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ABSTRACT

We address the problem of replaying an application dialog between
two hosts. The ability to accurately replay application dialogs is
useful in many security-oriented applications, such as replaying an
exploit for forensic analysis or demonstrating an exploit to a third
party.

A central challenge in application dialog replay is that the dialog
intended for the original host will likely not be accepted by another
without modification. For example, the dialog may include or rely
on state specific to the original host such as its hostname, a known
cookie, etc. In such cases, a straight-forward byte-by-byte replay to
a different host with a different state (e.g., different hostname) than
the original observed dialog participant will likely fail. These state-
dependent protocol fields must be updated to reflect the different
state of the different host for replay to succeed.

We formally define the replay problem. We present a solution
which makes novel use of program verification techniques such as
theorem proving and weakest pre-condition. By employing these
techniques, we create the first sound solution to the replay problem:
replay succeeds whenever our approach yields an answer. Previous
techniques, though useful, are based on unsound heuristics. We
implement a prototype of our techniques called Replayer, which
we use to demonstrate the viability of our approach.
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1. INTRODUCTION

In many scenarios, it would be extremely useful to automati-
cally replay an application dialog as seen by one of the participants.
This problem is termed the replay of application dialog [8]. Sce-
narios which benefit from automatic application dialog replay in-
clude dynamically analyzing programs through repeated execution
in unique environments, demonstrating observed software vulner-
abilities to interested parties, forensics, and determining the range
of software versions vulnerable to an exploit.

However, as shown in [8], automatic replay of an application
dialog is a challenging task. A primary issue is that a success-
ful dialog may rely on state specific to the participants, such as
hostnames, shared cookies, efc. These state-specific protocol fields
cause problems when replaying the dialog to a different host. Cui
et. al. recently proposed using machine learning to identify certain
fields such as IP addresses, host names, etc., and then modify them
accordingly to replay the application dialog [8]. They show that
their approach works for many interesting protocols. However, this
approach is intrinsically heuristics-based and cannot guarantee the
correctness of the replay.

In this paper, we first develop a formal definition for the replay
problem. The formal definition provides new insight into the prob-
lem, and opens the door to using formal techniques to solve the
problem instead of relying on heuristics.

Based on our formal definition, we design an approach to solve
the application replay problem by making novel use of existing
program verification techniques. At a high level, we first build a
symbolic formula of how the original host processed the applica-
tion dialog. We then use an off-the-shelf decision procedure to de-
rive an input tailored to a different host from the symbolic formula.
This approach provides a sound solution to the application protocol
replay problem. Unlike previous, heuristic-based approaches, our
approach is general, and can handle unanticipated types of state-
dependent protocol fields.

For example, successfully replaying a dialog may require mod-
ifying parts of the application dialog specific to the original host.
However, changing the trace may result in an inconsistent dialog,
e.g., check-sums on protocol messages may be incorrect. Thus,
automatically determining which parts of a dialog to change, auto-
matically changing them, and subsequently making the messages
consistent in an automated fashion is difficult. Our techniques can



soundly handle such cases, while previous work required manually
applying domain-specific knowledge.

We describe and evaluate our implementation of Replayer, a
working prototype of our approach for automatic protocol replay.
We use Replayer to solve several examples of the automatic proto-
col replay problem.

Specifically, this paper makes the following contributions:

e We provide the first formal definition of the general replay
problem.

e We show how to make novel use of the concept of weakest
pre-condition and theorem proving to solve the replay prob-
lem. Our adaptation of these techniques results in the first
sound solution to the replay problem.

e Our approach is general and enables successful replay in
cases that the previous approach could not handle. For exam-
ple, our replay can handle protocol messages which include
check-sums.

e We have implemented our approach in a system called Re-
player. Our experiments demonstrate the viability of this ap-
proach.

2. PROBLEM STATEMENT

Example 1 Program P

session.cookie := counter

counter := counter + 1

send(session.cookie)

recv(request)

if (request.data.cookie != session.cookie) then
fail()

else if (request.data.hostname != gethostname()) then
fail()

else if (request.cksum != cksum(request.data)) then
fail()

else
process(request)

end if

SOXAUE LY =
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Consider an application dialog between two hosts: an initiator
and host A . The problem we address is how to replay the initiator’s
side of the network dialog to another party—host B. For non-trivial
network protocols, it is insufficient to simply replay the exact input
sent by the initiator. Certain protocol fields must be updated to
reflect the state of host B for the replayed input to have the same
effect on host B as it did on the host A.

Example 1 demonstrates three common types of protocol fields
that must be updated to successfully replay a network dialog. The
field checked on line 5 in the example is a cookie, which is an ex-
ample of a session-specific protocol field. Cookies are opaque byte
strings generated by one dialog participant, sent to the other, and
then included in subsequent messages. They are used, for example,
to identify a particular session or resource. Replaying a network
dialog requires updating session-specific protocol fields to match
the actual value that was sent by host B.

The field checked on line 7 of Example 1 is the host name of host
B. This is an example of a configuration-specific protocol field.
This type of protocol field is normally filled in using knowledge
obtained by some out-of-band mechanism. Other examples of such
state are user credentials, names of shared resources, etc. Replay-
ing a network dialog requires updating configuration-specific pro-
tocol fields to reflect the configuration of host B.

The field checked on line 9 of Example 1 is a checksum over
the rest of the request data, including the cookie and host-name
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Term Definition

S Set of possible process states
SayShySosSy €S Initial state of host A, host B,

observer, and verifier

Post-state of host A, host B, observer,
and verifier

1 Set of possible process inputs

G&l76b76070\/ € N

g, ip,lp, iy €1 Input sent to host A, host B, observer,
and verifier

P:SxI Program executed on host A, host B,
observer, and verifier

0 Set of possible post-conditions

q<€Q Post-condition that is being satisfied

O:S—-Q Function to define a post-condition

Table 1: Terminology

fields. This is an example of a consistency protocol field. This
type of protocol field is normally filled in using knowledge of the
protocol. Another example of this type of protocol field is a length
field—that is one specifying the number of bytes of one or more
other protocol fields. If replay requires modifying other parts of
the message to reflect host B’s state, the corresponding consistency
fields must be updated.

We next provide a formal and general definition of the protocol
replay problem, which will lead to a formal and general solution.

2.1 Formal Definition

We define the problem of application protocol replay as follows.
Let S represent the space of possible process states, and / represent
the space of possible network inputs. A process with state s € S
and input i € I, executing a deterministic | program P: S x I — §,
will result in a post-state 6 € S. The state s includes the program
counter (the next instruction to be executed in the program), val-
ues of processor registers and memory, the state of the file system,
efc. The input i is data written into the process via the network 2.
For simplicity, the final state ¢ also specifies the output produced
during the execution.

A process on host A is executing the program P. While in ini-
tial state s,, the process receives input i,, and after continuing
execution of the program, reaches a later state 6, € S, for which
some post-condition g € Q is true, where Q is the set of all post-
conditions defined as Q = {B|B: S — {T,F}}. Thatis, g(c,) =T.
Intuitively, the post-condition will be a function that is true if and
only if the input has a “similar” effect on host B as it did on host A.
We discuss how to set the post-condition later in this section.

We wish to provide an input to Host B, who is also running a
process executing program P, such that it reaches a state ¢ that
satisfies the post-condition. Le., such that g(c;) = T. However,
the process being run by host B will be in a different initial state
sp. As a result, the input i, seen by host A may not cause the
post-condition to be satisfied. That is, it may be that g(P(sp,is)) =
F. In Example 1, the original input i, will have incorrect values
for the cookie and hostname protocol fields, assuming that state s;,
specifies a different cookie and hostname. Depending on the exact
post-condition ¢ being used, i, will likely not satisfy g(P(sp,i4)) as
a result.

The protocol replay problem is to modify the previous input to

'In Section 6.5 we discuss how to deal with nondeterminism such
as scheduling, other inputs, efc.

2We refer to i as being a single input for simplicity. However, i
could refer to multiple network messages.



reach a o, s.t. g(c,) = T. More specifically, the protocol replay
problem is given input i,, a post-condition ¢ such that ¢(c,) = T,
an;i an initial state sp, find a new input i;, such that g(P(sp,ip)) =
T.

Setting the post-condition Intuitively, the post-condition ¢ is true
if and only if the replayed dialog has a “similar” result on host B as
it did on host A. Exactly what is meant by “similar” will vary, de-
pending on the purpose of performing application protocol replay.

In our approach, we define a function @ : § — Q. That is, ®
takes the final state 6, € S and returns the post-condition g € Q.
This formulation is illustrated in Figure 1. ®, in turn, is dictated
by the specific goal of the entity performing replay. Naively, one
might specify ® to produce a ¢ that is satisfied if and only if the
final state G is the exact final state that was reached by host A,
6,. However, since the state potentially encapsulates not only ev-
ery memory value of the process, but the state of the machine it is
running on, such a post condition is likely to be unsatisfiable.

A generic replay application may specify @ to produce g that is
true if and only if 6 includes the same output as 6,. This type of
® would be suitable for many applications, as it would result in the
same observable behavior on host B as was seen on host A.

More specialized applications may use a more specialized ®. For
example, one of the applications for protocol replay is to allow an
exploit to be replayed to verity that a vulnerability exists and/or to
further study the vulnerability. For this application, ® might be “g
returns T if and only if the security property that was violated in 6,
is also violated in G;,” with a security violation such as “instruction
x overwrites return address at memory address y.”

3. OUR APPROACH

In this section we describe the design of our solution to the appli-
cation protocol replay problem. Throughout the remainder of this
paper, we refer to the host that received the original input as the ob-
server, and the host to whom we are attempting to replay that input
as the verifier. Our solution is illustrated in Figure 2. We first create
a symbolic formula from the program P and the post-condition q.
The resulting formula relates the input and the initial state to the fi-
nal program state. We then substitute the verifier’s initial state into
the formula, and use a decision procedure to derive i, for replay to
the verifier.

3.1 Creating Symbolic Formulas for Applica-
tion Replay

To replay an application dialog, we must determine what con-

ditions are necessary for a host to accept the dialog and terminate

3In the most general sense, we could also consider altering the pro-
gram P or the host B’s initial state s;,. While these approaches may
be useful for some specialized applications, we do not address them
in this work.
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Figure 1: Our replay setting.

in the a final state satisfying the post-condition. The program it-
self calculates a function from the initial state and input to a fi-
nal state. This calculation can be expressed as a symbolic formula
over the program state space and the input. We can further refine
the symbolic formula to include only those final states that satisfy
the post-condition. For example, the symbolic formula would in-
clude clauses that check for self-consistency, the relation between
session-specific protocol fields, and relationships on the configura-
tion state.

There are multiple approaches for computing a symbolic formula
that represents a host accepting the replayed dialog. For exam-
ple, one popular approach for this sort of problem is forward sym-
bolic execution. Forward symbolic execution entails “executing”
the program on symbolic inputs, which results in a symbolic for-
mula for that program path. If we symbolically execute all program
paths, we arrive at a symbolic formula for the entire program. We
could then augment the symbolic formula for the program such that
the formula is satisfied iff the program would accept the replayed
dialog.

P |—=| Calculate
Symbolic
Formula

Decision
Procedure

Figure 2: Our approach.

Our approach We take a different approach, where we compute
the weakest pre-condition for a program P to terminate in a state
satisfying post-condition g. A weakest pre-condition with respect
to a post-condition ¢ is a Boolean formula that characterizes the
inputs and initial states which result in the program satisfying the
post-condition. In our context, the weakest pre-condition formula
characterizes the inputs and initial states that will cause the verifier
to satisfy the desired post-condition. A satisfying assignment of
values to variables in the weakest pre-condition produces an input
that allows the verifier to reach the desired post-state.

The advantage of using the weakest pre-condition is that the
weakest pre-condition formula is usually much smaller than that
produced by forward symbolic execution. In Section 5 we show
that we achieve much better performance using the weakest pre-
condition than by using forward symbolic execution.

More formally, the weakest pre-condition wp(P,q) characterizes
all inputs to the program P that execution will result in a termi-
nating state satisfying g. At a high level, wp(P,q) is the weakest
pre-condition on i, which implies executing P on i, from initial
state s, will terminate in a state satisfying q.

Computing the Weakest Pre-Condition We compute the weak-
est pre-condition on P by:



1. Translate P into the guarded command language (GCL). The

GCL program, denoted Py, is semantically equivilant to P,

but much simpler for analysis.

Compute the weakest pre-condition f =wp(P,,q) in a syntax-
directed fashion. The resulting formula f is a Boolean pred-

icate over (verifier) program states and inputs.

Simplify the weakest pre-condition so it is more efficiently

solved by the decision procedure in the next step.

Translating to GCL  To calculate the weakest pre-condition for
a program, we must first define how each instruction may affect
program state. To simplify this task, we first translate the assem-
bly instructions of P into a simplified language, called the guarded
command language (GCL). The GCL has a relatively small num-
ber of distinct instructions, making it simpler to analyze. During
this transformation, we also make all implicit modifications to the
program state, such as processor status flags, explicit. The result-
ing program Py is semantically equivalent to P, but can be reasoned
about in a syntax-directed manner.

The GCL language constructs we use are shown in Table 2. Al-
though GCL may look unimpressive, it is sufficiently expressive
for reasoning about complex programs [9, 10, 13, 15] 4. GCL is
quite simple to understand. Statements in GCL mirror statements
in assembly, e.g., store, load, assign, etc. Statements consist of a
side-effect free rhs expression, and a lhs location to store the result.
The lhs is always a variable name (i.e., a register) or memory lo-
cation (both stack and heap locations are treated uniformly). A;B
denotes a sequence where statement A is executed, then statement
B. AOB is a choice statement where either A is executed or B, and
corresponds loosely to a conditional jump statement. assume e as-
sumes a particular (side-effect free) expression is true, and is used
to reason about conditional jump predicates. skip is a semantic
no-op, and provided to make subsequent analysis simpler. /s := e
denotes an assignment of the expression e to location /hs. true
and false are the logical constants (and we also allow for normal
Boolean operators such as negation (—)).

GCL is best demonstrated with a simple example. The statement:

if(x<O0)thenx:=x—1lelsex:=x+1;
is translated as:
(assume x < O;x :=x — 1)O(assume —(x < 0);x:=x+1;)

System calls can be translated into a series of assignments to spe-
cial variables. For example, input into the program via the recv
system call can be written as a series of assignments to memory
from input;, for i = 0 to /len, where /en is the parameter passed
to the system call specifying the maximum number of bytes read.

Likewise, data written into memory by other system calls, such
as gettimeofday, reads from files or other sockets, etc., can be
represented as assignments to memory via specially named vari-
ables. The values of such variables can be considered part of the
initial state s,. We further discuss how to set these variables in
Section 3.2.

Computing the weakest pre-condition We compute the weak-
est pre-condition for P, in a syntax directed manner. The rules
for computing the weakest pre-condition are shown in Table 2.
Most rules are self-explanatory, e.g., to calculate the weakest pre-
condition

wp(A;B,Q), we calculate wp(A,wp(B,Q)). Similarly

wp(assume e, Q) = ¢ = Q.

4The GCL defines a few additional commands such as a do-while
loop, which we do not use.
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The one tricky rule is for assignment, i.e., calculating wp(lhs :=
e,Q) where lhs is a variable name or memory reference and e is
an expression. The rule Q[lhs/e| specifies that all occurrences of
lhs in the post-condition Q are substituted for e. If lhs is a vari-
able, then we substitute all occurrences of lhs in Q for e. For
example, wp(j:=i+1,j <3)=i+1 < 3. However we must
take into account any possible memory aliasing relationships when
lhs is a memory reference. Consider computing wp(mem|w] :
e,mem|t] < 3). If t = w, then the resulting weakest pre-condition is
e < 3. If t # w, then this statement has no effect and the weakest
pre-condition is mem|t] < 3. Therefore, the weakest pre-condition
for wp(mem|[w] := e,mem|[t] < 3) is

(if w =1 then e else mem|t]) < 3

The complete weakest pre-condition calculation for post-condition
x < 3 for our previous example is:
wp((assume x < 0;x :=x— 1)0(assume —(x < 0);x :=x+1;),
x<3)
=(wp(assume x < O;x :=x—1,x < 3)
Awp(assume —(x < 0);x:=x+1,x < 3))
=x<0=x—1<3)A(-(x<0)=x+1<3)

3.2 Obtaining the verifier’s initial state

To replay an input to the verifier, we must substitute the initial
state s, into the symbolic formula before we can use it to find a
satisfying input. There are several ways this state may be obtained
and represented in the symbolic formula, depending on the type of
state to be provided, and the particular application scenario.

Example 2 GCL
1: session.cookie := counter;
. counter := counter + 1;
: SENT := session.cookie;
: request := INPUT;
: assume(request.data.cookie != session.cookie) = fail()
O assume(request.data.cookie = session.cookie) =
. (assume(request.data.hostname != HOSTNAME) = fail()
O assume(request.data.hostname = HOSTNAME) =
(assume(request.cksum != cksum(request.data) = fail()
0O assume(request.cksum = cksum(request.data)) =
8: process(request))))

AW N

N

7:

We use Example 2 as an illustrative example. Example 2 is the
program from Example 1 translated into GCL. Notice that the 1 f
statements have been converted to assume statements and that the
system calls corresponding to send, recv, and gethostname
have been converted to assignments to or from the special vari-
ables SENT, INPUT, and HOSTNAME, respectively. This example
is without computing the weakest pre-condition, for greater read-
ability.

In this example there are two parts of the verifier’s initial state
that are needed to satisty the assume statements, and therefore to
produce a successful replay: the value of the cookie, and the value
of the host name. We first show how the appropriate state can be
obtained if we have direct access to the verifier. We then show
how in many cases, including this one, the necessary state can be
obtained even when direct access to the verifier is unavailable, us-
ing a priori knowledge, and knowledge inferred from the verifier’s
output.



A,B € GCL stmt ::=A;B

| assume e (e is an expression)
| lhs := e (lhs € VARS S x I)
|AOB

| skip

| true | false

GCL stmt ~ wp(stmt, Q)
assumee e =Q

lhs :=e Qllhsle]

A; B wp(A, wp(B,Q))
AOB wp(A, Q) A wp(B,Q)

Table 2: The guarded command language (left), along with the corresponding weakest precondition predicate transformer (right).

3.2.1 Direct Access

The most straight-forward method of obtaining the verifier’s state
is to access the memory, registers, and system configuration di-
rectly. In this Example 2, the state of memory in s, includes the
value of session.cookie, allowing the corresponding protocol field
to be correctly updated.

In this example, the host name is derived during execution, from
a system call. Hence, the initial values of memory and registers
are insufficient to find this part of the verifier’s state. However, we
can use direct access to the verifier to predict what the system call
will return, and provide that value as part of the initial state, as an
assignment to HOSTNAME'. For many system calls, including this
one, the return value can be found simply by executing that system
call in a separate process on the verifier.

3.2.2 Non-direct access

Obtaining the initial state is more challenging if direct access to

the verifier is unavailable. However, in many cases the necessary
state can be automatically obtained by analyzing previous output of
the verifier, and using a priori knowledge. In Example 2, we can
obtain the value of the cookie using output sent by the verifier, and
we can obtain the host name using a priori knowledge.
Inference from output In Section 2, we described three types
of protocol fields that must be updated for replay to be success-
ful: session-specific fields, configuration-specific fields, and con-
sistency fields. Session-specific fields can typically be updated us-
ing only state inferred from output of the verifier.

In Example 2, session.cookie is an example of such state.
By inspection, clearly if we know the value sent by the verifier,
SENT, we can infer the value of session.cookie. If we sub-
stitute the variable SENT with x, where x is the value actually
sent, then the decision procedure will likewise be able to infer that
session.cookie = x, and further that INPUT; = x, where i is
the offset of the cookie field.

A minor caveat to this approach is that SENT will not appear

directly in the weakest pre-condition. Therefore, to derive state
from the output in this way, we must incorporate the weakest pre-
condition of the corresponding output variables into the symbolic
formula provided to the decision procedure.
A priori knowledge Configuration-specific protocol fields some-
times cannot be derived directly from the output of the verifier, as is
the case with the hostname field in Example 2. In this example,
a client must have a priori knowledge of the host name, or be able
to find it by some out-of-band means.

We can handle some of these cases by modeling system calls that
read configuration state, as we do with the call to gethostname
in Example 2. When such a variable appears in the symbolic for-
mula, we can attempt to find its value by some out-of-band means.
In this case, we could perform a reverse DNS lookup of the remote
host, and use that data to provide an assignment to HOSTNAME in
our symbolic formula.

As in the previous case, we must augment the symbolic formula
with the weakest pre-condition of any such system calls we want
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to handle, because they will not appear directly in the weakest pre-
condition of the post-condition.

3.3 Finding a satisfying input

The output of the weakest-precondition phase is a boolean for-
mula f over program states s € S and input variables i € I. We then
assign values to the state variables s from the verifier’s initial state
sy, as discussed in the previous section. We then use an off-the-
shelf decision procedure to provide an example assignment i sat-
isfying the weakest pre-condition. This i will result in a post-state
that satisfies the post-condition.

The decision procedure provides such an assignment if one exists
given initial state s,. Otherwise, the decision procedure returns
that the formula f with the state variables specified by s, is not
satisfiable.

If the decision procedure returns an assignment, the input 7, can
be directly constructed using the assignments to the input variables.
Again, because we are using sound techniques, such an input will
satisty the post condition.

In most cases, we will not be able to incorporate every possible
execution path into the symbolic formula. We further discuss how
we bound the program before computing the weakest pre-condition
in Section 4.2.2. If the decision procedure is not able to find a sat-
isfying assignment to the formula, it may still be satisfiable via
an execution path not included in the formula. If desired we could
backtrack and build a bounded program that includes additional ex-
ecution paths, and try again. Note again that because there may be
infinite paths in the full program, it is possible that we will never
find a satisfying input regardless of how many paths we add to the
bounded program. This is unsurprising, since in the general case
one could easily construct a program and post-condition where
finding a satisfying input can be reduced to deciding the halting
problem.

Finally, there are of course cases in which no input will satisfy
the post-condition given the initial state. For example, the verifier
could be configured to not accept any incoming connection.

4. IMPLEMENTATION

We have implemented a proof-of-concept of our approach in a
tool called Replayer. We describe the relevant implementation de-
tails in this section.

4.1 Trace recorder

We use Valgrind [20] to produce the execution trace 7'. Valgrind
is an open source dynamic binary rewriting tool. Our choice was
made for convenience, many other tools also produce traces [5, 19,
24]. We wrote a Valgrind plug-in that produces a log of the first
address of each basic block executed.

4.2 Symbolic Formula Generator

We have built an analyzer that reads in the binary program P and
the execution trace 7', and outputs the corresponding weakest pre-
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Figure 3: The Replayer design and implementation

condition formula. The code base for the analyzer is approximately
19,000 lines of C++ code. The code has several modules.

4.2.1 Disassembler module

The disassembler module is an extension of [6]. This mod-
ule is responsible for disassembling the basic blocks logged in the
trace and converting the assembly into an unambiguous intermedi-
ate representation. Translating to the intermediate representation,
although straight-forward, requires us to explicitly model the ef-
fects of overflow, underflow, sign extension, etc. We simplified
this task by first using Valgrind’s libVEX to translate the assembly
instructions to VEX—Valgrind’s intermediate representation, thus
saving us from having to specify every IA-32 instruction. How-
ever, since VEX is designed to generate efficient executable code
rather than easily analyzable code, we transformed VEX to our own
simpler intermediate representation. In particular, processor status
flags in VEX are updated at run-time just before they are accessed.
In our IR, status flags are instead updated explicitly.

One additional problem we must deal with is memory reads and
writes, some of which may be unaligned. We call a memory read
unaligned if it doesn’t correspond to an atomic write. For example,
consider a 32-bit write to memory locations 1-4. A subsequent
read of byte 2 is unaligned. To address this, we post-process the
assembly so all writes and reads are single bytes, e.g., a 32-bit write
becomes 4 8-bit writes.

4.2.2 Bounding module

There are a large number of possible execution paths through
most programs; infinitely many if the program does not halt. To
reason about a program at all, we must convert the program to one
that has a finite number of execution paths. A common technique
for doing this is to bound the number of times each loop in the pro-
gram executes, while adding an additional check to ensure that ex-
ecutions that would have executed a loop a greater number of times
are not considered. Any reasoning over a program transformed in
this way is still sound, but may not be complete since not all possi-
ble execution paths are considered.

We employ this technique, transforming the original program P
into a modified program P’. Further, we use an execution trace T
of the execution path followed by the observer as it processed the
original input i, to help determine sow to bound the program.

We already know that a process executing P, with initial state
so will reach a post-state that satisfies the post-condition (by def-
inition), following the execution path specified in 7. Intuitively,
it is likely that the program can reach a post-state satisfying the
post-condition by following an identical or similar execution path,
even when starting in a different initial state s,. Therefore, it makes
sense to bound the program to execution paths similar to that in 7.
We call this trace-guided bounding.

In our implementation, trace-guided bounding bounds the pro-
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gram to follow the exact execution path from the trace 7. This
results in the most scalable, but the least complete solution. There-
fore, it may be desirable to also consider similar execution paths.
For example, one might consider allowing loops to be executed n
greater or fewer times than they were executed in the trace 7. One
might also consider executions where alternate paths of “diamond”
structures in the control flow graph are executed. For example,
by inspection it makes little difference whether the i f or the else
clauseisexecutedinif (input > 3) printf(‘‘foo’’);
else printf('‘bar’’);.

In our current implementation, we bound the program to follow
the exact path specified in 7. We build a program consisting of
the concatenation of each instruction executed in the trace 7. All
conditional and indirect jumps are replaced with direct jumps to
the destination they jumped to in the trace 7. To ensure soundness,
we later add the corresponding condition from each jump (or cal-
culation in the case of an indirect jump) to the post-condition, thus
ensuring that we only consider inputs that would actually result in
this execution path.

4.2.3 Weakest pre-condition module

The weakest pre-condition module translates the intermediate
representation into the guarded command language from Table 2.
The weakest pre-condition module implements the predicate trans-
formers shown in Table 2. This code takes as input the GCL and
an arbitrary post-condition, and outputs the corresponding weakest
pre-condition formula.

4.2.4  Simplification module

After computing the weakest precondition, the model consists of
a single, relatively large, formula. We perform a number of simpli-
fications on this formula to reduce the size of the model. Smaller
models are easier for the decision procedure (described next) to
reason about.

We perform:

e Arithmetic simplification and re-association. For example,
the expression 4 + esp +4 < e would be simplified to 8 +
esp < e. Arithmetic simplification and re-association leaves
arithmetic expressions as a sum-of-products.

e Boolean simplification. For example, many memory accesses
are a constant offset from the stack pointer—esp on the IA-
32 architecture. As a result, the conditions in many of the
if-then-else clauses that test for memory aliasing are
of the form esp +x = esp +y, where x and y are constants.
Obviously, such a condition is true if and only if x =y, al-
lowing us to simplify away the if-then-else.

e Common sub-expression elimination. For example, consider
the formula a +2 < 3 Aa+2 < 3. Surprisingly, a decision
procedure will consider the expression a +2 < 3 twice. We
eliminate common sub-expressions via a let binding, e.g.,



let t=a+2<3 in tAt, which results in a+2 < 3
being considered only once by the decision procedure. Note
that applying Boolean simplification will further reduce the
formulato let t=a+2<3 in t.

We have found these simple optimizations to be extremely im-
portant. In many test cases simplification reduced time spent in the
decision procedure by orders of magnitude. Our running example
is simplified as:

x<O0=x<dHA(-(x<0)=x<2)

Note that the above formula could be further simplified, but we
leave such simplification as future work.

4.3 Replay Engine

State Extractor For simplicity, we use the direct-access method
of finding the verifier’s state, as described in Section 3.2. The state
extractor uses ptrace to read the state s, of memory and registers of
the process running program P at the point where P is waiting for
input (e.g. blocked on a read system call).

The Replayer module substitutes the state s, into the weakest

pre-condition wp(P, q), and runs the simplification module again. It
then translates the weakest pre-condition into the appropriate syn-
tax for a decision procedure.
Decision Procedure The decision procedure is a modular compo-
nent, and we could in theory use any off-the-shelf product. We cur-
rently use STP [14], a decision procedure that specializes in mod-
eling bit-vectors. After translation, the module asks the decision
procedure for a satisfying assignment of values to input variables.
The decision procedure will either output a satisfying input i, for
state sy, or output that there does not exist such an input.

When a satisfying input is found, we replay the new input i, and
verify that the post-condition is satisfied. This step serves as a self-
check of our implementation.

S. EVALUATION

We evaluate Replayer on several variations of Example 1. Each
test is compiled as an unoptimized C program. We specify @ as
“execution reaches process(request)”. In each test, we take the ini-
tial state at the point of the recv at line 4. We take the final state
at the point where process (request) is called at line 12. Our
measurements are performed on a machine running Ubuntu Linux
version 5, with a Pentium 4 2.20 GHz CPU, and 1 GB of RAM.

When measuring performance, we consider two steps. The first

step is to build and simplify the symbolic formula. This step needs
to be performed only once to replay a particular observed input
ip. The model can then be used to replay the input to any number
of verifiers. The second step is to substitute the initial state of a
particular verifier into the model, performing any additional sim-
plification of the model, and use the decision procedure to find a
satisfying input. The second step must be performed each time the
input is replayed to a verifier with a different initial state. We also
provide the number of instructions in the executable. Note that the
size of the trace can exceed the number of instructions as the in-
struction trace may include a single instruction multiple times, e.g.,
for when a loop is executed.
Simplification effectiveness Naturally, if we want to replay an in-
put more than once, it pays to pre-process the symbolic formula as
much as possible, to minimize the performance overhead of solving
the symbolic formula. With this in mind, we compute the weakest
pre-condition and simplify the formula as much as possible, rather
than performing forward symbolic execution. Our first test is to
measure the effectiveness of these steps.
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We consider a version of Example 1 with only the test for the
cookie field enabled. Here, the cookie field is a four-byte integer.
Keep in mind that while this example is very simple at the source
code level, the object code is significantly more complex.

In Table 3, we compare our performance using forward symbolic
execution, computing the weakest pre-condition, and performing
the weakest pre-condition with additional simplification. Our im-
plementation of forward symbolic execution is to translate our GCL
version of the program directly into the decision procedure’s lan-
guage. As expected, the formula resulting from computing the
weakest pre-condition is much more efficiently solved by the deci-
sion procedure than the forward symbolic execution formula. The
weakest pre-condition formula takes roughly one third the time for
the decision procedure to solve.

Interestingly, our simplification module improves the performance

of solving the final formula by two orders of magnitude. Further,
the time to generate the formula in the first place is greatly re-
duced. This is because we perform simplification on the intermedi-
ate forms of the formula as we calculate the weakest pre-condition,
reducing the complexity of computing the weakest pre-condition
itself. Some of these simplification techniques coudl be built into
decision procedures.
Updating a checksum We next enabled the check for the check-
sum, in addition to the check for the cookie. Hence, because the
replayer must update the cookie, it must also update the checksum.
In our program, the checksum is the integer addition of the data.
We evaluate performance using a 16 byte checksum (4 integer ad-
ditions), and an 80 byte checksum (20 integer additions). An ad-
vantage of our approach over machine-learning based approaches
such as Roleplayer [8] is that we can replay protocols that have such
relationships, without needing to know the exact algorithm ahead
of time.

Table 4 shows the execution time for each Replayer step for
when only the cookie check is enabled (same as in Table 3), for
when the checksum is computed over 16 bytes of input, and for
when the checksum is computed over 80 bytes of input. As one
would expect, the checksum computation significantly increases
the complexity of the generated formula. Replayer handles each
of these cases in a reasonable amount of time, though further work
will be needed to scale Replayer to larger formulas.

We have demonstrated the validity of our approach and of our
implementation prototype. While further work is necessary for our
approach to scale, we believe that our initial results are promising.
We discuss some possible strategies to improve the scalability of
our approach in Section 6.6.

6. DISCUSSION

6.1 Preserving similarity to the original input

Replayer is designed to soundly address the problem formula-
tion given in Section 2. That is, Replayer produces an input i, that
will replay and reach the desired final state satisfying the desired
post-condition. Whether or not the produced i, resembles the orig-
inal input i, depends completely on the post-condition. Here, we
discuss how the post-condition can be specified so that i, and i, are
textually similar.

For example, suppose that the original input i, is a message to
an SMTP server that causes the SMTP server to send an email
message. Suppose the post-condition only specifies that the input
should trigger a message on the verifier host. Using our current
approach, we would be likely to generate an i, that also causes
an SMTP server to send an email message, but the body of that
message would likely be gibberish, rather than the contents of the



Building the Formula (s)

Total time to solve formula (s)

Forward Symbolic Execution
WP without simplification
WP with simplification

944
122
1.15

344
11.3
0.142

Table 3: Performance improvements from weakest pre-condition and simplifications

Cookie Cookie Cookie
only + 16 byte checksum | + 80 byte checksum
Executable size (w and w/o glibc) 87188/329 87188/329 87188/329

IA-32 instructions in trace 35 84 229

1. Trace to GCL (s) 901 947 .892

2. Compute WP (s) 205 7.92 355

Total time to build formula (1+2) (s) 1.106 8.867 356
3. Substitute and resimplify (s) .029 652 7.54

4. Translate to decision procedure (s) .013 142 2.02
5. Compute decision procedure (STP) (s) 0.10 95 5.73

Total time to solve formula (3+4+5) (s) 142 1.744 15.29

Table 4: Checksum replay performance.

message in i,. In general, specifying a ® that, for messages in
any possible network protocol, generates a g that specifies that i, is
entirely semantically equivalent to i, is impossible.

There are several techniques for creating a post-condition such
that i, and i, are textually similar. Each technique constraints the
input variables for non-state-dependent protocol fields to be the
value that they took on in i,, thus only allowing the decision proce-
dure to select new values for the state-dependent protocol fields.

The challenge to accomplish this is that we would need to iden-
tify which parts of the input correspond to state-dependent protocol
fields. There are several techniques we could use to do this. Note
that whichever bytes of the input we choose to constrain, the system
is still sound. However, every additional constraint risks causing
the symbolic formula to become unsatisfiable. In particular, if we
mistakenly constrain a state-dependent protocol field to its original
value, of course we will be unable to find a satisfying input.

There are several techniques we can use to heuristically iden-
tify which bytes of the input do not correspond to state-dependent
fields, and may hence be safely constrained. First, we can of course
constrain any input bytes that do not appear at all in our symbolic
formula, without reducing the completeness of the symbolic for-
mula. Unfortunately, such bytes will not exist in most protocols.
For example, in a text-based protocol, even input bytes that are
otherwise ignored by the program will likely be constrained by the
symbolic formula to not be NULL. Hence, this technique of identi-
fying constrained bytes is not likely to be useful in practice.

A more promising technique is to identify the state-dependent
fields, and consistency fields, and then constrain the rest of the in-
put. For example:

o Session-specific fields, such as cookies, are characterized by
the program sending data derived from some internal state
(e.g., a saved cookie), and later comparing that internal state
to subsequent input.

o Configuration-specific fields, such as the name of a host,
may be compared with data derived from another system
call— e.g., reading a configuration file. Another possibil-
ity is that the input data is passed as a parameter to a system
call— e.g. to open a specified file.

o Consistency fields, such as a check-sum, result in an expres-
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sion in the symbolic formula comparing a relatively small
protocol field, e.g. a check-sum, with an expression involv-
ing a relatively large protocol field, e.g., the rest of the re-
quest.

Another technique is to use an iterative greedy algorithm to de-
termine which parts of the input can remain the same as i,. First,
we would use the decision procedure to find a satisfying input i,
as before. We would then attempt to constrain one of the input
variables to have the same value as in i,, and try again. If the deci-
sion procedure succeeds, we can continue to constrain that variable
to have the same value as in i,, otherwise we un-constrain it again.
‘We can continue this process until no more bytes can be constrained
without causing the decision procedure to fail.

The greedy part of this approach stems from the order to attempt
to constrain the input bytes. Suppose the message has a consis-
tency field such as a check-sum. While it may be possible to keep
the consistency field value from the original input and allow the de-
cision procedure to find new values for the data fields, it would be
preferable to keep the data field values from the original input and
derive a new consistent value for the consistency field. To encour-
age this property, we greedily prefer to constrain bytes that appears
on the other side of a comparison operator as the fewest number
of other input variables in the Boolean formula. Thus if we have
cksum = a+ b+ ¢+ d, we would prefer to constrain a through d
before cksum.

We leave implementing and evaluating these techniques as fu-
ture work. If successful, these techniques could greatly increase
Replayer’s ability to act as a generic protocol replay tool, by help-
ing preserve any hidden semantics of the replayed message.

6.2 Generating an observer-independent
protocol replay engine

In our current solution, we use the post-state 6, and the execu-
tion trace 7" obtained by monitoring the observer as it processes the
original input i,. In some replay applications, this information may
not be available. In particular, it would be useful to replay an input
obtained from a logged network trace.

We may be able to build a replay system that can replay messages
of a particular protocol, after observing and building symbolic for-
mulas for most of the distinct types of messages in that protocol.



Assuming we are able to identify which fields are state-dependent
using the techniques described in Section 6.1, we could constrain
the non-state-dependent variables to the values of some other input
i to replay that input. To build a tool to replay any message of
a particular protocol in this way, we would also need some mech-
anism to determine which of our symbolic formulas to employ to
replay a particular input. One way of doing this is to build a signa-
ture of each type of message when generating the initial symbolic
formulas. We can build these signatures using similar techniques
to those described in [6]. That is, given the original observed G,
and input i,, we determine which parts of the input must remain
the same to satisfy the formula. The bytes that cannot change will
typically correspond to protocol keywords, which identify the type
of message being sent. These protocol keywords can be built into a
signature, which can later be used to identify subsequent inputs of
the same message type.

6.3 Different program versions

In our current design, we assume that observer and the verifier
are running the exact same program, P. In practice, we may be
able to replay to a verifier that is running a different program P’,
if P’ behaves as P in externally observable ways. This will often
be the case for two slightly different versions of the same program,
or perhaps even for two independently developed programs imple-
menting the same protocol.

Direct access to the memory and registers of the verifier process
are unlikely to be useful in supplying the initial state sg, because
P’ will have a different memory and register allocation. However,
if the necessary state can be inferred from the verifier’s output and
from a priori knowledge as described in Section 3.2, and if the pro-
gram P’ implements the same protocol specification as P, an input
iy derived from our symbolic formula is likely to result in the same
externally observable behavior on the verifier as i, did on the ob-
server.

6.4 Complexity of finding a satisfying input

The general problem of finding an input that satisfies an arbitrary
post-condition can easily be shown to be undecidable. E.g. the
post-condition could be “Program outputs 1 iff {(s,, i,) produces a
program that halts.” Naturally, we do not claim to be able to solve
the problem for such post-conditions. In practice, we expect most
useful post-conditions to be relatively simple, such as the examples
given in Section 2.

Likewise, even a simple post-condition such as “execution reaches
the same final eip as specified in 6,,”” could be thwarted by a pro-
gram that, for example, checks whether a cryptographic pseudo-
random function computed on the input i, is equal to the state s,,.
However, for most programs, one would not expect the problem of
finding an input to cause that program to reach a desired final state
to intentionally be made into a hard problem. With few exceptions,
programs are designed so that inputs can easily be constructed to
cause a program to reach a desired state.

Note that handling common cases of cryptographic functions is
not fundamentally difficult. For example, suppose that a protocol
field of the input must include a correct cryptographic message au-
thentication code (MAC) of the rest of the input. There is no need
to “invert” the MAC to derive a correct input. The cryptographic
key is part of the process state (or the process would not be able
to verify the MAC itself). Hence, it is possible to derive a correct
input by first satisfying other constraints on the input, and then per-
forming a forward execution of the MAC computation code, which
again is part of the program itself. We do not provide a general
solution to automatically recognize and handle such cases in this
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work, though it would be straight-forward to include logic to rec-
ognize and handle calls into common cryptographic libraries. We
believe a more general solution may be possible, which we leave
for future work.

6.5 Non-determinism

Our approach assumes that the program behaves in a determinis-
tic manner between the time the input i, is read in, and the time that
the final state s, is reached. This is the case in many programs. In
the presence of non-determinism not accounted for in our symbolic
formula, our approach is no longer sound. However, it is likely that
in many cases it would still work, as intuitively programs are con-
structed to behave in a deterministic manner based on their input,
even when some non-determinism is present.

For example, consider a program that uses threads that are pre-
emptively scheduled by the kernel. From the process’s perspective,
the scheduling of these threads is non-deterministic. However, as-
suming the absence of race conditions’, the particular scheduling
order of the threads has no effect on the final state reached by the
program. Hence, we can compute the weakest pre-condition based
on the scheduling order we observed in the original execution trace,
and assume that the weakest pre-condition holds for other schedul-
ing orders. The same reasoning applies to a program that is con-
currently processing other requests, either via threads or via asyn-
chronous I/0.

A potential challenge exists when the weakest pre-condition de-
pends on the result of a system call made in between reading the
input and reaching the post-condition. For example, the behavior
of the program may depend on data read from a file on disk after re-
ceiving the replayed input. As we showed in Section 3.2, some sys-
tem calls can be incorporated into our symbolic formula as part of
the verifier’s initial state. That is, if we can predict what data will be
returned by a particular system call, we can substitute that data into
the symbolic formula, thus removing the non-determinism. Hence,
approach is still sound in these cases if we can accurately determine
what these system calls will return. As discussed in Section 3.2,
whether we can do this depends on the type of system call, and
how much access we have to the verifier.

6.6 Insights into improving scalability,
performance, and efficiency

Our approach was fundamentally motivated by the need for sound
techniques for application replay. Our experience indicates that im-
plementation details can make huge differences in efficiency, scal-
ability, and performance. In particular, the availability of a com-
piler optimization will significantly (often exponentially) result in
smaller and easier to prove formulas. We have found ourselves re-
peatedly implementing common compiler optimizations to get bet-
ter performance. For example, without our simple algebraic simpli-
fications, the 16 byte check-sum took over 80 minutes to compute
the weakest pre-condition, instead of the current 7.9 seconds.

We believe further dramatic improvements are easily obtainable
by implementing known compiler techniques. For example:

e We lack alias analysis, which often results in formulas (some-
times exponentially) larger than needed. During execution,
many instructions are memory references, either to the stack
for local variables spilled due to register contention, or to the
heap. We take a strictly sound approach, where any two vari-
ables that may be aliased are considered aliases, resulting

SWe do not attempt to address the problem of reproducing race
conditions in this work. However, it may be possible to extend
our approach to do so, for example by computing the weakest pre-
condition over the scheduling algorithm as well.



in a if-then-else formula as described in Section 3.1.
The 1 f-then-else can potentially double the size of the
program. Implementing x86 alias analysis such as value-set
analysis [4] would significantly help.

e Further simplifications (e.g., common sub-expression elimi-
nation, more aggressive simplification, global value number-
ing, etc.). As mentioned in Section 4.2.4, we found that such
simplifications can result in an order of magnitude speedup.

e We use a classical approach to calculating the weakest pre-
condition. Flanagan and Saxe [13] propose a method that can
exponentially reduce formula size.

7. RELATED WORK

The work closest to our own is that of Cui et. al. [8]. Cui et.
al.develop a heuristic-based approach to automatically identify and
update application fields in protocol dialog. A primary aim of their
work is to decouple application semantics from the replay process.
This decoupling requires the identification of application protocol
dependent fields which must be modified for correct replay. The
process by which different classes of fields are identified, modi-
fied, and replayed is a manual process based on the semantics of
each field type. The accuracy of the developed techniques is not
guaranteed and new heuristics must be developed to handle new
classes of dynamic fields.

Several projects have addressed the problem of network traf-
fic replay. They typically focus on the network or transport lay-
ers [1,2,7] or include application semantics through the manual de-
velopment of application-level responders or plug-ins [21,22,26].
Our approach works at the application layer and utilizes the appli-
cation itself for semantic information rather than a simplified ver-
sion of the application encapsulated in a plug-in.

Replaying the execution of a program has been the focus of nu-
merous projects [3,11,16,17,23,25]. These projects typically focus
on ensuring deterministic execution in the face of non-determinism
or logging the precise sequence of instructions for debugging, in-
trusion analysis, or simple instruction-by-instruction replay. Most
of these previous approaches simply log the non-deterministic event,
for example, the order of memory accesses on a multiprocessor, or
log the individual instructions executed. However, this is insuffi-
cient to correctly replay the execution of a program on a machine
with different state. We incorporate the application and the ma-
chine state in order to soundly determine the input that would arrive
at the same post condition.

We compute the weakest pre-condition using direct, classical
techniques. More advanced techniques can be implemented and
may resulting significant improvements. For instance, Flanagan
and Saxe which can significantly reduce the size of the weakest
pre-condition formula [13]. We adopt the standard technique of
unrolling loops, which may lead to incompleteness, however, un-
rolling is not necessary if loop invariants can be provided. Others
have explored automatically determining loop invariants, e.g., [12,
18].

8. CONCLUSION

We developed a solution to the protocol replay problem: that
of replaying an application dialog observed by one host to another
host. The challenge in protocol replay is that a dialog sent to one
host will likely not be accepted by another. A simple byte-by-byte
replay to a host that is in a different initial state than the original
will fail. We developed a general and formal definition of the re-
play problem. The solution developed in this paper makes novel
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use of programming language techniques such as theorem proving
and weakest pre-condition. By apply these techniques, we devel-
oped the first sound solution to the protocol replay problem. We
implemented and evaluated a prototype of our replay system called
Replayer. Our evaluation demonstrates both the viability and gen-
erality of our problem formulation and corresponding approach.

Acknowledgments

We would especially like to thank Cristian Cadar, David Dill, and
Vijay Ganesh for their generous help with CVCL and STP. We
would also like to thank Ivan Jager, Eric Li, Vern Paxson, and the
anonymous reviewers for their helpful comments and suggestions
during the preparation of this paper.

9. REFERENCES

[1] Cybertrace. http://www.cybertrace.com/ctids.html.

[2] Tcpreplay: Pcap editing and replay tools for *NIX.
http://tcpreplay.sourceforge.net.

David F. Bacon and Seth Copen Goldstein. Hardware-assisted replay
of multiprocessor programs. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, May 1991.

G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. In Proc. Int. Conf. on Compiler Construction, 2004.

P Bosch, A Carloganu, and D Etiemble. Complete x86 instruction
trace generation from hardware bus collect. In 23rd IEEE
EUROMICRO Conference, 1997.

D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards
automatic generation of vulnerability-based signatures. In
Proceedings of the IEEE Symposium on Security and Privacy
(Oakland), 2006.

Yu-Chung Cheng, Urs Hoelzle, Neal Cardwell, Stefan Savage, and
Geoffrey M. Voelker. Monkey see, monkey do: A tool for tcp tracing
and replaying. In Proceedings of the 2004 USENIX Annual Technical
Conference, June 2004.

Weidong Cui, Vern Paxson, Nicholas C. Weaver, and Randy H. Katz.
Protocol-independent adaptive replay of application dialog. In
Proceedings of the 13th Annual Network and Distributed System
Security Symposium, February 2006.

D.L. Detlefs, K. Rustan M. Leino, G. Nelson, and J.B. Saxe.
Extended static checking. Technical Report 159, Compaq Systems
Research Center, December 1998.

E.W. Dijkstra. A Discipline of Programming. Prentice Hall,
Englewood Cliffs, NJ, 1976.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai,
and Peter M. Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation
(OSDI), December 2002.

M. D. Ernest, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evoluation. /[EEE Transactions on Software Engineering,
27(2), Feb 2001.

C. Flanagan and J.B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In Proceedings of the
28th ACM Symposium on the Principles of Programming Languages
(POPL), 2001.

Vijay Ganesh and David L. Dill. System description of STP.
http://www.csl.sri.com/users/demoura/smt-comp/
descriptions/stp.ps, August 2006.

David Gries, editor. Programming in the 1990’s: An Introduction to
the calculation of programs. Springer Verlag, 1990.

Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proceedings of the 2005 USENIX Annual Technical Conference,
April 2005.

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Transactions on Computers,
36(4):471-482, 1987.

(3]

[7

—

[8

=

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]



[18]

[19]

[20]

[21]

K. Rustan M. Leino and Francesco Logozzo. Loop invariants on
demand. In Asian Symposium on Programming Languages and
Systems APLAS, 2005.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proc. of 2005 Programming

Language Design and Implementation (PLDI) conference, june 2005.

Nicholas Nethercote and Julian Seward. Valgrind: A program
supervision framework. In Proceedings of the Third Workshop on
Runtime Verification (RV’03), Boulder, Colorado, USA, July 2003.
R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of internet background radiation. In Proceedings of
Internet Measurement Conference, October 2004.

321

[22]

[23]

[24]

[25]

[26]

Niels Provos. A virtual honeypot framework. In Proceedings of the
13th USENIX Security Symposium, August 2004.

M. Russinovich and B. Cagswell. Replay for concurrent
non-deterministic shared-memory applications. In Proceedings of the
1996 Conference on Programming Language Design and
Implementation, May 1996.

P. A. Sandon, Y.C. Liao, T.E. Cook, D.M. Schultz, and P Martin

de Nicolas. Nstrace: A bus-driven instruction trace tool for powerpc
microprocessors. IBM Journal of Research and Development, 41(3),
1997.

S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flashback: A
light-weight rollback and deterministic replay extension for software
debugging. In Proceedings of the 2004 USENIX Annual Technical
Conference, June 2004.

A. Turner. Flowreplay design notes.
http://www.synfin.net/papers/flowreplay.pdf.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


