matching capability has to expanded to six (instead of eight), if
tag storing is also used. The worst case latencies in these cases would be
three and two cycles (of CIk2) respectively.

D. Mixed-Clock FIFO

As a comparison, we also consider the case in which the interfacing
between the front-end and back-end clock domains is done through a
mixed clock FIFO [7][11][15]. In this case, the issue queue is fully
synchronous, running at the speed of the back-end CI/2. In this case, the
worst case synchronization delay is two cycles, while two clock cycles
are need for dispatch and issue stages. Hence, the worst case latency of a
FIFO based scheme is four cycles (of Clk2) after an entry is made into the
FIFO.

V. EXPERIMENTAL RESULTS

The circuits described in this report have been custom designed using
the STMicro 0.13um technology. In our designs, we have given priority
to speed over power consumption. Both static and domino logic families
have been used for designing the circuits. The circuits in the critical path
have been designed using domino logic, and the ones in the non-critical
path have been designed using static logic gates. Optimization techniques
like logical effort [17] and transistor tapering [9] have been employed to
improve the performance of the circuits. Standard circuits have been used
for designing the RAM cells and the peripheral circuitry (read and write
amplifiers). The address decoders have been designed using a split row
scheme (preliminary decoders). The details of these circuits have been
described in [S]. To assess the feasibility of our proposed approach, we
have employed both a circuit level detailed analysis, as well as a cycle-
accurate, microarchitectural validation on real instruction traces.

A. Circuit-Level Analysis

We have simulated (pre-layout, HSPICE) the issue logic design for all
cases described in Section 4. In the synchronous case, the dispatch and
issue logic run at the same speed of 1GHz. In the GALS pipeline, the
mixed clock issue window interfaces two different clock domains: the
dispatch unit running on CI/k1 of 1.1 GHz, and the execution unit running
on a CIk2 of 1 GHz. The clock speed of the front-end domain has been
chosen based on timing analysis of the dispatch and rename logic (that
are likely to be on the critical path in the front-end of the pipeline). We
have analyzed different GALS architectures employing the following
mixed-clock interfacing schemes:

* Mixed-clock issue queue with delayed tags (IQTD).

» Mixed-clock issue queue with tag storing (IQTM).

» Mixed-clock issue queue with cycle stealing and delayed tags (IQSD).
* Mixed-clock issue queue with cycle stealing and tag storing (IQSM).
» FIFO based inter-domain synchronization (FIFO).

We have compared these designs by evaluating the average power and
the Energy consumed Per Issue (EPI), given by Equation (1).

Power x T
EPI = — 1)

where Power is power consumed by the circuit, 7, is the number of
clock cycles of Clk2 required to issue » instructions.
TABLE I COMPARISON OF DIFFERENT SCHEMES

Component SYNC [IQTD[19]] IQSD | IQTM | IQSM | FIFO

Power [mW] 2102 | 2208 | 2222 | 3297 | 2948 | 25.11
EPI [mW/instr.] | 13.13 17.94 16.66 | 20.60 18.42 18.83

WCL[cycles] 1 4 3 3 2 4

The results are shown in Table I (WCL stands for Worst Case
Latency). These results were obtained by simulating a typical trace in the
pipeline. Due to computational limitations, full instruction traces could

e

e) (e

th delayed tags and cycle Fig. 8 Mixed-clock with tag storing and cycle

stealing (IQSM)

not be simulated using HSPICE.

As it can be seen, the power consumed in the previously proposed
IQTD scheme [19] is more than that of the synchronous case; this is due
the addition of synchronizing flip-flops for the Valid bits. Two additional
decoders (along with the synchronizing flip-flops) are required for setting
the Valid bit to HIGH in the IQSD scheme. The power consumed by these
decoders is very small and hence the power consumption in IQSD is
almost the same as the one of IQTD. In the IQTM scheme, each CAM
cell has to compare the physical addresses of the source operands with
each of the eight stored tags. The tag matching circuitry has been
implemented using domino logic and increasing the tag matching
capability has an adverse effect on the power consumption of the issue
queue. In the IQSM scheme, a CAM cell has to compare only six tags
instead of eight as in the IQTM scheme. The FIFO based scheme
produces a significant increase in the power consumption due the
addition of extra synchronization latches, when compared to the
synchronous case.

We also show detailed timing simulation of the synchronous issue
queue and our best performing mixed-clock issue queue implementations
(IQSD and IQSM; complete results can be found in [20]). Fig. 6 shows
the synchronous case. The dispatch unit writes an entry into the issue
window in the negative phase of the clock cycle a0 of Clk. The entry is
set to valid, the source operand A is not available (Ready_A is set to
LOW) and the source operand B is available (Ready_B is set to HIGH).
The entry tries to match the source operand A with the tags of the
destination registers forwarded from the execution unit. In this example
the result is available during the negative phase of a0, and the tag is
broadcast during the positive phase of a/. Since the entry is valid and
both the operands are available, the Request signal is asserted. In this
case, this entry is selected in the next clock cycle (a2), and the Grant
signal is asserted HIGH. The entry is read in this cycle, and is also erased
from the issue queue by resetting the Valid bit to LOW. We use the Grant
signal as the word line for the corresponding entry in the issue queue. The
Grant signal is reset to LOW in the negative phase of Clk to allow
precharging of the bit lines before the next read operation (which may
happen in the positive phase of the following clock cycle)

The simulation results of the mixed-clock issue queue with clock
stealing and delayed tags are shown in Fig. 7. The Valid_CIkI bit is set in
a0 and the data is written into the issue queue in al. Valid_Clk2 becomes
HIGH in b2, and the required result is generated in the negative phase of
bl. The tag is broadcast in b4, in which a request is generated as a result
of the tag match. It is selected for execution in b5 and the Valid bits are
reset.

The simulation results of the mixed-clock issue queue with clock
stealing and tag storing are shown in Fig. 8. Since the tag can be
compared in b2, in this case the request is generated in b2. Note that the
tag is available for comparison for only three cycles after the results are
generated, and the Match_A signal goes LOW in b5.

The GALS pipeline with the FIFO acting as the interface adds an
additional stage in the pipeline along, with an additional synchronization
penalty. The pipeline behaves in the same manner as the synchronous
version, but entails a worst case latency of four cycles.

As it can be seen, the mixed-clock issue queues with delayed tags are
better in terms of power consumption, but are worse in terms of latency
than the cases where the tags are memorized. The EPI is an important
statistic for comparing various schemes, but drawing a clear conclusion
cannot be achieved unless full chip simulation is performed on real input
traces, as described next.

B. Microarchitectural Level Analysis

To assess which of the described issue queues is better in terms of both
performance and energy, we have developed a GALS microarchitectural
simulator, conceptually similar to the ones described in [11][15].

WIQTM 10% MIQSM 10% B1QTD 10% 01QSD 10% m QT

10% mIQSh 10% mIQTM 20% OIGSM 20%

mIQTM 10% mIQSM 10% @IQTM 20% OI0SM 20%

12 12
115
1
1.1
3 g
S 08]
s g5
£]
£ 3
goe :
3
3 £ 0%
S04 £
E’ 2 09
02 08
08
0

Q ey o
& & &‘Q@”ég@&@q&aﬁ@@@ﬁ &

[&
&

Fig. 10 Normalized performance for mixed-clock
issue queues with tag storing, with (IQSM) and
without (IQTM) cycle stealing. The front-end runs
at 1.1GHz (10% case) or 1.2GHz (20% case), while
the back-end runs at 1GHz. (The baseline is the
fully synchronous core running at |GHz)

Fig. 9 Normalized performance for the entire core
for various mixed-clock issue queues. The front-
end and back-end are assumed to run at 1.1GHz
and 1GHz, respectively. (The baseline is the fully
synchronous core running at 1GHz)

Based on an event-driven simulation engine, the simulator is
compatible with SimpleScalar [4] or Wattch [3] microarchitectural
simulators. The power models for all major microarchitectural modules
are built using Wattch’s activity based power macromodeling
methodology which has been shown to be within 10% accurate when
compared to real power values for three different high-end processors [3].
The simulation engine can be used in a fully synchronous mode (with
both clock domains Clkland CI/k2 running synchronously at the same
speed), or a GALS mode in which C/kl and CIk2 can have arbitrary
relative speeds or starting phases. In this latter case, inter-domain
communication is achieved via mixed-clock issue queues (all four flavors
described in this paper), or through FIFO-based communication, in
conjunction with a fully synchronous issue queue in the back-end clock
domain.

TABLE II MICROARCHITECTURAL ORGANIZATION

Parameter Value
Issue Queue size |64 instructions
Fetch width
Decode width
Issue width 4 instructions

Commit width
Functional units |4 IntALUs, 1 IntMult/Div
2 FPALUs, 1 FPMult/Div

Branch prediction |GShare, 12 bit history

L1 I-Cache 32K, 2-way set associative
L1 D-Cache 32K, 4-way set associative
L2 Unified Cache |256K, 4-way set associative

To this end, we have considered a more aggressive pipeline
organization than the one based on the 2-way, 32-entry issue queue, as
described in previous sections. We have opted instead for a seven-stage,
four-way deep pipeline, with a 64-entry issue queue design. The worst
case latencies characterizing the mixed-clock issue queues will also hold
for this larger number of entries. To characterize the power consumption
of the issue queues, we have started from the 32-entry design analyzed in
detail using HSPICE and used the models described in [3][14] to obtain
power values for the 64-entry version of the various mixed-clock issue
queue designs. The characteristics of the simulated pipeline are presented
in Table II. Benchmarks considered are from both Spec95 and Spec2000
suite.

As shown in Fig. 9, although the worst-case latency of various mixed-
clock issue queues ranges in the same interval, the impact on the overall
performance is very different. The tag storing scheme is able to hide most
of the synchronization penalty (thus producing a slight performance
increase of up to 7-8% if cycle stealing is used), while delaying the tags
delays instruction commit, thus producing a large hit in performance (25-
30% in some cases). To assess how the tag storing schemes behave for
aggressive pipelines, we have also considered the case where the front-
end can run 20% faster then the back-end running at 1GHz (Fig. 10 and
Fig. 11). Such a scenario is very likely with increased issue queue size
and more complex microarchitectures. As seen in Fig. 10, by allowing the
front-end to run at the faster rate, an overall increase in performance of up
to 17% (5% on average) is possible. In addition, if energy is the main
concern, the 10% and 20% slack in the cycles times of the front-end and
back-end clock domains can be exploited to lower the front-end voltage

according to the equation: Delay o< VAV ,-V7)® (we have used a value
of oo = 1.2). As shown in Fig. 11, such a core could run at up to 28% less
energy than the original synchronous processor. Thus, a mixed-clock
issue queue allows for better energy-performance trade-off points, in
either a statically or dynamically voltage/speed scaling scenario.

VI. CONCLUSION

In this paper we have proposed and analyzed various mixed-clock
issue queue designs for high-end, out-of-order superscalar processors,

;
& F f g P

Normalized energy

|l 2 & NG & & &
E o &£ F \o&@
5 &
&

(@#Qé &
&

g
& F EFE
Fig. 11 Normalized energy for mixed-clock issue
queues with tag storing, with (IQSM) and without
(IQTM) cycle stealing. The front-end runs at lower
voltage to account for 10% and 20% slack relative
to the back-end, respectively. Both clock domains
run at 1GHz, with random relative phases. (The
baseline is the fully synchronous core running at
1GHz)

able to sustain different clock rates and speeds for the incoming and
outgoing traffic. We have compared and contrasted our implementations
with existing synchronous versions of issue queues used stand-alone or in
conjunction with mixed-clock FIFOs for inter-domain synchronization.
As expected the mixed-clock pipelines have to entail extra latencies, and
the synchronization hardware consumes additional power. However,
when compared to their synchronous counterparts in terms of overall
performance and energy operating points, mixed-clock cores may be able
to achieve better energy for little performance loss, or higher
performance by allowing separate optimizations for the various clock
domains. Future work may be able to offer strategies for dynamically
managing local speeds and voltages depending on the application profile.

ACKNOWLEDGEMENTS

This research was supported in part by National Science Foundation
Early Faculty CAREER Award No. CCR-008479.

REFERENCES

[1] K. Bernstein et al, High Speed CMOS Design Styles, Kluwer Academic Publishers,
Boston, 1998.

[2] R. W. Brodersen, M. A. Horowitz, D. Markovic, B. Nikolic, and V. Stojanovic,
“Methods for True Power Minimization,” in Proc. IEEE/ACM Intl. Conference on
Computer-Aided Design (ICCAD), pp. 35-42, San Jose, CA, Nov. 2002.

[3] D.Brooks, M. Martonosi, V. Tiwari, “Wattch: A Framework for Architectural Level
Power Analysis and Optimization,” in Proc. Intl. Symposium on Computer
Architecture (ISCA), June 2000.

[4] D. Burger, T. Austin, “The SimpleScalar Toolset,” University of Wisconsin, CSD
Technical Report #1342, June 1997.

[5] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance
Microprocessor Circuits, IEEE Press, NY, 2001.

[6] D. M. Chapiro, Globally Asynchronous Locally Synchronous Systems, PhD thesis,
Stanford University, 1984.

[7] T. Chelcea, and S. M. Nowick, “Robust Interfaces for Mixed Timing Systems with
Application to Latency-Insensitive Protocols,” in Proc. Design Automation
Conference (DAC), pp. 21-26, 2001.

[8] W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge University
Press, Camebridge, 1998.

[9] L. Ding and P. Mazumder, “On Optimal Tapering of FET Chains in High-Speed
CMOS Circuits,” in [EEE Transactions on Circuits and Systems II, vol. 48, pp. 1099-
1109, Dec 2001.

[10]J. A. Farell and T. C. Fischer, “Issue Logic for a 600-MHz Out-of-Order Execution
Microprocessor,” in IEEE Journal of Solid-State Circuits, vol. 33, pp. 707-712, May
1998.

[11]A. Iyer and D. Marculescu, “Power Efficiency of Multiple Clock, Multiple Voltage
Cores,” in Proc. IEEE/ACM Intl. Conference on Computer-Aided Design (ICCAD),
pp. 379-386, San Jose, CA, Nov. 2002.

[12]D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M.
Cohn, “Managing Power and Performance for System-on-Chip Designs using
Voltage Islands,” in Proc. IEEE/ACM Intl. Conference on Computer-Aided Design
(ICCAD), pp. 195-202, San Jose, CA, Nov. 2002.

[13]J. Leenstra, J. Pille, A. Mueler, W. M. Sauer, D. F. Wendel, “A 1.8 GHz Instruction
Window Buffer for an Out-of-Order Microprocessor Core,” in [EEE Journal of Solid-
State Circuits, vol. 36, pp. 1628-1635, Nov 2001.

[14]S. Palacharla, N. Jouppi, and J. E. Smith, “Complexity-Effective Superscalar
Processors,” in Proc. Intl. Symp. on Computer Architecture (ISCA), pp. 206-218, June
1997.

[15]G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott, “Dynamic frequency and voltage control for a multiple clock domain
microarchitecture,” in Intl. Symp. on Microarchitecture (MICRO), pp. 356-367, 2002.

[16]A. E. Sjogren and C. J. Myers, “Interfacing Synchronous and Asynchronous
Modules Within A High-Speed Pipeline,” in /EEE Tran. on VLSI Systems, 8(5):573-
583, Oct 2000.

[17]1. Sutherland, B. Sproull and D. Harris, Logical Effort: Designing Fast CMOS
Circuits, Morgan Kaufmann, San Francisco, 1999.

[18]K. C. Yeager, “The Mips R10000 superscalar microprocessor,” in IEEE Micro, vol.
16, pp. 28-41, Apr 1996.

[19]V. S. P. Rapaka, D. Marculescu, “A Mixed-Clock Issue Queue for Globally
Asynchronous, Locally Synchronous Processor Cores,” in Proc. ACM/IEEE Intl.
Symposium on Low Power Electronics and Design(ISLPED), pp. 372-277, Seoul,
Korea, Aug. 2003.

[20]V. S. P. Rapaka, “Design and Analysis of Mixed-Clock Issue Queues for Globally
Asynchronous, Locally Synchronous Processor Cores,” Master’s Thesis, Technical
Report CSSI 03-05, Carnegie Mellon University, June 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

