
Behavioral Distance Measurement Using
Hidden Markov Models

Debin Gao, Michael K. Reiter, and Dawn Song

Carnegie Mellon University
dgao@ece.cmu.edu, reiter@cmu.edu, dawnsong@cmu.edu

Abstract. The behavioral distance between two processes is a measure
of the deviation of their behaviors. Behavioral distance has been proposed
for detecting the compromise of a process, by computing its behavioral
distance from another process executed on the same input. Provided that
the two processes are diverse and so unlikely to fall prey to the same at-
tacks, an increase in behavioral distance might indicate the compromise
of one of them. In this paper we propose a new approach to behavioral
distance calculation using a new type of Hidden Markov Model. We also
empirically evaluate the intrusion detection capability of our proposal
when used to measure the distance between the system-call behaviors of
diverse web servers. Our experiments show that it detects intrusions with
substantially greater accuracy and with performance overhead compara-
ble to that of prior proposals.

Keywords: intrusion detection, anomaly detection, system call, behav-
ioral distance.

1 Introduction

A predominant form of host-based anomaly detection involves monitoring a pro-
cess to see if its behavior conforms to the program it is ostensibly executing,
e.g., see [15,35,32,28,19,14,17,13,20,16]. Deviation from the behavior prescribed
by a program is characteristic of, e.g., code-injection attacks exploiting buffer
overflow or format-string vulnerabilities, and so should be investigated. A cen-
tral research challenge is constructing the model to which the process behavior
is compared. This is especially challenging in light of mimicry attacks [31,33]
on virtually all such models, wherein an adversary injects code that executes its
attacks using behaviors that the model does not distinguish from normal.

To better combat mimicry, Gao et al. proposed comparing the behavior of a
process to the behavior of another process that is executing on the same input but
that either runs on a different operating system or runs a different program that
has similar functionality [18]. Assuming their diversity renders these processes
vulnerable only to different exploits, a successful attack on one of them should
induce a detectable increase in the “distance” between the behaviors of the two
processes. In principle, this would make mimicry substantially more difficult,
since to avoid detection, the behavior of the compromised process must be close
to the simultaneous behavior of the uncompromised one. Gao et al. proposed

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 19–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 D. Gao, M.K. Reiter, and D. Song

an approach based on evolutionary distance (ED) [29] to compute behavioral
distance, and measured the accuracy and performance of an implementation of
this approach when the behavior of each process is the system calls it emits.

In this paper we propose an alternative approach based on a novel Hidden
Markov Model (HMM) for computing behavioral distance. An HMM models a
doubly stochastic process; there is an underlying stochastic process that is not
observable (it is “hidden”) but that influences another that produces a sequence
of observable symbols. When applied to our problem of computing behavioral
distance, the observed symbols are process behaviors (e.g., emitted system calls),
and the hidden states correspond to aggregate tasks performed by the processes
(e.g., read from a file). Since these hidden tasks should be the same (if the pro-
cesses are running the same program on different platforms) or at least similar
(if the processes are running different programs that offer the same function-
ality, e.g., two different web servers), it should be possible to reliably correlate
the simultaneous observable behaviors of the two processes when no attack is
occurring, and to notice an increased behavioral distance when an attack suc-
ceeds on one of them. Perhaps surprisingly, our technique uses a single HMM to
model both processes simultaneously, in contrast to traditional uses of HMMs
for anomaly detection (e.g., [34,10]), where an HMM models a single process.

We detail the distance calculation and model construction algorithms for our
HMM-based anomaly detector and evaluate an implementation of it by cal-
culating behavioral distances between processes executing different web servers
(Apache1, Abyss2, and MyServer3) on different platforms (Linux and Windows).
Since a significant motivation for this work is constraining mimicry attacks, we
also provide an algorithm for estimating the best mimicry against an HMM,
and evaluate the false-alarm rate of our approach when the behavioral-distance
threshold is set to detect this estimated-best mimicry. In doing so, we show that
our approach yields better results than the ED approach of Gao et al., in many
cases offering substantial improvement in the false-alarm rate. At the same time,
the computational cost is comparable to that of the ED approach in our exper-
iments. As such, we argue that the HMM approach offers substantially superior
properties for calculating behavioral distance for anomaly detection.

An alternative strategy to building a behavioral distance measure would be
to manually construct a mapping between system calls, or sequences of system
calls, on the two platforms of interest. In some cases, such an approach might
be aided by the existence of tools such as WINE (http://www.winehq.com/),
which provides libraries that implement Windows API calls on UNIX to enable
the execution of Windows applications on UNIX platforms. For example, an
anomaly detector could pattern-match Windows system calls against patterns
induced by a call to the Windows API, and then search the Linux system calls
for a sequence that corresponds to the WINE implementation of that Windows
API call for UNIX. To our knowledge, such an approach has not been studied

1 http://httpd.apache.org
2 http://www.aprelium.com
3 http://www.myserverproject.net

http://www.winehq.com/
http://httpd.apache.org
http://www.aprelium.com
http://www.myserverproject.net

Behavioral Distance Measurement Using Hidden Markov Models 21

to date, and we eschew it for several reasons. First, we strive for a more general
approach that need not be totally reengineered for each new operating system;
e.g., we would like an approach that applies with little additional effort to,
say, Windows CE and Symbian OS. Second, we want to measure the behavioral
distance between even different application codebases (e.g., between the separate
codebases of Apache for UNIX and Windows), and we do not expect this manual
approach to work well for this case. Third, constructing this mapping manually
can be a very substantial effort; e.g., WINE began in 1993 and, at the time of
this writing, claims to have UNIX implementations for only 63% of the Windows
API (see http://www.winehq.com/site/winapi stats).

Uses of behavioral distance incur the cost of executing each request multiple
times. As such, behavioral-distance-based anomaly detection can be most seam-
lessly integrated into services that already redundantly execute requests for the
purposes of detecting (e.g., [30,5,2]) or masking (e.g., [22,27,26,7,6,36,1]) Byzan-
tine faults or intrusions. These approaches ensure that clients receive only correct
responses even if a limited number of servers are compromised, by comparing
server outputs before they are conveyed to the client (“output voting”). How-
ever, a compromised server can do more than simply attempt to mislead a client,
e.g., exfiltrating data or attacking other servers, while continuing to provide the
proper output to clients. These attacks have typically not been considered in the
aforementioned intrusion-tolerant architectures, and since there is already need
for servers to be diverse (so as to not fail simultaneously, e.g., see [9,8,11]), these
architectures are ripe for the integration of behavioral-distance-based anomaly
detection to augment the protections they provide.

2 Related Work

Behavioral-distance-based anomaly detection is most closely related to the re-
cent work of Cox et al. on N -variant systems [11]. In an N -variant system,
the behaviors of multiple processes on a common input are compared to de-
tect deviations, as in the framework we consider here. The focus in N -variant
systems, however, is to construct these multiple processes through mechanical
transformation so that necessary conditions for a certain type of attack cannot
be satisfied in all processes. For example, if two processes are created to execute
the same program but with disjoint address spaces (i.e., an address valid in one
is necessarily invalid in the other), then an attack that depends on accessing an
absolute address will crash at least one of the processes. Cox et al. anticipate
the use of a monitor to detect attacks other than by output voting, though to
our knowledge they have not explored monitoring behavior at the system-call
level or via any technique as general as the approach we describe here. Another
difference is that the N -variant system usually requires a special compiler or
a binary rewriter to construct a variant, whereas our approach is a black-box
approach which does not require source code or static analysis of the binary.

Another technique proposed to make mimicry attacks more difficult utilizes
system-call arguments (e.g., [21,4]). Models for detecting anomalous system calls

http://www.winehq.com/site/winapi_stats

22 D. Gao, M.K. Reiter, and D. Song

typically monitor the system-call numbers but not their arguments, and so a
mimicry attack can issue system calls that are consistent with the model but
for which the arguments of certain calls are modified to be “malicious”. To the
extent that system-call arguments can be accurately modeled, this can increase
the difficulty of mimicry attacks. While we do not utilize system-call arguments
in this work, it is potentially a way to augment the strength of our technique.

The key to the technique we present here is a novel HMM construction. HMMs
have been studied for decades and used in a wide variety of applications, owing to
two features: First, HMMs are very rich in mathematical structure and hence can
form the theoretical basis for a wide range of applications. Second, when applied
properly, HMMs work very well in practice for many important applications.
One of the most successful applications of HMMs is in speech recognition [25].
HMMs have also been used in intrusion detection systems, e.g., to model the
system-call behavior of a single process [34], and to model privilege flows [10].
However, these HMMs are designed to model the behavior of a single process,
as opposed to the joint behavior of two processes as we require here.

Variations of ordinary HMMs might seem to be more suited to our needs. For
example, “pair HMMs” [23] and “generalized pair HMMs” [24] have been used to
model joint distributions, specifically to predict the gene structures of two unan-
notated input DNA sequences. However, these variations of HMMs only model
two observable sequences where symbols are drawn from the same alphabet. In
our case, not only are the alphabets—i.e., the system calls on diverse platforms—
different, but the correspondences between these alphabets are not known and
are not one-to-one. As such, we have been unable to directly adapt these prior
techniques to our problem, and have devised a custom solution, instead.

3 Motivation for Our Approach

In a nutshell, the problem is to assign a distance to a pair of system call sequences

S1 = 〈s1,1, s1,2, . . . , s1,l1〉 S2 = 〈s2,1, s2,2, . . . , s2,l2〉 (1)

emitted by two processes while processing the same input. Here, each si,j denotes
the system-call number (a natural number) of the j-th system call by the i-th
process. The distance should indicate whether these sequences reflect similar
activities. Producing this distance is complicated by the fact that the processes
might be running on diverse platforms, and so the set of system calls C1 =
{s1,j}1≤j≤l1 on the first platform can be different from the set C2 = {s2,j}1≤j≤l2

on the second platform. Moreover, even a shared symbol c ∈ C1∩C2 has different
semantics on the two platforms. Of course, generally l1 �= l2.

The evolutionary distance (ED) approach [18] to computing the distance of
(1), roughly speaking, was to consider all possible ways of inserting dummy
symbols σ into them to generate an alignment

〈s′1,1, s
′
1,2, . . . , s

′
1,l′1

〉 〈s′2,1, s
′
2,2, . . . , s

′
2,l′2

〉 (2)

where l′1 ≥ l1, l′2 ≥ l2, and l′1 = l′2. The distance for alignment (2) was sim-
ply

∑
j dist(s′1,j , s

′
2,j), where dist was a table of distances between system calls

Behavioral Distance Measurement Using Hidden Markov Models 23

learned from training sequences (pairs of system call sequences output by the
processes in a benign environment). The distance for (1), then, was the distance
of the alignment with the smallest distance.

Though we have omitted numerous details of the ED approach, one limitation
is immediately apparent: it does not take adequate account of the order of system
calls in each sequence. For example, reversing the two sequences (1) yields the
same behavioral distance. Since system-call order is known to be important to
detecting intrusions (e.g., [15,28,17,16]), this is a significant limitation.

Our use of an HMM for calculating the behavioral distance of sequences (1)
addresses this limitation. We use a single HMM to model both processes, and so
a pair of system calls [s1,·, s2,·], one from each process, is an observable symbol of
the HMM. Each such observable symbol can be emitted by hidden states of the
HMM with some finite probability. Intuitively, if the system calls in an observable
symbol perform similar tasks, then the probability should be high, otherwise the
probability should be low. This probability serves the same purpose as the dist
table in the ED approach. However, in HMM-based behavioral distance, the
probability of emitting the same observable symbol is generally different for
different states, whereas in ED-based behavioral distance, a universal dist table
is used for every system call pair in the system call sequences. In this way, our
HMM model better accounts for the order of system calls.

The way in which we use our HMM is slightly different from HMM use in many
other applications. For example, in HMM-based speech recognition, the primary
algorithmic challenge is to find the most probable state sequence (what is being
said) given the observable symbol sequence (the recorded sounds). However, in
behavioral distance, we are not concerned about the tasks (the hidden states)
that gave rise to the observed system call sequences, but rather are concerned
only that they match. Therefore, the main HMM problem we need to solve is
to determine the probability with which the given system call sequences would
be generated (together) by the HMM model—we take this probability as our
measure of the behavioral distance. We show how to calculate this probability
efficiently in Section 4.

4 The Hidden Markov Model

In this section, we introduce our Hidden Markov Model and describe how it
is used for behavioral distance calculation. We begin in Section 4.1 with an
overview of the HMM. We then present our algorithm for calculating the behav-
ioral distance in Section 4.2, and describe the original construction of the HMM
in Section 4.3.

4.1 Elements of the HMM

Our HMM λ = (Q, V, A, B) consists of the following components:

– A set Q = {q0, q1, q2, . . . , qN , qN+1} of states, where q0 is a designated start
state, and qN+1 is a designated end state.

24 D. Gao, M.K. Reiter, and D. Song

– A set V = {[x, y] : x ∈ C1 ∪ {σ}, y ∈ C2 ∪ {σ}} of output symbols. Recall
that C1 and C2 are the sets of system calls4 observed on platforms 1 and 2,
respectively, and that σ denotes a designated dummy symbol.

– A set A = {ai}0≤i≤N of state transition probability distributions. Each
ai : {1, . . . , N +1} → [0, 1] satisfies

∑
j ai(j) = 1. ai(j) is the probability that

the HMM, when in state qi, will next enter qj . We will typically denote ai(j)
with ai,j . We stipulate that a0,N+1 = 0, i.e., the HMM does not transition
directly from the start state to the end state. Note that ai is undefined for
i = N + 1, i.e., there are no transitions from the end state. Similarly, ai,0 is
undefined for all i, since there are no transitions to the start state.

– A set B = {bi}1≤i≤N of symbol emission probability distributions. Each
bi : (C1 ∪ {σ}) × (C2 ∪ {σ}) → [0, 1] satisfies

∑
[x,y] bi([x, y]) = 1. bi([x, y])

is the probability of the HMM emitting [x, y] when in state qi. We require
that for all i, bi([σ, σ]) = 0. Note that neither b0 nor bN+1 is defined, i.e.,
the start and end states do not emit symbols.

As we discussed in Section 3, we will take our measure of behavioral distance
to be the probability with which the HMM λ “generates” the pair of system call
sequences of interest. This probability is computed with respect to the following
experiment, which we refer to as “executing” the HMM:

1. Initialize λ with q0 as the current state.
2. Repeat the following until qN+1 is the current state:

(a) If qi is the current state, then select a new state qj according to the
probability distribution ai and assign qj to be the new current state.

(b) After transitioning to the new state qj , if qj �= qN+1 then select an output
symbol [x, y] according to the probability distribution bj and emit it.

Specifically, we define an execution π of the HMM λ to consist of a state
sequence qi0 , qi1 , . . . , qiT , where i0 = 0 and iT = N + 1, and observable symbols
[xi1 , yi1], . . . , [xiT −1 , yiT −1]. The experiment above assigns to each execution a
probability, i.e., the probability the experiment traverses exactly that sequence
of states and emits exactly that sequence of observable symbols; we denote by
Prλ(π) the probability of execution π when executing HMM λ.

For the HMM λ we will build, there are many executions that generate the
given pair of sequences [S1, S2] as in (1). We use Exλ([S1, S2]) to denote the set
of executions of λ that generate [S1, S2]. The probability that λ generates the
sequences [S1, S2] in (1), which we denote Prλ([S1, S2]), is the probability that
λ, in the experiment above, emits pairs [xi1 , yi1], . . . , [xiT −1 , yiT −1] such that

〈xi1 , xi2 , . . . , xiT −1〉 〈yi1 , yi2 , . . . , yiT −1〉

is an alignment (as in (2)) of those sequences. Note that

Prλ([S1, S2]) =
∑

π∈Exλ([S1,S2])

Prλ(π)

4 In Section 4.4, we discuss letting C1 and C2 be sets of system call sequences, or
phrases. For simplicity of exposition, however, we describe our algorithms assuming
C1 and C2 are sets of individual system calls.

Behavioral Distance Measurement Using Hidden Markov Models 25

In addition, we define the most probable execution generating [S1, S2] to be

arg max
π∈Exλ([S1,S2])

Prλ(π)

When convenient, we will use t to denote an iteration counter, i.e., the number
of iterations of Step 2 in the experiment above that have been executed. So, for
example, when we say that λ is “in state qi after t iterations”, this means that
after t iterations have been completed in the experiment, qi is the current state.
Trivially, q0 is the state after t = 0 iterations, and if the state is qN+1 after t
iterations, then execution halts (i.e., there is no iteration t + 1).

4.2 Computing Prλ([S1, S2])

Prλ([S1, S2]) is the probability that system call sequences S1 and S2 are gener-
ated (in the sense of Section 4.1) by the HMM λ, which is used as the behavioral
distance between S1 and S2. If Prλ([S1, S2]) is greater than a threshold value,
the system call sequences will be considered as normal, otherwise an alarm is
raised indicating that an anomaly is detected. In this section we describe an
algorithm for computing Prλ([S1, S2]) efficiently, given λ, S1, and S2. Again, S1
and S2 would typically be observed from monitoring the processes. How we build
λ itself is the topic of Section 4.3.

Given an HMM λ, there are many ways it can generate S1 and S2, i.e., there
are many different executions that yield an alignment of S1 and S2. In fact, if
we assume that ai,j and bi([x, y]) are non-zero for x �= σ or y �= σ, any state
sequence of sufficient length generates an alignment of S1 and S2 with some
non-zero probability. Moreover, even for one particular state sequence, there are
many ways of generating S1 and S2 with σ inserted at different locations.

It may first seem that to calculate Prλ([S1, S2]) we need to sum the proba-
bilities of all possible executions, and the large number of executions makes the
algorithm very inefficient. However, we can use induction to find Prλ([S1, S2]),
instead. The idea is that if we know the probability of generating [S−

1 , S−
2],

where S−
1 and S−

2 are prefixes of S1 and S2, respectively, then Prλ([S1, S2]) can
be found by extending the executions that generate S−

1 and S−
2 .

To express this algorithm precisely, we introduce the following random vari-
ables in an execution of the HMM λ. Random variable Statet is the state after t
iterations. (It is undefined if the execution terminates in less than t iterations.)
Random variable Out≤t

1 is the sequence of system calls from C1 in the first com-
ponents of the emitted symbols (less σ) through t iterations. That is, if in the
(up to) t iterations, λ emits [s′1,1, s

′
2,1], . . . , [s′1,�, s

′
2,�] where � ≤ t, then Out≤t

1 is
the sequence of non-σ values in 〈s′1,1, . . . , s

′
1,�〉 (with their order preserved). Sim-

ilarly, the random variable Out≤t
2 would be the non-σ values in 〈s′2,1, . . . , s

′
2,�〉.

Now define

α(u, v, i) = Prλ

⎛

⎝
∨

t≥0

(
Statet = qi ∧ Out≤t

1 = Pre(S1, u) ∧ Out≤t
2 = Pre(S2, v)

)
⎞

⎠

26 D. Gao, M.K. Reiter, and D. Song

where Pre(S, u) denotes the u-length prefix of S. That is, α(u, v, i) is the prob-
ability of the event that simultaneously qi is the current state, exactly the first
u system calls for process 1 have been emitted, and exactly the first v system
calls for process 2 have been emitted. Clearly α(u, v, i) is a function of S1, S2,
and λ. Here we do not specify them as long as the context is clear. We solve for
α(u, v, i) inductively, as follows.

Base cases:

α(0, 0, i) =

{
1 if i = 0
0 otherwise

α(u, v, 0) =

{
1 if u = v = 0
0 otherwise

Induction:

α(u, 0, i) =
N∑

j=0

α(u − 1, 0, j)aj,ibi([s1,u, σ]) for u > 0, i > 0

α(0, v, i) =
N∑

j=0

α(0, v − 1, j)aj,ibi([σ, s2,v]) for v > 0, i > 0

α(u, v, i) =
N∑

j=0

α(u − 1, v, j)aj,ibi([s1,u, σ]) +
N∑

j=0

α(u, v − 1, j)aj,ibi([σ, s2,v])

+
N∑

j=0

α(u − 1, v − 1, j)aj,ibi([s1,u, s2,v]) for u, v > 0, i > 0

For example, α(1, 0, i) is the probability that qi is the current state and all
that has been emitted is one system call for process 1 (s1,1) and nothing (except
σ) for process 2. Since bj([σ, σ]) = 0 for all j ∈ {1, . . . , N}, the only possibility
is that q0 transitioned directly to qi, which emitted [s1,1, σ].

As a second example, to solve for α(u, v, i) where u, v > 0, there are three
possibilities, captured in the last equation above:

– The first u − 1 and v system calls from S1 and S2, respectively, have been
output, and λ is in some state qj . (This event occurs with probability α(u −
1, v, j).) λ then transitions from qj to qi (with probability aj,i) and emits
[s1,u, σ] (with probability bi([s1,u, σ])).

– The first u and v − 1 system calls from S1 and S2, respectively, have been
output, and λ is in some state qj . (This event occurs with probability α(u, v−
1, j).) λ then transitions from qj to qi (with probability aj,i) and emits
[σ, s2,v] (with probability bi([σ, s2,v])).

– The first u − 1 and v − 1 system calls from S1 and S2, respectively, have
been output, and λ is in some state qj . (This event occurs with probability
α(u−1, v−1, j).) λ then transitions from qj to qi (with probability aj,i) and
emits [s1,u, s2,v] (with probability bi([s1,u, s2,v])).

After α(u, v, i) is solved for all values of u ∈ {0, 1, . . . , l1}, v ∈ {0, 1, . . . , l2},
and i ∈ {1, . . . , N}, where l1 and l2 are the lengths of S1 and S2, respectively,
we can calculate

Behavioral Distance Measurement Using Hidden Markov Models 27

Prλ([S1, S2]) =
N∑

i=1

α(l1, l2, i)ai,N+1

The solution above solves for Prλ([S1, S2]) from the beginning of the system
call sequences. (That is, α(u, v, i) of smaller u- and v-indices are found before
that of larger u- and v-indices.) It will also be convenient to solve for Prλ([S1, S2])
from the end of the sequences. To do that, we define

β(u, v, i) = Prλ

⎛

⎝
∨

t≥0

(
Statet = qi ∧ Out>t

1 = Post(S1, u) ∧ Out>t
2 = Post(S2, v)

)
⎞

⎠

Here, Post(S, u) denotes the suffix of S that remains after removing the first u
elements of S. Analogous to the preceding discussion, random variable Out>t

1
is the sequence of system calls from C1 in the first components of the emitted
symbols (less σ) in iterations t + 1 onward (if any), and similarly for Out>t

2 .
So, β(u, v, i) is the probability of the event that qi is the current state after
some iterations and subsequently exactly the last l1 − u system calls of S1 are
emitted, and exactly the last l2 −v system calls of S2 are emitted. The induction
for β(u, v, i) works in a similar way, and Prλ([S1, S2]) = β(0, 0, 0).

In this algorithm, the number of steps taken to calculate Prλ([S1, S2]) is pro-
portional to l1 × l2 × N2. Therefore, the proposed algorithm is efficient as the
numbers of system calls and HMM states grow.

4.3 Building λ

In this section we describe how we build the HMM λ. We do so using training
data, that is, pairs [S1, S2] of sequences of system calls recorded from the two
processes when processing the same inputs. Of course, we assume that these
training pairs reflect only benign behavior, and that neither process is compro-
mised during the collection of the training samples. We first present an algorithm
to adjust the HMM parameters for one training example [S1, S2], and then show
how we combine the results from processing each training sample to adjust the
HMM when there are multiple training samples.

Building λ is a typical expectation-maximization problem. There is no known
way of solving for such a maximum likelihood model analytically; therefore a
refinement procedure is used. The idea is that for each training sample [S1, S2],
we find the expected values of certain variables, which can, in turn, be used to
adjust the parameters of λ to increase Prλ([S1, S2]). Here we will demonstrate
this method for updating the ai parameters of λ; a similar treatment for the bi

parameters can be found in Appendix A.
The initial instance of λ is created with a fixed number of states N and random

ai and bi distributions. To update the ai,j parameters in light of a training
sample [S1, S2], we find (for the current instance of λ) the expected number
of times λ transitions to state qi when generating [S1, S2], and the expected
number of times it transitions from qi to qj when generating [S1, S2]. To compute

28 D. Gao, M.K. Reiter, and D. Song

these expectations, we first define two conditional probabilities, γ(u, v, i) and
ξ(u, v, i, j) for i ≤ N, j ≤ N + 1, as follows:

γ(u, v, i) = Prλ

⎛

⎝

⎛

⎝
∨

t≥0

Statet = qi ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞

⎠
∣
∣
∣
∣

(
Out>0

1 = S1 ∧
Out>0

2 = S2

)
⎞

⎠

ξ(u, v, i, j) = Prλ

⎛

⎝

⎛

⎝
∨

t≥0

Statet = qi ∧ Statet+1 = qj ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞

⎠
∣
∣
∣
∣

(
Out>0

1 = S1 ∧
Out>0

2 = S2

)
⎞

⎠

That is, γ(u, v, i) is the probability of λ being in state qi after emitting u system
calls for process 1 and v system calls for process 2, given that the entire sequences
for process 1 and process 2 are S1 and S2, respectively. Similarly, ξ(u, v, i, j) is
the probability of being in state qi after emitting u system calls for process 1 and
v system calls for process 2, and then transitioning to state qj , given the entire
system call sequences for the processes. Each of these conditional probabilities
pertains to one particular subset of executions that generate S1 and S2. As
explained in Section 4.2, there are many executions in the HMM that are able to
generate S1 and S2; out of these executions, there are some that are in state qi

(respectively, transition from qi to qj) after emitting u system calls for process
1 and v system calls for process 2. Note that it may or may not be the case that
[s1,u, s2,v] was emitted by state qi, and that

γ(u, v, i) =
N+1∑

j=1

ξ(u, v, i, j)

We can calculate these quantities easily as follows:

γ(u, v, i) =
α(u, v, i)β(u, v, i)

Prλ([S1, S2])

ξ(u, v, i, j) =
1

Prλ([S1, S2])

⎛

⎝
α(u, v, i)ai,jbj([s1,u+1, σ])β(u + 1, v, j) +
α(u, v, i)ai,jbj([σ, s2,v+1])β(u, v + 1, j) +
α(u, v, i)ai,jbj([s1,u+1, s2,v+1])β(u + 1, v + 1, j)

⎞

⎠

Let the random variable Xi be the number of times that state qi is visited
when emitting [S1, S2]. We calculate the expected value of Xi, denoted E(Xi),
as follows. Let the random variable Xu,v

i be the number of times that qi is
the current state when exactly the first u system calls of S1 and the first v
system calls of S2 have been emitted. Since qi can be visited at most once for
a fixed u and v, Xu,v

i can take on only values 0 and 1. As such, E(Xu,v
i) =∑

x∈{0,1} xPr(Xu,v
i = x) = γ(u, v, i). Then, by linearity of expectation,

E(Xi) =
l1∑

u=0

l2∑

v=0

E(Xu,v
i) =

l1∑

u=0

l2∑

v=0

γ(u, v, i)

Behavioral Distance Measurement Using Hidden Markov Models 29

where l1 and l2 are the lengths of S1 and S2, respectively. Similarly, if Xi,j is
the number of transitions from qi to qj when generating [S1, S2], then

E(Xi,j) =
l1∑

u=0

l2∑

v=0

ξ(u, v, i, j)

With these expectations calculated, we can update the ai parameters of the
HMM λ, using the Baum-Welch method [3], as follows:

ai,j ← E(Xi,j)/E(Xi)

These equations show how the ai parameters of λ can be updated to increase
the probability of generating one pair of sequences. When there are more than
one pair of sequences ([S(1)

1 , S
(1)
2], . . ., [S(M)

1 , S
(M)
2]), the above equations can

be used to calculate the relevant parameters for each pair of sequences (i.e.,
E(X(k)

i), E(X(k)
i,j)) and then the ai parameters of λ can be updated as

ai,j ←
(

M∑

k=1

wkE(X(k)
i,j)

)

/

(
M∑

k=1

wkE(X(k)
i)

)

where wk is the weight for each pair of sequences [S(k)
1 , S

(k)
2] in the training set

for the current instance of λ. There are many ways of setting wk [12]. In our
experience, different settings affect the speed of convergence, but the final result
of the HMM is almost the same. In our experiments, we choose

wk =
(
Prλ([S(k)

1 , S
(k)
2])

)− 1

l
(k)
1 +l

(k)
2

where l
(k)
1 and l

(k)
2 are the lengths of S

(k)
1 and S

(k)
2 , respectively.

The equations above show how the parameters of an HMM can be adjusted
in one refinement. We need many such refinements in order to find a good HMM
that generates the training examples with high probabilities. Although more
refinements can improve the probabilities, they may also result in overfitting.
To detect when to stop the refinement process so as not to overfit the training
samples, we use a separate validation set, which also contains pairs of system
call sequences recorded from the two processes when processing the same in-
puts. Briefly, we detect overfitting when the refinement process either decreases
Prλ([S1, S2]) for pairs [S1, S2] in the validation set or increases the false-alarm
rate on the validation set using the alarm threshold needed to detect mimicry
attacks (explained in Section 5.1).

4.4 Implementation Issues

There are several implementation issues that deserve comment. First, in all dis-
cussion so far, we have used system calls as the basic units to explain the elements

30 D. Gao, M.K. Reiter, and D. Song

of the HMM and our algorithms; i.e., an observable symbol of the HMM is a
pair of system calls, one from each process. However, it is advantageous to use
system call phrases (short sequences of system calls) as the basic unit [35,17,18].
In our experiments, we use the same phrase-extraction algorithm as in the ED
project [18]. After the system call phrases are identified, an observable symbol of
the HMM becomes a pair of system call phrases, one from each process. Other
than this, all algorithms presented in this paper remain the same.

Second, the number N of states in the HMM must be set before training
starts. (N does not change once it is set.) A small N will make the HMM not as
powerful as required to model the behavior of the processes, which will, in turn,
make mimicry attacks relatively easy. However, a large N not only degrades
the performance of the system, but may also result in overfitting the training
data. We have found success in setting N slightly larger than the length of the
longest training sequence so that some dummy symbols σ can be inserted into
the sequences, and to use the validation set to detect overfitting. So far we have
found that setting N to be 1.0 to 1.2 times the length of the longest training
sequence (in phrases) is a reasonable guideline. In our experiments described in
Section 5 using three different web servers on two different operating systems,
this guideline yielded values of N between 10 and 33.

Third, the training of the HMM is a complicated process, which may take a
long time. In our experiments, the training for a typical web server application
may take more than an hour on a desktop computer with a Pentium IV 3.0 GHz
CPU. However, training can be performed offline, and the online monitoring is
fast, as in many other applications of HMMs.

A fourth issue concerns the use of a finite set of training samples for estimating
the HMM parameters. If we look at the formulas for building the HMM in
Section 4.3, we see that certain parameters will be set to 0 if there are no or few
occurrences of a symbol in the training set. For example, if an observable symbol
does not occur often enough, then the probability of that symbol being emitted
will be 0 in some states. This should be avoided because no occurrences in the
training data might be the result only of a low, but still nonzero, probability of
that event. Therefore, in our implementation we ensure a (nonzero) minimum
value to the ai and bi parameters by adding a normalization step at the end of
each refinement process.

5 Evaluation and Discussion

As discussed in Section 4, we hypothesized that because the HMM-based ap-
proach we advocate here better accounts for the order of system calls, it should
better defend against mimicry attacks than the prior ED-based approach [18].
In this section, we evaluate an implementation of our anomaly detector using
HMM-based behavioral distance to determine whether this is, in fact, true, and
to gain insight into the computational cost of our approach.

Our evaluation system includes two computers running web servers to pro-
cess client HTTP requests. One of these computers, denoted L, runs Linux
kernel 2.6.8, and the other, denoted W, runs Windows XP Pro SP2. The web

Behavioral Distance Measurement Using Hidden Markov Models 31

server run by each computer differs from test to test, and will be discussed below.
In our tests, each of L and W was given the same sequence of requests (gener-
ated from the static test suite of WebBench 5.0,5 and each recorded the system
call sequence, denoted by SL and SW,6 respectively, of (the thread in) the web
server process that handled the request. The behavioral distance is calculated
as Prλ([SL, SW]), where λ was trained as described in Section 4.3.

5.1 Resilience Against Mimicry Attacks

Our chosen measure of the system’s resilience to mimicry attacks is the false-
alarm rate of the system when it is configured to detect the “best” mimicry
attack. Intuitively, a system that offers a low false-alarm rate while detecting
the best mimicry attack is doing a good job of discriminating “normal” behavior
from even the “best-disguised” abnormal behavior. To compare our results to
the ED-based behavioral distance project [18], we presume the same system call
sequence that the attacker is trying to execute as in the ED project, which is
simply an open followed by a write.

To measure the false-alarm rate when detecting the best mimicry, we need to
first define what we take as the “best” mimicry attack. Specifically, if we presume
that the attacker finds a vulnerability in, say, L, then it must craft an attack
request that will produce a “normal” behavioral distance between the attack
activity on L induced by its request (SL) and the normal activity on W induced
by the same request (SW). Moreover, the attack activity on L must include an
open followed by a write (i.e., the attacker’s system calls). As such, it would
be natural to define the “best” mimicry attack to be the one that yields the
most normal behavioral distance, i.e., that maximizes Prλ([SL, SW]). Because
we permit the attacker to have complete knowledge of our HMM λ, nothing is
hidden from the attacker to prevent his use of this “best” mimicry attack.

Unfortunately, we know of no efficient algorithm for finding this best mimicry
attack (an obstacle an attacker would also face), and so we have to instead
evaluate our system using an “estimated-best” mimicry attack that we can find
efficiently. Rather than maximizing Prλ([SL, SW]), this estimated-best mimicry
attack is the one produced by the most probable execution of the HMM λ that
includes the attacker’s system calls on the platform we presume he can compro-
mise. (The most probable execution does not necessarily yield the mimicry attack
that maximizes Prλ([SL, SW]), since many low-probability executions can yield a
different [S′

L, S′
W] that has a larger Prλ([S′

L, S′
W]).) An algorithm for computing

this estimated-best mimicry attack can be found in Appendix B. Another way in
which our attack is “estimated-best” is that it assumes the attacker executes its
attack within the servers’ processing of a single request (an assumption made in
the ED project [18] as well). Attacks for which the attack activity spans multiple
requests or multiple server processes/threads is an area of ongoing work.
5 VeriTest, http://www.veritest.com/benchmarks/webbench/default.asp
6 System calls on Windows are also called native API calls or kernel calls. We obtain

the Windows system call information by overwriting the KiSystemService table in
the Windows kernel using a kernel driver we developed.

http://www.veritest.com/benchmarks/webbench/default.asp

32 D. Gao, M.K. Reiter, and D. Song

Once this estimated-best mimicry attack is found, we set the behavioral dis-
tance alarm threshold to be the behavioral distance resulting from this estimated-
best mimicry, and measure the false-alarm rate of the system that results. A false
alarm corresponds to a legitimate request that induces a pair of system call se-
quences with a probability of emission from λ at most the threshold. The false-
alarm rate is then calculated as the number of false alarms divided by the total
number of requests. We perform our experiments in nine different settings, defined
by the web servers that L and W are running. (The web servers are Apache 2.0.54,
Abyss X1 2.0.6 and MyServer 0.8.) Table 1 presents results using a testing mecha-
nism in which the training (to train the model), validation (to detect overfitting)
and evaluation (to evaluate) sets are distinct. They show that the HMM-based
behavioral distance has a small (and in many cases, greatly superior to ED) false-
alarm rate when detecting the estimated-best mimicry attacks.

Table 1. False-alarm rate when detecting the estimated-best mimicry attack

Server Server ED-based HMM-based
on L on W Mimicry on L Mimicry on W Mimicry on L Mimicry on W

Apache Apache 2.08 % 0.16 % 0 % 0.16 %
Abyss Abyss 0.4 % 0.32 % 0.16 % 0.08 %

MyServer MyServer 1.36 % 1.2 % 0 % 0 %
Apache Abyss 0.4 % 0.32 % 0 % 0.16 %
Abyss Apache 0.8 % 0.48 % 0.08 % 0.08 %
Apache MyServer 0 % 3.65 % 0 % 0 %

MyServer Apache 6.4 % 0.16 % 0 % 0 %
Abyss MyServer 0 % 1.91 % 0 % 1.44 %

MyServer Abyss 0.4 % 0.08 % 0.4 % 0 %

5.2 Performance Overhead

To evaluate the performance overhead of a system using our HMM-based be-
havioral distance, we run two experiments. First, we measure the time it takes
to calculate the behavioral distance, and compare that with the ED-based ap-
proach. Second, we apply the HMM-based behavioral distance on real servers
and evaluate its performance overhead.

In the first experiment, we measure the time it takes for our implementations
of the behavioral distance measurement (both the ED-based and the HMM-
based) to calculate the behavioral distance of 1200 pairs of system call sequences
on a Pentium IV 2.0GHz computer with 512MB of memory. In 10 runs of the
experiment, the HMM-based calculation takes 2.269 seconds on average, and the
ED-based calculation takes 2.422 seconds on average. As such, our HMM-based
calculation is 6.32% faster than the ED-based calculation.

In the second experiment, we augment the setup containing L and W with two
additional machines, a proxy P and a client C, and connect them in a 100 Mbps
local area network. Table 2 summarizes the properties of L, W, P, and C. The
client C submits requests to the proxy P, which forwards the requests to both
L and W for processing. Responses from L and W are sent to P, which then
sends a response to C. C uses the benchmark program WebBench 5.0 to issue

Behavioral Distance Measurement Using Hidden Markov Models 33

requests. All tests utilize the static test suite shipped with WebBench 5.0, with a
setting of 10 concurrent client threads. Each test was run for 1600 seconds with
statistics calculated at 100-second intervals. In these tests, both L and W run
the Apache web server 2.2.2.

Table 2. Configurations of computers in the performance overhead evaluation

Machine Name Operating System CPU Memory Remarks
L Linux kernel 2.6.8 Pentium IV 2.0 GHz 512 MB Replica
W Windows XP Pro SP2 Pentium IV 2.0 GHz 512 MB Replica
P Linux kernel 2.6.11 Pentium IV 3.0 GHz 1 GB Proxy
C Windows XP Pro SP2 Pentium IV 2.2 GHz 512 MB Client

We are primarily interested in the request throughput and latency as observed
by C in five tests. In the first test, each of L and W sends its response to the
client’s request to the proxy P, which performs output voting on (i.e., compares)
these responses before responding to the client. Specifically, in the first test, no
system call traces are collected on L or W, and no behavioral distance is calcu-
lated; as such, this serves as a baseline for our tests. In the second test, L and W
additionally capture the system calls made by the web server processes/threads,
and send the system call information to another machine (not P) for logging
and, potentially, offline behavioral-distance calculations. This test thus includes
the costs of collecting the system call information and sending it off the server
machines, but not the cost of calculating behavioral distances. In the third test,
the system call information is sent to proxy P (and not to other machines) for
online behavioral distance calculation. P computes the behavioral distance (in
addition to performing output voting, as in the other tests) before responding to
the client. In the fourth test, the results of each behavioral distance calculation
is cached at P so that it need not be performed again if the same system call
sequences are received from L and W in the future. In the last test, only W and
C are used to evaluate the performance of an individual server, in which neither
output voting nor behavioral distance is used. We monitor the throughput and
latency in each test. The results are shown in Figure 1.

Results from the first test, in which P does output voting only, serve as a
reference. The second test shows the performance overhead of simply capturing
and transporting the system call information off of L and W. From the results,
we can see that this overhead is very small: roughly 1% in throughput and 0.03
millisecond in latency on average. Results of the third test show the overhead
of capturing system call information and performing HMM-based behavioral
distance calculation on the critical path of responding to the client. As shown,
this cost adds substantial overhead to the request processing time. However, the
fourth test shows that this cost can be substantially reduced by caching the
behavioral distance results. It takes some time for the cache to warm up, and by
the end of the test there is less than a 20% throughput loss and 0.59 milliseconds
of additional latency on average. Comparing the results of the fourth and the
fifth tests, we also see that L and W are roughly 25% underutilized in the fourth

34 D. Gao, M.K. Reiter, and D. Song

0 500 1000 1500
Test Time (sec)

0

100

200

300

400

500

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences for logging
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P
P: output voting + behavioral distance calculation + cache results
L&W: serve requests + send syscall sequences to P
P: not involved in experiment
L: not involved in experiment
W: serve requests directly

0 500 1000 1500
Test Time (sec)

0

2

4

6

8

L
at

en
cy

 (
m

se
c)

Fig. 1. Performance Overhead of the HMM-based Behavioral Distance

experiment due to the bottleneck created at the proxy. Instantiating the proxy
with a faster machine would presumably improve this situation.

6 Conclusion

In this paper we presented a new algorithm for computing behavioral distance
between processes. Our approach addresses shortcomings in prior techniques;
in particular, it better accounts for system-call orderings while offering com-
parable performance. Empirical tests suggest that our algorithm offers strong
defense against mimicry attacks, while providing substantial improvement in
the false-alarm rate over previous proposals. We believe that this algorithm is
a significant step toward the practical use of behavioral distance as an anomaly
detection technique, particularly for fault- and intrusion-tolerant architectures
that already redundantly execute requests on multiple diverse platforms.

References

1. M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie.
Fault-scalable Byzantine fault-tolerant services. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles, pages 59–74, October 2005.

2. L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzan-
tine quorum systems. IEEE Transactions on Parallel Distributed Systems, 12(9),
September 2001.

Behavioral Distance Measurement Using Hidden Markov Models 35

3. L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Statist., 37:1554–1563, 1966.

4. S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

5. R. W. Buskens and R. P. Bianchini, Jr. Distributed on-line diagnosis in the presence
of arbitrary faults. In Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing, pages 470–479, June 1993.

6. C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet.
In Proceedings of the 2002 International Conference on Dependable Systems and
Networks, 2002.

7. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-
ery. ACM Transactions on Computer Systems, 20(4), November 2002.

8. M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems, 21(3), August 2003.

9. L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach to
reliability of software operation. In Proceedings of the 8th International Symposium
on Fault-Tolerant Computing, pages 3–9, 1978.

10. S. Cho and S. Han. Two sophisticated techniques to improve HMM-based intrusion
detection systems. In Proceedings of the 6th International Symposium on Recent
Advances in Intrusion Detection (RAID 2003), 2003.

11. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems – A secretless framework for se-
curity through diversity. In Proceedings of the 15th USENIX Security Symposium,
August 2006.

12. R. I. A. Davis, B. C. Lovell, and T. Caelli. Improved estimation of Hidden Markov
Model parameters from multiple observation sequences. In Proceedings of the 16th
International Conference on Pattern Recognition (ICPR 2002), 2002.

13. H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004.

14. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, 2003.

15. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
1996.

16. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graph for
anomaly detection. In Proceedings of the 11th ACM Conference on Computer &
Communication Security, 2004.

17. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly
detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

18. D. Gao, M. K. Reiter, and D. Song. Behavioral distance for intrusion detection. In
Proceedings of the 8th International Symposium on Recent Advances in Intrusion
Detection (RAID 2005), 2005.

19. J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams.
In Proceedings of the 11th USENIX Security Symposium, 2002.

20. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection.
In Proceedings of Symposium on Network and Distributed System Security, 2004.

21. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS 2003), 2003.

36 D. Gao, M.K. Reiter, and D. Song

22. L. Lamport. The implementation of reliable distributed multiprocess systems.
Computer Networks, 2:95–114, 1978.

23. I. M. Meyer and R. Durbin. Comparative ab initio prediction of gene structures
using pair HMMs. Oxford University Press, 2002.

24. L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized pair
Hidden Markov Models to alignment and gene finding problems. Computational
Biology, 9(2), 2002.

25. L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. In Proceedings of IEEE, February 1989.

26. M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In Proceedings of the 2nd ACM Conference on Computer and Commu-
nication Security, pages 68–80, November 1994.

27. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

28. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001.

29. P. H. Sellers. On the theory and computation of evolutionary distances. SIAM J.
Appl. Math., 26:787–793, 1974.

30. K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in a
distributed computing system. In Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pages 55–60, 1987.

31. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal
to the normal and beyond. In Proceedings of the 5th International Workshop on
Information Hiding, October 2002.

32. D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy, 2001.

33. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002.

34. C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, 1999.

35. A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length audit
trail patterns. In Proceedings of the 2000 Recent Advances in Intrusion Detection,
2000.

36. J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agree-
ment from execution for Byzantine fault tolerant services. In Proceedings of the
19th ACM Symposium on Operating System Principles, October 2003.

A Updating the bi Parameters of λ

The idea of updating bi parameters of λ is the same as of updating ai (see
Section 4.3). Here, we need to calculate the expected number of times λ emits
observable symbol [x, y] at qi, when generating [S1, S2]. To compute this expec-
tation, we first define a conditional probability, ζ([x, y], u, v, i), as follows:

Behavioral Distance Measurement Using Hidden Markov Models 37

ζ([x, y], u, v, i) = Prλ

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎝

∨

t≥0

Statet = qi ∧
Outt1 = Seq(x) ∧
Outt2 = Seq(y) ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞

⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣

(
Out>0

1 = S1 ∧
Out>0

2 = S2

)

⎞

⎟
⎟
⎟
⎟
⎠

where

Seq(x) =

{
〈x〉 if x �= σ

〈〉 if x = σ

and Outt1 is the sequence of system calls from C1 in the first component of the
emitted symbol in iteration t, with either one (if the component of the emitted
symbol is not σ) or zero (if the component of the emitted symbol is σ) system
call in the sequence. Outt2 is defined similarly.

ζ([x, y], u, v, i) represents the probability of λ being in state qi after emitting u
system calls for process 1 and v system calls for process 2, and the last observable
symbol emitted by state qi is [x, y], given that the system call sequences for
process 1 and process 2 are S1 and S2, respectively. Note that

γ(u, v, i) =
∑

[x,y]

ζ([x, y], u, v, i)

We can calculate ζ([x, y], u, v, i) easily as follows:

ζ([x, y], u, v, i) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∑ N
j=0 α(u−1,v,j)aj,ibi([x,σ]))β(u,v,i)

Prλ([S1,S2])
if x = s1,u ∧ y = σ

(∑ N
j=0 α(u,v−1,j)aj,ibi([σ,y]))β(u,v,i)

Prλ([S1,S2])
if x = σ ∧ y = s2,v

(∑ N
j=0 α(u−1,v−1,j)aj,ibi([x,y]))β(u,v,i)

Prλ([S1,S2])
if x = s1,u ∧ y = s2,v

0 otherwise

Let the random variable Xi,[x,y] be the number of times that state qi is visited
when qi emits observable symbol [x, y], when λ generates [S1, S2]. For the same
reason as explained in Section 4.3,

E(Xi,[x,y]) =

⎧
⎪⎨

⎪⎩

∑l1
u=1

∑l2
v=0 ζ([x, y], u, v, i) if x �= σ ∧ y = σ

∑l1
u=0

∑l2
v=1 ζ([x, y], u, v, i) if x = σ ∧ y �= σ

∑l1
u=1

∑l2
v=1 ζ([x, y], u, v, i) if x �= σ ∧ y �= σ

and the bi parameters of λ can be updated as

bi([x, y]) ←
(

M∑

k=1

wkE(X(k)
i,[x,y])

)

/

(
M∑

k=1

wkE(X(k)
i)

)

38 D. Gao, M.K. Reiter, and D. Song

B Estimating the Best Mimicry Attack

In this section we show how to estimate the best mimicry attack given an HMM
λ. Suppose that the attacker has found a vulnerability in process 2, and wants
to use that vulnerability to exploit the process. Let S2 denote the system call
sequence that constitutes the attacker’s system calls (e.g., S2 = 〈open, write〉).
Let Ŝ2 be an extended sequence of S2, i.e., Ŝ2 is obtained by inserting arbi-
trarily many system calls into S2 at any locations. When the anomaly detector
utilizes HMM-based behavioral distance, a mimicry attack is some Ŝ2 that in-
duces a large Prλ([S1, Ŝ2]), where S1 is the sequence of system calls induced
by the attack request at process 1 (not compromised). We assume that S1 is
fixed (vs. being chosen by the attacker), which is typical since for many appli-
cations an attack request against process 2 induces an error on process 1 (e.g.,
a page-not-found error). If the attacker can induce several possible sequences
at process 1, then this analysis would need to be repeated with the various
alternatives.

For a fixed pair of system call sequences S1 and Ŝ2, let P̂rλ([S1, Ŝ2]) denote
the probability of the most probable execution of λ that generates [S1, Ŝ2]. Note
that P̂rλ([S1, Ŝ2]) < Prλ([S1, Ŝ2]), since multiple executions can yield [S1, Ŝ2]
(including that which occurs with probability P̂rλ([S1, Ŝ2])). Given S2, there are
many different possibilities for Ŝ2. Each Ŝ2 has a corresponding P̂rλ([S1, Ŝ2]).
Here we define the “best” mimicry attack, given S1, S2 and λ, as the Ŝ2 that
maximizes P̂rλ([S1, Ŝ2]), i.e., the estimated-best mimicry attack is

arg max
Ŝ2

P̂rλ([S1, Ŝ2])

To summarize, in order to find the estimated-best mimicry attack, we need
to try different possible Ŝ2 sequences, and different executions of the HMM in
generating [S1, Ŝ2] in order to find the one that results in the highest probability.
Here we propose an efficient algorithm to do this.

We first try to find the estimated-best Ŝ2, by considering ways to improve
a given mimicry attack, i.e., to modify Ŝ2 to increase P̂rλ([S1, Ŝ2]). This can
be achieved by changing the way a transition is made from any state qi to qj

when generating [S1, Ŝ2]. Since we are modifying an existing mimicry attack,
we want to make sure that the modification does not emit any system calls in
S1, otherwise the mimicry attack will fail (though the modification can emit
additional system calls for process 2).

There are basically two ways to transition from qi to qj : an execution of
the HMM makes a transition from qi to qj directly with probability ai,j ; or an
execution makes a transition from qi to qj indirectly by visiting some states in
the HMM (and emitting some observable symbols). Note that in the latter case,
the observable symbols emitted for process 1 need to be σ’s, while the symbols
emitted for process 2 can be any system calls in C2. In order to find the best
way (the one with highest probability), we define

Behavioral Distance Measurement Using Hidden Markov Models 39

âi,j(e) = max

⎛

⎜
⎜
⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

Prλ

⎛

⎜
⎜
⎝

∨

t2>t1≥0

Statet1 = qi ∧
Statet2 = qj ∧
Out>t1∧<t2

1 = 〈〉 ∧
Out>t1∧<t2

2 = S

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
S �=〈〉 ∧ e/∈S

∪ {ai,j}

⎞

⎟
⎟
⎟
⎠

where 〈〉 represents an empty sequence, and S is any non-empty sequence of
system calls from (C2 \ {e}). Out>t1∧<t2

1 is the sequence of system calls from C1
in the first components of the emitted symbols (less σ) between iteration t1 + 1
and iteration t2 − 1, and similarly for Out>t1∧<t2

2 . âi,j(e) represents the highest
probability of emitting any system calls for process 2 except e, while emitting
no system call (only a sequence of σ) for process 1, when transitioning from qi

to qj . (It may not be clear now why a special system call e needs to be excluded.
We will explain this later in this section.) Note that a special case is when S is
empty, which corresponds to transitioning from qi to qj directly.

âi,j(e) can be solved efficiently by solving for all-pairs shortest paths in a
graph G = 〈V, E〉, where V consists of two nodes qin

i and qout
i for every state qi

in the HMM, and the cost c(n1, n2) for each edge (n1, n2) is defined as

c(n1, n2) =

⎧
⎪⎨

⎪⎩

| log ai,j | if n1 = qout
i ∧ n2 = qin

j

| log b̂i(σ, e)| if n1 = qin
i ∧ n2 = qout

i

∞ otherwise

where

b̂i(x, e) = max
c∈(C2∪{σ}\{e})

bi([x, c])

That is, b̂i(x, e) is the highest probability of emitting x from process 1 and any
system call (including σ and excluding e) from process 2 at state qi.

With {âi,j(e)} calculated, the algorithm of finding the estimated-best mimicry
attack becomes very similar to the algorithm of finding Prλ([S1, S2]) (see Sec-
tion 4.2). The differences are

– In computing Prλ([S1, S2]) we only allow σ to be inserted into S1 and S2,
but here we allow σ and any system calls to be inserted into S2 (for S1 it
remains the same — only σ is allowed).

– In computing Prλ([S1, S2]) we consider all executions of the HMM, and sum
up the corresponding probabilities. Here we consider only one execution that
generates S1 and S2 with the highest probability.

We define δ(u, v, i) to be the probability of the most probable mimicry exe-
cution to generate exactly the first u system calls of S1, and exactly the first
v system calls of S2, when the current state is qi, among all executions. As a
technical matter, when computing δ(u, v, i) inductively, we need to take care
to ensure that the HMM executions considered in the calculation of δ(u, v, i)
do not include those that should be considered only in calculating δ(u, v′, i) for

40 D. Gao, M.K. Reiter, and D. Song

v′ > v. Intuitively, the danger is HMM executions that, in the course of emitting
arbitrary system calls before reaching the next attack system call in S2, in fact
insert attack system calls from S2 as these “arbitrary” system calls. It is for
this reason that in calculating δ(u, v, i) inductively, we need to exclude HMM
executions that output elements of S2 prematurely, hence the arguments to âi,j

and b̂i. Given this, δ(u, v, i) can be solved inductively as follows.
Base cases:

δ(0, 0, i) =

{
1 if i = 0
0 otherwise

δ(u, v, 0) =

{
1 if u = v = 0
0 otherwise

Induction:

δ(u, 0, i) = max
j∈[0,N]

({
δ(u − 1, 0, j)âj,i(s2,1)b̂i(s1,u, s2,1)

})
for u > 0,

i > 0

δ(0, v, i) = max
j∈[0,N]

({δ(0, v − 1, j)âj,i(s2,v)bi([σ, s2,v])}) for v > 0,
i > 0

δ(u, v, i) = max
j∈[0,N]

⎛

⎜
⎝

{
δ(u − 1, v, j)âj,i(s2,v+1)b̂i(s1,u, s2,v+1)

}
∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])} ∪
{δ(u − 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}

⎞

⎟
⎠ for

u, v > 0,
v < l2,
i > 0

δ(u, v, i) = max
j∈[0,N]

⎛

⎜
⎝

{
δ(u − 1, v, j)âj,i(⊥)b̂i(s1,u, ⊥)

}
∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])} ∪
{δ(u − 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}

⎞

⎟
⎠ for

u > 0,
v = l2,
i > 0

Then, P̂rλ([S1, Ŝ2]) of the estimated-best mimicry attack given S1, S2 and λ is

max
i∈[1,N]

({δ(l1, l2, i)âi,N+1(⊥)})

The above inductive algorithm is efficient in calculating P̂rλ([S1, Ŝ2]). More-
over, by recording the most probable Ŝ2 (i.e., prefix of the eventual, estimated-
best mimicry) for each step of the induction, we can efficiently obtain the
estimated-best mimicry attack in the sense we have described.

An interesting question is whether this algorithm can be extended to find the
“real” best mimicry attack. To do so, the corresponding δ′(u, v, i) needs to be
defined as the “highest sum of probabilities of all executions” for (u, v, i). How-
ever, in assembling the most probable mimicry as discussed above, do we record
δ′(u, v, i) for one particular Ŝ2, or δ′(u, v, i) for all possible Ŝ2’s? Unfortunately,
the latter is required, because when calculating δ′() of larger indices, we need
the results of δ′() of lower indices for different Ŝ2’s. Since for each (u, v, i) we
need to record δ′(u, v, i) for all possible Ŝ2’s, this algorithm requires exponen-
tial computation time and memory in the worst case in the length of the best
mimicry. As such, we presently settle for the “estimated-best” mimicry attack,
which showed how to compute efficiently above, and leave finding the absolute
best mimicry attack to future work.

	Introduction
	Related Work
	Motivation for Our Approach
	The Hidden Markov Model
	Elements of the HMM
	Computing Prλ $([S_1, S_2])$
	Building λ
	Implementation Issues

	Evaluation and Discussion
	Resilience Against Mimicry Attacks
	Performance Overhead

	Conclusion
	Updating the b_i Parameters of λ
	Estimating the Best Mimicry Attack

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

