
Towards Automatic Software Lineage Inference

Abstract—Software continuously evolves to reflect changing
requirements, feature updates, and bug fixes. Most existing
research focuses on analyzing software release histories to
understand the software evolution process and to describe
evolutionary relationships among programs. However, there
has been little research on inferring software lineage from
(binary) programs.

In this paper, we take a systematic approach towards soft-
ware lineage inference. We explore three fundamental questions
not addressed by existing work. First, how do we measure the
quality of a lineage inference algorithm? Second, given existing
approaches to binary similarity analysis, how good are they for
lineage both currently and in an idealized setting? Third, what
are the challenging problems in software lineage inference?
Towards these goals we build LIMetric—a system for automatic
software lineage inference of binary programs. We evaluated
LIMetric on two types of lineage—straight line lineage and
directed acyclic graph (DAG) lineage. We have also extended
our technique to handle multiple straight line lineages. Our
experiments used large scale real-world programs, with a total
of 1,777 releases spanning over a combined 110 years of
development history. In order to quantify lineage quality, we
propose four metrics: (i) number of inversions and (ii) edit
distance to monotonicity for straight line lineage, and (iii)
number of lowest common ancestor (LCA) mismatches and
(iv) average pairwise distance to true LCA for DAG lineage.
LIMetric effectively extracted software derivation relationships
among binary programs with high accuracy. Through close
case analysis, we also formulate several challenging problems
in software lineage inference that need to be addressed to attain
even higher accuracy.

Keywords-software evolution, software lineage, systematic
evaluation

I. INTRODUCTION

Software evolves to adapt to changing needs, bug fixes,
and feature requests [18]. The lineage of software through its
evolution provides a potentially rich source of information
for a number of security questions. For example, given a
collection of malware variants, which malware came first?
Given a collection of binaries in forensics, are any of
them derived from the others? These kinds of questions are
important enough that the US Defense Advanced Research
Projects Agency (DARPA) is spending $43 million to study
them [1]. Unfortunately, existing work has primarily focused
on analyzing known lineage, not inferring lineage. For exam-
ple, Belady and Lehman studied software evolution of IBM
OS/360 [5], and Lehman and Ramil formulated eight laws
describing software evolution process [18]: 1) continuing
change, 2) increasing complexity, 3) self regulation, 4)
conservation of organisational stability, 5) conservation of
familiarity, 6) continuing growth, 7) declining quality, and
8) feedback system. With a wealth of release information
such as release dates and program versions, researchers have
analyzed histories of open source projects [28], Firefox [21],

and Linux kernel [10] in order to verify Lehman’s laws of
software evolutions and to understand software evolution
process.

The security community has studied malicious software
(malware) evolution based upon the observation that the
majority of incoming malware are tweaked variants of well-
known malware [4, 12, 13]. With over 1.1 million malware
appearing in one day [2], researchers have studied such evo-
lutionary relationships to identify new variants of previously-
analyzed malware [8], to understand the diversity of exploits
used by notorious worms [20], and to generate phylogeny
models to describe derivation relationships among programs
as a dendrogram [14, 15].

The task of software lineage inference is to infer a tem-
poral ordering and ancestor/descendant relationships among
programs. Software lineage can be defined as follows:

Definition I.1. A lineage graph G = (N,A) is a directed
acyclic graph (DAG) comprising a set of nodes N and a set
of arcs A. A node n ∈ N represents a program, and an arc
a = (x, y) ∈ A denotes that program y is a derivative of
program x. We say that x is a predecessor of y and y is a
successor of x.

We define some terminology. A root is a node that has no
incoming arc and a leaf is a node that has no outgoing arc.
Since a DAG can have multiple roots, we introduce a new
node called the super root and add a new arc from it to every
root. A DAG that has been augmented in this way is called a
super DAG. Note that a root in a super DAG has exactly one
incoming arc from the super root. An ancestor of a node n is
a node that can reach n. Note that n is an ancestor of itself.
A common ancestor of x and y is the intersection of the
two sets of ancestors. In a DAG, a lowest common ancestor
(LCA) of two nodes x and y is a common ancestor of x
and y that is not an ancestor to another common ancestor
of x and y [6]. Notice that there can be multiple LCAs. We
denote the set of LCAs of x and y as SLCA(x, y).

In this paper, we ask three basic research questions:
• What are good metrics? Existing research focused on

building phylogeny of malware [14, 15], but has lacked
quality metrics to scientifically measure the quality of
their output.
Good metrics are necessary to assess how good our
approach is with respect to the ground truth. Good
metrics also allow us to quantify the quality of our
output, and to compare different approaches.

• How well are we doing now? We would like to
understand what are the limits of existing techniques
even in ideal cases, meaning we have 1) control over
variables affecting the compilation of programs such
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Figure 1: Design space in software lineage inference

as compiler versions and optimization options so that
binary code compiled from similar source code would
be similar, 2) reliable feature extraction techniques
to abstract binary programs accurately and precisely,
which is not always guaranteed due to the difficulty of
disassembling, and 3) the ground truth with which we
can compare our results to measure accuracy and to
spot error cases.
Although previous approaches have focused on mal-
ware, we argue that it is necessary to first system-
atically validate a lineage inference technique with
“goodware”, e.g., open source projects. Since malware
is often surreptitiously developed by adversaries, it is
hard or even impossible to obtain the ground truth.
Furthermore, we cannot hope to understand evolution
on adversarial programs unless we first understand
limits of our approach without an adversary. To the best
of our knowledge, no systematic experiment addressing
all the variables has been done before.

• What are the challenging problems? We need to
identify challenging problems in order to improve soft-
ware lineage inference techniques. We should evaluate
with an eye towards uncovering fundamental limits or
problems. Previous work has not addressed this.

In this paper, we propose techniques and metrics for the
systematic investigation on software lineage as described
in Figure 1. We explore two types of lineage: straight
line lineage and directed acyclic graph (DAG) lineage. In

addition, we extend our approach for straight line lineage to
k-straight line lineage.
• Four metrics to measure quality. We propose two

metrics for straight line lineage: number of inversions
and edit distance to monotonicity. Given an inferred
graph G and the ground truth G∗, the number of
inversions measures how often we get the question
“which one of program pi and program pj comes first”
wrong. The edit distance to monotonicity asks “how
many nodes do we need to remove in G such that the
remaining nodes are in sorted order and thus respect
G∗”.
We also propose two metrics for DAG lineage: number
of LCA mismatches and average pairwise distance to
true LCA. An LCA mismatch is a generalized version of
an inversion because the LCA of two nodes in a straight
line is the earlier node. In case we have a wrong LCA,
we also measure the average pairwise distance between
the true LCA(s) and the derived LCA(s) in G∗. This
detailed measurement is desirable because it often helps
us to decide which of methods is better even when their
LCA scores are the same.

• Large scale systematic evaluation. We systematically
evaluated LIMetric with goodware that we have ground
truth. For straight line lineage, we collected three kinds
of datasets: 1) contiguous revisions from a version
control system with highly varying time gap between
adjacent commits (<10 minutes to over a month)—



371 revisions from 3 programs representing 4 years
of combined history, 2) released versions distributed to
end users, meaning that experimental features that con-
tiguous revisions may have are excluded—271 releases
from 5 programs representing 55 years of combined
history, and 3) actual released binary programs from
deb or rpm package files where we do not have
any control over the compiling process—355 releases
from 7 programs representing 40 years of combined
history. Regarding DAG lineage experiments, we down-
loaded revision histories that have multiple branching
and merging points—780 revisions from 10 programs
representing 11 years of combined history.
We also examined the effectiveness of different exper-
iment policies: 1) whether we infer the root/earliest
revision or use the given real root revision, and 2)
whether we rely on pseudo timestamp, real timestamp,
or nothing. The second policy is only for DAG lineage.

• Challenging problems. We investigate error cases in
G constructed by LIMetric and highlight some of the
difficult cases where LIMetric failed to recover the
correct evolutionary relationships. We also discuss what
challenging problems need to be addressed to achieve
higher accuracy in software lineage inference.

II. OVERVIEW

Our goal is to systematically explore the entire design
space illustrated in Figure 1 to understand the advantages
and disadvantages of existing techniques for inferring soft-
ware lineage. We have built LIMetric for systematic inves-
tigation on software lineage in three different scenarios: 1-
straight line lineage (§II-C), k-straight line lineage (§II-D),
and directed acyclic graph (DAG) lineage (§II-E).

A. Software Features for Software Lineage

We evaluate the accuracy of software lineage inference
on diverse input datasets that have different characteristics:
contiguous revisions, released versions, released binaries,
and DAG-like revisions. Given a set of binary programs P ,
various features fi are extracted from each program pi ∈ P
to evaluate different abstractions of binary programs. Source
code or metadata such as comments, commit messages or
debugging information is not used as we are interested in
results in security scenarios where source code is typically
not available, e.g., computer forensics, proprietary software,
and malware.

We would like to evaluate existing approaches for ab-
stracting binary programs in idealized settings, meaning
that we have reliable feature extraction techniques. There
are mainly three program analysis methods: syntax-based
analysis, static analysis, and dynamic analysis. In this study,
we leave dynamic analysis-based features out of our scope
and include techniques using only syntax-based analysis and
static analysis. The limitation with static analysis comes

from the difficulty of getting precise disassembly outputs
from binary programs [17, 19]. In order to exclude the
errors introduced at the feature extraction step and focus on
evaluating the performance of a software lineage inference
algorithm, we also leverage assembly obtained using gcc
-S (not source code itself) to obtain basic blocks more
accurately. Note we use this to simulate what the results
would be with an ideal disassembler, in line with our goal
of understanding the limits of the selected approaches.

1) Using Previous Observations on Software Evolution:
Previous work analyzed software release history to under-
stand the software evolution process. It has been often
observed that program size and complexity tend to increase
as new revisions are released [10, 18, 28]. This observation
also carries over to security scenarios, e.g., the complexity
of malware is likely to grow as new variants appear [7].

We measured code section size, file size, and code com-
plexity to assess how useful these features are in inferring
lineage of binary programs.
• Section size: LIMetric first identifies executable sec-

tions in binary code, typically the .text sections,
which contain executable program code, and calculates
the total size.

• File size: Besides the section size, LIMetric also cal-
culates the file size, including code and data.

• Cyclomatic complexity: Cyclomatic complexity [22]
is a common metric that indicates code complexity by
measuring the number of linearly independent paths.
From the control flow graph (CFG) of a program, the
complexity M is defined as:

M = E −N + 2P

where E is the number of edges, N is the number of
nodes, and P is the number of connected components
of the CFG.

2) Using Syntax-based Feature: Although syntax-based
analysis may lack semantic understanding of a program,
previous work has shown its effectiveness on classifying
unpacked binary code. Indeed, n-gram analysis is widely
adopted to software similarity detection, e.g., [13, 14, 16,
25]. The benefit of syntax-based analysis is that it is fast.
This is because it does not require disassembling binary
code.
• n-grams: An n-gram is a consecutive subsequence of

n items in a sequence. From the identified executable
sections, LIMetric extracts program code in a hexadec-
imal format, then n-grams are obtained by sliding a
window of n-bytes over the extracted byte sequence of
program code. For example, Figure 2(b) shows 4-grams
extracted from Figure 2(a).

3) Using Static Features: Existing work utilized more
semantically rich features by disassembling binary programs
(a hexadecimal byte sequence) to produce assembly code.



8b5dd485db750783c42c5b5e5dc383c42c5b5e5de9adf8ffff

(a) Byte sequence of program code

8b5dd485 5dd485db d485db75 85db7507 db750783

750783c4 0783c42c 83c42c5b c42c5b5e 2c5b5e5d

5b5e5dc3 5e5dc383 5dc383c4 c383c42c 5b5e5de9

5e5de91d 5de9adf8 e9adf8ff adf8ffff

(b) 4-grams

mov -0x2c(%ebp),%ebx;test %ebx,%ebx;jne 805e198

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;ret

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;jmp 805da50

(c) Disassembled instructions

mov mem,reg;test reg,reg;jne imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(d) Instructions mnemonics with operands type

mov mem,reg;test reg,reg;jcc imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(e) Normalized mnemonics with operands type

jcc imm;mov mem,reg;test reg,reg

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;jmp imm;pop reg;pop reg;pop reg

(f) Sorted normalized mnemonics with operands type

Figure 2: Example of feature extraction

After constructing a control flow graph (CFG) of a program,
each basic block can be considered as a feature [9]. In order
to maximize the probability to find similar programs, they
also normalized disassembly outputs such that instruction
mnemonics without operands are used [15, 29] or instruction
mnemonics with types of operands such as memory, a
register or an immediate value are considered [24].

In our experiments, we also consider additional normal-
ization steps: normalizing instruction mnemonics and sort-
ing normalized instruction mnemonics. These normalization
steps were motivated by the observations from our analysis
on error cases in constructed lineages using the above
existing techniques. Our results indicate these normalizations
significantly improve lineage inference results.
• Basic blocks consisting of disassembly instructions:

LIMetric disassembles programs and identifies basic
blocks. Each feature indicates a sequence of disas-
sembly instructions in a basic block. For example, in
Figure 2(c), each line is a sequence of instructions in a
basic block; and each line is considered as an individual
feature. This feature set is potentially more semantically
rich than n-grams.

• Basic blocks consisting of instruction mnemonics:
For each disassembly instruction, LIMetric takes an
operation mnemonic and types of operands including
immediate, register and memory. For example, add
$0x2c, %esp is transformed into add imm, reg
in Figure 2(d). By normalizing operands, this feature set
helps us to mitigate errors from syntactical differences,
e.g., changes in offsets and jump target addresses, and
register renaming.

• Basic blocks consisting of normalized mnemonics:
LIMetric also normalizes mnemonics as well. First,
mnemonics for all conditional jumps, e.g., je, jne and
jg, are denoted as jcc because the same branching
condition can be represented by flipped conditional
jumps. For example, program p1 uses cmp eax, 1;
jz address while program p2 has cmp eax, 1;
jnz address with a different jump target address.
Second, LIMetric removes nop since it performs no
operation.

• Basic blocks consisting of sorted normalized
mnemonics: LIMetric considers one more normal-
ization step on the normalized mnemonics feature
set: sorting normalized mnemonics based upon the
mnemonics. This feature set helps us to remove er-
rors caused by instruction reordering. For example,
the instruction sequence mov esi, 1; xor eax,
eax; xor ebx, ebx in program p1 is considered
as the same as the instruction sequence xor ebx,
ebx; mov esi, 1; xor eax, eax in program
p2.

4) Using Multiple Features: Besides considering each
feature set independently, LIMetric utilizes multiple feature
sets to infer lineage. Normalization maximizes the chance to
find similar programs by nullifying minor program changes,
which means normalization can make slightly distinct pro-
grams look the same. This may be problematic when we
construct lineage from a contiguous revision history of a
version control system that often includes commits of minor
tweaks.
• Hybrid feature: LIMetric utilizes multiple features

in order to benefit from both normalized features
and specific features. We call this a hybrid feature.
Specifically, LIMetric first uses normalized features
to accurately identify alike programs by reducing the
distance measurement error caused by minor program
changes; then utilizes specific features to distinguish
fairly similar programs by capturing tiny differences.

B. Distance Metric for Software Lineage

Software evolution is a process of generating a new ver-
sion of software by changing previous versions of software.
Can we infer lineage of binaries by looking at syntactic
features? LIMetric uses the symmetric difference to measure
the distance between p1 and p2 in that the symmetric



difference captures the changes made between p1 and p2
by measuring how many features are added or deleted.

Let f1 and f2 denote two feature sets extracted from p1
and p2, respectively. Then the symmetric difference between
two feature sets f1 and f2 is:

SD(f1, f2) = |(f1 ∪ f2)�(f1 ∩ f2)| (1)

which denotes the cardinality of the set of features which
are in either f1 or f2 but not in the intersection of f1 and
f2. The symmetric difference basically measures the size of
unique features in p1 and p2.

Other distance metrics instead of the symmetric difference
may be considered for lineage inference as discussed in §V.

C. 1-Straight Line Lineage

The first scenario that we have investigated is 1-straight
line lineage, i.e., a program source tree that has no branch-
ing/merging history. This is a common development history
for smaller programs.

Software lineage inference in this setting is purely a prob-
lem of determining temporal ordering. Given N unlabeled
revisions of a program p, the goal is to output a label “1”
for the 1st revision, “2” for the 2nd revision, and so on.
For example, if we are given 100 revisions of a program p
and we have no timestamp of the revisions (or 100 revisions
are randomly permuted), we want to rearrange them in the
correct order starting from the 1st revision p1 to the 100th
revision p100.

1) Identifying the Root Revision: In order to identify
the first revision or the root revision that has no parent in
lineage, we explore two different choices: (i) inferring the
root/earliest revision and (ii) using the real root revision from
the ground truth.

LIMetric picks the root revision based upon Lehman’s
observation [18]. The revision that has the minimum code
complexity (the 2nd software evolution law) and the min-
imum size (the 6th software evolution law) is selected as
the root revision. Based on Lehman, the hypothesis is that
developers are likely to add more code to previous revisions
rather than delete other developers’ code, which can increase
code complexity and/or code size. This is also reflected in
security scenarios, e.g., malware authors are also likely to
add more modules to make it look different to bypass anti-
virus detection, which leads to high code complexity [7].

We also evaluate LIMetric with the real root revision given
from the ground truth in case the inferred root revision was
not correct. By comparing the accuracy of lineage with the
real root revision to the accuracy of lineage with the inferred
root revision, we can assess the importance of identifying
the correct root revision.

2) Inferring Order: From the selected root revision, LI-
Metric greedily picks the ordering by choosing the closest
revision in terms of the symmetric difference as the next

revision. Suppose we have three contiguous revisions: p1,
p2, and p3. One hypothesis is that the symmetric difference
between p1 and p2 is smaller than the symmetric difference
between p1 and p3. This hypothesis follows logically from
Lehman’s software evolution laws. In other words, the
symmetric difference between two adjacent revisions would
be smaller.

There may be cases where the symmetric differences
between two different pairs are the same, i.e., a tie. Suppose
SD(p1, p2) = SD(p1, p3). Then both p2 and p3 become
candidates for the next revision of p1. Compared to the
use of specific features like n-grams, the use of normalized
features have more chances to have more ties because of the
information loss.

LIMetric needs a way to break ties. LIMetric utilizes
more specific features in order to break ties more correctly
(see §II-A4). For example, if the symmetric differences
using sorted normalized mnemonics are the same, then the
symmetric differences using normalized mnemonics are used
to break a tie. If two pairs still have the same symmetric
difference, instruction mnemonics, disassembly instructions,
and then n-grams are used to break a tie.

3) Handling Outliers: As an optional step, LIMetric
handles outliers in our recovered ordering, if any. Since
LIMetric constructs lineage in a greedy way, if one revision
is not selected mistakenly, that revision may not be selected
until the very last round. Suppose we have 5 revisions: p1,
p2, p3, p4, and p5. If LIMetric falsely selects p3 as the next
revision of p1 (p1 → p3) and SD(p3, p4) < SD(p3, p2), then
p4 will be chosen as the next revision (p1 → p3 → p4). It
is likely that SD(p4, p5) < SD(p4, p2) holds because p4 and
p5 are neighboring revisions, and then p5 will be selected
(p1 → p3 → p4 → p5). The probability of selecting p2 is
getting lower and lower if we have more revisions. At last
p2 is added as the last revision (p1 → p3 → p4 → p5 → p2)
and becomes an outlier.

In order to detect outliers, LIMetric monitors the symmet-
ric difference between every two adjacent pairs. An outlier
can cause a peak of the symmetric difference (see Figure 8
for an example). In our example, SD(p5, p2) is likely to be
higher than the symmetric difference between other pairs.

If any possible outlier is identified by looking at a
peak, then the possible outlier is moved either before or
after the closest revision where the symmetric difference is
minimized. Suppose p3 is the closest revision to p2. LIMetric
compares SD(p1, p3) (the gap before the closest revision)
with SD(p3, p4) (the gap after the closest revision), then
insert p2 to the bigger gap to minimize overall symmetric
difference. If SD(p3, p4) of neighboring revisions is smaller
than SD(p1, p3), we have p1 → p2 → p3 → p4 → p5.

4) Lineage Quality Metrics: We use dates of commit
histories and version numbers as the ground truth of ordering
G∗ = (N,A∗), and compare the recovered ordering by
LIMetric G = (N,A) with the ground truth to measure
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(b) Lineage 2

Figure 3: Inversions and edit distance to monotonicity

how close G is to G∗.
The accuracy of the constructed lineage graph G is

measured by two metrics: number of inversions and edit
distance to monotonicity. An inversion happens if LIMetric
gives a wrong ordering for a chosen pair of revisions. The
total number of inversions is the number of wrong ordering
for all

(|N |
2

)
pairs. The edit distance to monotonicity is

the minimum number of revisions that need to be removed
to make the remaining nodes in the lineage graph G in
the correct order. The longest increasing subsequence (LIS)
can be found in G, which is the longest (not necessarily
contiguous) subsequence in sorted order. Then the edit
distance to monotonicity is calculated by |N |−|LIS|, which
depicts how many nodes are out-of-place in G.

For example, we have 5 revisions of a program and
LIMetric outputs lineage 1 in Figure 3a and lineage 2 in
Figure 3b. Lineage 1 has 1 inversion (a pair of p3 − p2)
and 1 edit distance to monotonicity (delete p2). Lineage 2
has 3 inversions (p3 − p2, p4 − p2, and p5 − p2) and 1
edit distance to monotonicity (delete p2). As shown in both
cases, the number of inversions can be different even when
the edit distance to monotonicity is the same.

D. k-Straight Line Lineage

We consider k-straight line lineage where we have a
mixed dataset of k different programs instead of a single
program, and each program has straight line lineage.

For k-straight line lineage, LIMetric first performs clus-
tering on a given dataset P to group the same (similar)
programs into the same cluster Pk ⊆ P . Programs are
similar if D(pi, pj) 5 t where D(·) means a distance
measurement between two programs and t is a distance
threshold to be considered as a group. After we isolate
distinct program groups each other, LIMetric identifies the
root/earliest revision p1k and infers straight line lineage for
each program group Pk using the straight line lineage
method. We denote the r-th revision of the program k as
prk.

Given a collection of programs and revisions, previous
work shows that clustering can effectively separate them [3,
12, 13, 29]. Based upon existing work, LIMetric performs
clustering to find variants using the Jaccard distance. The
Jaccard distance between two sets f1 and f2 is defined as
follows:

JD(f1, f2) = 1− |f1 ∩ f2|
|f1 ∪ f2|

For example, JD(f1, f2) = 0 when f1 and f2 are identical;
on the other hand, JD(f1, f2) = 1 if f1 and f2 have no shared
features.

LIMetric uses hierarchical clustering because the number
of variants k is not determined in advance. Other clustering
methods like k-means clustering require that k is set at the
beginning. LIMetric groups two programs if JD(f1, f2) 5 t
where t is a distance threshold (0 5 t 5 1). In order to
decide an appropriate distance threshold t, we explore entire
range of t and find the value where the resulting number of
clusters becomes stable (see Figure 10 for an example).

E. Directed Acyclic Graph Lineage

The third scenario we studied is directed acyclic graph
(DAG) lineage. This generalizes straight line lineage to
include branching and merging histories. Branching and
merging are common in large scale software development
because branches allow developers to modify and test code
without affecting others.

In a lineage graph G, branching is represented by a node
with more than one outgoing arcs, i.e., a revision with
multiple children. Merging is denoted by a node with more
than one incoming arcs, i.e., a revision with multiple parents.

1) Identifying the Root Revision: In order to identify the
root revision in lineage, we explore two different choices:
(i) inferring the root/earliest revision and (ii) using the real
root revision from the ground truth as discussed in §II-C1.

2) Building Spanning Tree Lineage: LIMetric builds (di-
rected) spanning tree lineage by greedy selection. This step
is similar to, but different from the ordering recovery step
of the straight line lineage method. In order to recover
an ordering, LIMetric only allows the last revision in the
recovered lineage G to have an outgoing arc so that the
lineage graph becomes a straight line. For DAG lineage,
however, LIMetric allows all revisions in the recovered
lineage G to have an outgoing arc so that a revision can
have multiple children.

For example, given three revisions p1, p2, and p3, if p1 is
selected as a root and SD(p1, p2) < SD(p1, p3), then LIMet-
ric connects p1 and p2 (p1 → p2). If SD(p1, p3) < SD(p2, p3)
holds, p1 will have another child p3 and a lineage graph
looks like the following:

p1

p2 p3

We evaluate three different policies on the use of a
timestamp in DAG lineage: no timestamp, the pseudo times-
tamp from the recovered straight line lineage, and the real



timestamp from the ground truth. Without a timestamp, the
revision pr to be added to G is determined by the minimum
symmetric difference min{SD(pt, pr) : pt ∈ N̂ , pr ∈ N̂ c}
where N̂ ⊆ N represents a set of nodes already inserted
into G and N̂ c denotes a complement of N̂ ; and an arc
(pt, pr) is added. However, with the use of a timestamp, the
revision pr ∈ N̂ c to be inserted is determined by the earliest
timestamp and an arc is drawn based upon the minimum
symmetric difference. In other words, we insert nodes in
the order of timestamps.

3) Adding Non-Tree Arcs: While building (directed)
spanning tree lineage, LIMetric identifies branching points
by allowing the revisions pt ∈ N̂ to have more than one
outgoing arcs—revisions with multiple children. In order to
pinpoint merging points, LIMetric adds non-tree arcs also
known as cross arcs to the spanning tree lineage.

For every non-root node pi, LIMetric identifies a unique
feature set ui that does not come from its parent pj , i.e., ui =
{x : x ∈ f i and x 6∈ f j}. Then LIMetric examines if ui and
fk extracted from pk ∈ N(k 6= i, j) have common features,
and adds a non-tree arc from pk to pi, if any. Consequently,
pi becomes a merging point of pj and pk and a lineage graph
looks like the following:

pj pk

pi

After adding non-tree arcs, LIMetric outputs DAG lineage
showing both branching and merging.

4) Lineage Quality Metrics: We propose measuring the
accuracy of the constructed DAG lineage graph by two
metrics: number of LCA mismatches and average pairwise
distance to true LCA. Note that an inversion is a special case
of an LCA mismatch because querying the LCA of x and y
in a straight line is the same as asking which one of x and
y comes first.

We define SLCA(x, y) to be the set of LCAs of x and
y because there can be multiple LCAs. For example, in
Figure 4, SLCA(p4, p5) = {p2, p3} while SLCA(p6, p7) =
{p4}. Given SLCA(x, y) in G and the true SLCA∗(x, y)

p1

p2 p3

p4 p5

p6 p7

Figure 4: Lowest common ancestors

in G∗, we can evaluate the correct LCA score of (x, y)
C(SLCA(x, y), SLCA∗(x, y)) in the following four different
ways.

(i) 1 point (correct) if SLCA(x, y) = SLCA∗(x, y)
(ii) 1 point (correct) if SLCA(x, y) ⊆ SLCA∗(x, y)

(iii) 1 point (correct) if SLCA(x, y) ⊇ SLCA∗(x, y)
(iv) 1− JD(SLCA(x, y), SLCA∗(x, y)) point

Then the number of LCA mismatches is

|N ×N | −
∑

(x,y)∈N×N

C(SLCA(x, y), SLCA∗(x, y)).

The 1st policy is sound and complete, i.e., we only consider
exact match of SLCA. However, even small errors can lead
to a large number of LCA mismatches. The 2nd policy is
sound, i.e., every node in SLCA is indeed a true LCA (no
false positive). Nonetheless, including any extra node will
result in a mismatch. The 3rd policy is complete, i.e., SLCA
must contain all true LCAs (no false negative). However,
missing any true LCA will result in a mismatch. The 4th
policy uses the Jaccard distance to measure dissimilarity
between SLCA and SLCA∗. In our evaluation, LIMetric
followed the 4th policy since it allows us to attain a more
fine-grained measure.

In the case of an LCA mismatch, i.e., C(SLCA, SLCA∗) 6=
1, we also propose a metric to measure the distance between
the true LCA(s) and the reported LCA(s). For example,
if LIMetric falsely reports p5 as an LCA of p6 and p7

in Figure 4, then the pairwise distance to true LCA is 2
(= distance between p4 and p5). Formally, let dist(u, v)
represent the distance between nodes u and v in the ground
truth G∗. Given SLCA(x, y) and SLCA∗(x, y), we define the
pairwise distance to true LCA D(SLCA(x, y), SLCA∗(x, y))
to be ∑

(l,l∗)∈SLCA(x,y)×SLCA∗(x,y)

dist(l, l∗)
|SLCA(x, y)× SLCA∗(x, y)|

and the average pairwise distance to true LCA to be∑
(x,y)∈A′

D(SLCA(x, y), SLCA∗(x, y))

S
,

where S equals to |{(x, y) ∈ N ×N s.t. C(SLCA(x, y),
SLCA∗(x, y)) 6= 1}|.

III. IMPLEMENTATION

LIMetric is implemented using C (2.5 KLoC) and
IDAPython plugin (100 LoC). We use the IDA Pro dis-
assembler1 to disassemble binary programs and to identify
basic blocks. As discussed in §II-A, gcc -S output is used
to compensate the errors introduced at the disassembling
step. For the scalability reason, we use feature hashing
technique [13, 27] to encode extracted features into bit-
vectors.

1http://www.hex-rays.com/products/ida/index.shtml
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Figure 5: Software lineage inference overview

Let bv1 and bv2 denote two bit-vectors generated from f1
and f2 using feature hashing. Then the symmetric difference
in Equation 1 can be calculated by:

SDbv(bv1, bv2) = S(bv1 ⊗ bv2) (2)

where ⊗ denotes bitwise-XOR and S(·) means the number
of bits set to one. The use of fast bitwise operations on bit-
vectors instead of slow set operations allows LIMetric to
perform experiments with a number of variables quickly.

IV. EVALUATION

We systematically explored all the design spaces in Fig-
ure 1 with a variety of datasets using LIMetric as depicted
in Figure 5.

A. 1-Straight Line Lineage

1) Datasets: For 1-straight line lineage experiments, we
have collected three different kinds of datasets: contiguous
revisions, released versions, and actual release binary files.
• Contiguous Revisions: Using a commit history from

a version control system, e.g., subversion and git, we
downloaded contiguous revisions of a program. The
time gap between two adjacent commits varies a lot,
from <10 minutes to more than a month. We excluded
some revisions which changed only comments because
they did not affect the resulting binary programs.

Programs # revisions First rev Last rev

memcached 124 2008-10-14 2012-02-02

redis 158 2011-09-29 2012-03-28

redislite 89 2011-06-02 2012-01-18

Table I: Datasets of contiguous revisions

In order to set up idealized experiment environments,
we compiled every revision with the same compiler
and the same compiler options. In other words, we
excluded variations that can come from the use of
different compilers.

• Released Versions: We downloaded only released ver-
sions of a program meant to be distributed to end users.
For example, Subversion maintains them under the
tags folder. The difference with contiguous revisions

is that contiguous revisions may have program bugs
(committed before testing) or experimental function-
alities which would be excluded in released versions.
In other words, released versions are more controlled
datasets. We also compiled source code with the same
compiler and the same compiling options for ideal
settings.

Programs #
releases

First release Last release

Ver Date Ver Date

grep 19 2.0 1993-05-22 2.11 2012-03-02

nano 114 0.7.4 2000-01-09 2.3.1 2011-05-10

redis 48 1.0 2009-09-03 2.4.10 2012-03-30

sendmail 38 8.10.0 2000-03-03 8.14.5 2011-05-15

openssh 52 2.0.0 2000-05-02 5.9p1 2011-09-06

Table II: Datasets of released versions

• Actual Release Binaries: We collected binary files (not
source code) of released versions from rpm or deb
package files. The difference is that we did not have
any control over the compiling process of the program,
i.e., different programs may be compiled with different
versions of compilers and/or optimization options. This
dataset is a representative of real-world scenarios where
we do not have any information about development
environments.

Programs #
releases

First release Last release

Ver Date Ver Date

grep 37 2.0-3 2009-08-02 2.11-3 2012-04-17

nano 69 0.7.9-1 2000-01-24 2.2.6-1 2010-11-22

redis 39 0.094-1 2009-05-06 2.4.9-1 2012-03-26

sendmail 41 8.13.3-6 2005-03-12 8.14.4-2 2011-04-21

openssh 75 3.9p1-2 2005-03-12 5.9p1-5 2012-04-02

FileZilla 62 3.0.0 2007-09-13 3.5.3 2012-01-08

p7zip 32 0.91 2004-08-21 9.20.1 2011-03-16

Table III: Datasets of actual released binaries

2) Results: What selection of features provides the best
lineage graph with respect to the number of inversions and
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Figure 6: File size and complexity for contiguous revisions

memcached redis redislite

# Inversion ED # Ties # Inversion ED # Ties # Inversion ED # Ties

Section size 357 (95.3%) 48 34 (12/22) 57 (99.5%) 28 31 (13/18) 47 (98.8%) 19 20 (11/9)

File size 171 (97.8%) 39 13 (9/4) 93 (99.3%) 36 31 (17/14) 50 (98.7%) 21 9 (3/6)

2-grams 38 (99.5%) 17 2 (2/0) 783 (93.7%) 55 21 (10/11) 134 (96.6%) 21 3 (1/2)

4-grams 24 (99.7%) 11 0 (0/0) 50 (99.6%) 25 0 (0/0) 45 (98.9%) 17 0 (0/0)

8-grams 92 (98.8%) 15 0 (0/0) 30 (99.8%) 17 1 (1/0) 46 (98.8%) 18 0 (0/0)

16-grams 60 (99.2%) 14 0 (0/0) 40 (99.7%) 21 0 (0/0) 131 (96.7%) 19 0 (0/0)

Instructions 233 (96.9%) 31 6 (2/4) 304 (97.6%) 58 6 (4/2) 208 (94.7%) 27 7 (2/5)

Mnemonics 75 (99.0%) 6 9 (4/5) 26 (99.8%) 18 29 (15/14) 13 (99.7%) 5 8 (6/2)

Normalized 75 (99.0%) 5 10 (6/4) 26 (99.8%) 17 30 (17/13) 7 (99.8%) 7 10 (5/5)

Hybrid 0 (100%) 0 0 (10/0, 0/0) 15 (99.9%) 8 0 (26/4, 0/0) 3 (99.9%) 3 0 (8/1, 0/0)

Table IV: Lineage accuracy for contiguous revisions (Percentage in inversion columns denotes accuracy.)

the edit distance to monotonicity? We evaluated different
features sets on diverse datasets.
• Contiguous Revisions: In order to identify the first

revision of each program, code complexity and code
size of every revision were measured. As shown in
Figure 6, both file size and cyclomatic complexity
generally increased as new revisions were released.
For these three datasets, the first/root revisions were
correctly identified by selecting the revision that had
the minimum file size and cyclomatic complexity.
Lineage for each program was constructed as described
in §II-C. The accuracy results including the number of
inversions, the edit distance to monotonicity, and the
number of ties are shown in Table IV. The numbers
in parentheses in tie columns denote the number of
correct/wrong random guessing in case of ties.
Section/file size achieved high accuracy from 95.3% to
99.5%. However, there were many ties, which might
increase/decrease the accuracy depending on random
guessing choices.
n-grams over byte sequences generally achieved better

accuracy; however, 2-grams (small size of n) and 16-
grams (big size of n) were relatively unreliable features,
e.g., 6.3% inversion error in redis and 3.3% inversion
error in redislite. In our experiments, n=4 bytes
worked reasonably well for these three datasets.
The usage of disassembly instructions had up to 5.3%
inversion error in redislite. Most errors came
from syntactical differences, e.g., changes in offsets
and jump target addresses. After normalizing operands,
instruction mnemonics with operands types decreased
the errors substantially, e.g., from 5.3% to 0.3%.
With additional normalization, normalized instruction
mnemonics with operands types achieved the same or
better accuracy. Note that more normalized features can
result in better or worse accuracy because there may be
more ties where random guessing is involved.
In order to break ties, more specific features were used
in the hybrid feature. Regarding the hybrid feature,
correct/wrong tie breaks using specific features are also
presented. For example, 10/0, 0/0 at the hybrid feature
row for memcached means 10 times of correct tie
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Figure 7: Releases and the accumulated symmetric difference of released versions

grep nano redis sendmail openssh

# Inversion ED # Inversion ED # Inversion ED # Inversion ED # Inversion ED

Section size 21 (87.7%) 6 86 (98.7%) 26 10 (99.1%) 6 0 (100%) 0 42 (96.8%) 12

File size 4 (97.7%) 4 59 (99.1%) 23 11 (99.0%) 7 24 (96.6%) 10 18 (98.6%) 9

2-grams 29 (83.0%) 8 26 (99.6%) 9 324 (70.0%) 29 592 (15.8%) 30 695 (47.6%) 39

4-grams 3 (98.3%) 3 10 (99.8%) 6 6 (99.4%) 3 1 (99.9%) 1 5 (99.6%) 5

8-grams 2 (98.8%) 2 8 (99.9%) 5 17 (98.4%) 5 1 (99.9%) 1 5 (99.6%) 5

16-grams 2 (98.8%) 2 16 (99.8%) 7 15 (98.6%) 4 1 (99.9%) 1 5 (99.6%) 5

Instructions 38 (77.8%) 5 15 (99.8%) 10 29 (97.3%) 11 9 (98.7%) 5 14 (98.9%) 8

Mnemonics 0 (100%) 0 6 (99.9%) 5 5 (99.5%) 4 5 (99.3%) 1 2 (99.9%) 2

Normalized 0 (100%) 0 4 (99.9%) 4 5 (99.5%) 4 5 (99.3%) 1 3 (99.8%) 3

Hybrid 0 (100%) 0 1 (99.9%) 1 1 (99.9%) 1 5 (99.3%) 1 3 (99.8%) 3

Table V: Lineage accuracy for released versions (Percentage in inversion columns denotes accuracy.)



breaks using more specific features and 0 times of
wrong tie breaks, and 0 times of correct guesses and 0
times of wrong guesses. This showed the effectiveness
of using hybrid feature for breaking ties.

• Released Versions: Figure 7 shows the accumulated
symmetric difference between two neighboring re-
leases, and major release versions are marked with
version numbers and in different colors.
The first/root revisions were also correctly identified
by selecting the revision that had the minimum section
size. Table V shows the accuracy of lineage inference
using different feature sets. Sometimes simple feature
sets, e.g., section/file size achieved higher accuracy than
semantically rich feature sets (requiring more expen-
sive process), e.g., instruction sequences. For example,
lineage inference with section size yielded even 100%
accuracy while lineage inference with instructions got
98.7% only in sendmail. Like the experiments on
contiguous revisions, 2-grams performed worse in the
experiments on released versions, e.g., 15.8% accuracy
in sendmail. Among various feature sets, the hybrid
feature outperformed other feature sets.

• Actual Release Binaries: The first/root revisions for
nano and openssh were correctly identified by se-
lecting the revision that had the minimum section
size. For the other five datasets, we performed the
experiments both with the wrong inferred root and with
the correct root given from the ground truth.
Overall accuracy of constructed lineage was fairly high
across all the datasets as shown in Table VI even though
we did not control the variables of the compiling pro-
cess. One possible explanation is that closer revisions
(developed around the same time) might be compiled
with the same version of compiler (available around the
same time).
It was confirmed that lineage inference can be highly
affected by the root selection step. For example, LI-
Metric picked a wrong revision as the first revision
in FileZilla, which resulted in 51.6% accuracy;
in contrast, the accuracy increased to 99.8% with the
correct root revision.

3) Case Study:
• Outlier: Without handling outliers, LIMetric had 70

inversions and 1 edit distance for the contiguous revi-
sions of memcached. The error came because the 53rd
revision was incorrectly located at the end of lineage
due to the nature of greedy selection as we discussed
in §II-C3. Figure 8 shows the symmetric differences
between two adjacent revisions in the recovered lineage
before we process outliers. The outlier caused a peak
of the symmetric difference at the rightmost of the
Figure 8. LIMetric identified such possible outliers by
looking at peaks, then generated perfect lineage of
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Figure 8: An outlier in memcached

memcached after handling the outlier.
• Reverting to the previous revision: A revision adding

new functionalities is sometimes followed by stabiliz-
ing steps including bug fixes. Bug fixes might be done
by reverting to the previous revision, i.e., undoing the
modifications of code.
Regression of code is in fact a challenging problem in
software lineage inference. For example, the errors in
the constructed lineage for redislite occurred at
the following revisions:

p31 p33 p32

(a)

p55 p57 p56

(b)

Figure 9: Inversions in redislite

p33 fixed a bug by reverting buggy code introduced at
p32 to the previous code at p31 as in Listing 1:

- if (page->list->right_page == 0) {
- right->right_page = right->←↩

left_page;
- }
- else {
- right->right_page = page->list->←↩

right_page;
- }
+ right->right_page = page->list->right_page←↩

;

Listing 1: Regression of code at p33 in redislite

p57 fixed a bug that sent a wrong struct at p56 by
changing back to the code in the previous revision p55

as in Listing 2:



grep nano redis openssh

Inferred root Real root Inferred root Real root

# Inversion ED # Inversion ED # Inversion ED # Inversion ED # Inversion ED # Inversion ED

Section size 57 (91.4%) 17 75 (88.7%) 18 104 (95.6%) 22 32 (95.7%) 12 35 (95.3%) 15 235 (91.5%) 34

File size 38 (94.3%) 13 36 (94.6%) 12 144 (93.9%) 27 33 (95.6%) 12 37 (95.0%) 12 274 (90.1%) 32

2-grams 148 (77.8%) 22 74 (88.9%) 13 411 (82.5%) 30 333 (55.1%) 25 357 (51.8%) 24 2041 (26.5%) 64

4-grams 30 (95.5%) 11 12 (98.2%) 8 19 (99.2%) 8 50 (93.3%) 11 45 (93.9%) 10 398 (85.7%) 19

8-grams 39 (94.1%) 13 24 (96.4%) 10 10 (99.6%) 5 12 (98.4%) 12 29 (96.1%) 12 146 (94.7%) 22

16-grams 62 (90.7%) 17 54 (91.9%) 15 12 (99.5%) 6 28 (96.2%) 10 23 (96.9%) 9 300 (96.9%) 25

Instructions 88 (86.8%) 18 63 (90.5%) 13 68 (97.1%) 12 30 (96.0%) 10 27 (96.4%) 10 295 (89.2%) 30

Mnemonics 32 (95.2%) 13 13 (98.1%) 9 2 (99.9%) 2 28 (96.2%) 9 24 (96.8%) 8 396 (85.7%) 22

Normalized 25 (96.3%) 10 7 (99.0%) 6 5 (99.8%) 4 28 (96.2%) 9 25 (96.6%) 9 397 (85.7%) 22

Hybrid 26 (96.1%) 10 9 (98.7%) 7 4 (99.8%) 3 30 (96.0%) 11 26 (96.5%) 10 398 (85.7%) 23

sendmail FileZilla p7zip

Inferred root Real root Inferred root Real root Inferred root Real root

# Inversion ED # Inversion ED # Inversion ED # Inversion ED # Inversion ED # Inversion ED

Section size 121 (85.2%) 24 110 (86.6%) 21 492 (74.0%) 26 489 (74.1%) 25 208 (58.1%) 20 284 (42.7%) 21

File size 123 (85.0%) 22 131 (84.0%) 23 987 (47.8%) 35 840 (55.6%) 45 200 (59.7%) 19 292 (41.1%) 22

2-grams 298 (63.7%) 24 219 (73.3%) 24 1176 (37.8%) 52 1099 (41.9%) 51 314 (36.7%) 26 321 (35.3%) 25

4-grams 184 (77.6%) 16 141 (82.8%) 15 920 (51.4%) 28 8 (99.6%) 6 200 (59.7%) 16 12 (97.6%) 6

8-grams 131 (84.0%) 20 104 (87.3%) 18 765 (59.6%) 24 5 (99.7%) 5 197 (60.3%) 16 67 (86.5%) 9

16-grams 32 (96.1%) 15 19 (97.7%) 11 766 (59.5%) 23 3 (99.8%) 3 159 (67.9%) 12 47 (90.5%) 9

Instructions 220 (73.2%) 19 176 (78.5%) 19 768 (59.4%) 24 800 (57.7%) 27 196 (60.5%) 18 138 (72.2%) 15

Mnemonics 185 (77.4%) 20 138 (83.2%) 18 916 (51.6%) 27 5 (99.7%) 5 189 (61.9%) 12 57 (88.5%) 5

Normalized 153 (81.3%) 24 136 (83.4%) 17 916 (51.6%) 27 3 (99.8%) 3 189 (61.9%) 12 57 (88.5%) 5

Hybrid 151 (81.6%) 24 137 (83.3%) 18 915 (51.6%) 26 3 (99.8%) 3 189 (61.9%) 12 57 (88.5%) 5

Table VI: Lineage accuracy for actual release binaries (Percentage in inversion columns denotes accuracy.)

- status = redislite_insert_key(_cs, page->←↩
page, str, length, 1, ←↩
REDISLITE_PAGE_TYPE_FIRST);

+ status = redislite_insert_key(_cs, page, ←↩
str, length, 1, ←↩
REDISLITE_PAGE_TYPE_FIRST);

Listing 2: Regression of code at p57 in redislite

The code was reverted to the previous revision so
that SD(p31, p33) < SD(p31, p32) and SD(p55, p57) <
SD(p55, p56). As a result, inversions happened at p32

and p56. We argue that unless we build a precise
model describing the developers’ reverting activity, no
reasonable algorithm may be able to construct the same
lineage as the ground truth. Rather, the constructed
lineage can be a representation of more “practical”
evolutionary relationships.

Our data indicates that the hybrid feature can achieve over
99% accuracy in idealized settings, and over 83% accuracy
on real-world binaries. Using similar techniques, e.g., for

malware, one cannot expect to do much better.

B. k-Straight Line Lineage

Does having multiple mixed k-straight line lineage soft-
ware affect results? For 2 straight line of lineage, we mixed
memcached and redislite in that both programs have
the same functionality, similar code section sizes, and a
reasonable number of revisions. Figure 10 shows the re-
sulting number of clusters with various similarity threshold.
From 0.5 to 0.8 similarity threshold, the resulting number
of clusters were 2. This means LIMetric can first perform
clustering to divide the dataset into two groups, then build
straight line lineage for each group.

The resulting number of clusters of the mixed dataset
of 3 programs including memcached, redislite, and
redis became stabilized to 3 from 0.5 to 0.8 similarity
threshold, which means they were successfully clustered for
the subsequent straight line lineage building process.
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C. Directed Acyclic Graph Lineage

1) Datasets: We have collected 10 datasets for directed
acyclic graph lineage experiments from github2. We used
github because we know when a project is forked from a
network graph showing the development history as a graph
including branching and merging.

We downloaded DAG-like revisions that had multiple
times of branching and merging histories, and compiled with
the same compilers and optimization options.

Programs # revisions First rev Last rev

http-parser 55 2010-11-05 2012-07-27

libgit2 61 2012-06-25 2012-07-17

redis 98 2010-04-29 2010-06-04

redislite 97 2011-04-19 2011-06-12

shell-fm 107 2008-10-01 2012-06-26

stud 73 2011-06-09 2012-06-01

tig 58 2006-06-06 2007-06-19

uzbl 73 2011-08-07 2012-07-01

webdis 96 2011-01-01 2012-07-20

yajl 62 2010-07-21 2011-12-19

Table VII: Datasets of DAG lineage

2) Results: We set two policies for DAG lineage experi-
ments: the use of timestamp (none/pseudo/real) and the use
of the real root (none/real). The real timestamp implies the
real root so that we explored 3× 2− 1 = 5 different setups.
We used hybrid feature sets for DAG lineage experiments
in that hybrid feature sets were demonstrated to attain the
best accuracy in constructing straight line lineage.

Without having any prior knowledge, as described in Ta-
ble VIII, LIMetric achieved from 60.8% to 89.5% accuracy

2https://github.com/

p17 p18 p19 p20 p21 p22 p23

(a) Ground truth

p17 p18 p19 p20

p21 p22 p23

(b) Constructed lineage

Figure 11: Ground truth and constructed lineage of
http-parser

and the average pairwise distance to true LCA was from 1.3
to 3.0, which means only 3 nodes apart from the true LCA
even when it was wrong. By using the real root revision, the
accuracy increased to from 64.4% to 89.5%. For example,
in case of tig, LIMetric gained about 20% increase of the
accuracy.

Pseudo timestamp means LIMetric first builds straight line
lineage then use the ordering as a timestamp. Since LIMetric
achieved fairly high accuracy in straight line lineage, this
method was expected to have good performance. Surpris-
ingly, the accuracy was worse even with the use of real root
revisions. The reason was that branching made it difficult
to recover the correct ordering because each branch had
been developed in parallel. This resulted in highly inaccurate
(pseudo) timestamps.

By using the real timestamps, LIMetric achieved high
accuracy from 73.5% to 98.3% and the average pairwise
distance to true LCA was from 1.1 to 4.4. This shows that
the recovered DAG lineage was very close to the true DAG
lineage.

3) Case Study:
• Reverting to the previous revision: Figure 11 shows

partial ground truth lineage and constructed lineage by
LIMetric for http-parser. From p17 to p23, ground
truth had a straight line of evolution relationships. The
reason why LIMetric generated an arc from p17 to
p21 was that p21 reverted (removed) code for sup-
porting non-ASCII characters to the previous revision
and became SD(p17, p21) < SD(p20, p21). As discussed
in §IV-A3, reverting is a challenging problem when
software lineage is inferred from binary files.
Figure 12 shows partial ground truth and the con-
structed lineage of webdis. The difference was that
the constructed lineage had an arc from p17 to p27

instead of p26 to p27. This also happened because some
code was reverted.

• Pseudo timestamp: As shown in Table VIII, LI-
Metric with pseudo timestamp performed worse. Each
branch had been developed separately, it was chal-
lenging to recover precise ordering with the straight



Policies http-parser libgit2 redis redislite shell-fm
Time
stamp

Real
Root

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

- - 582 (60.8%) 1.8 439 (76.0%) 2.8 613 (87.1%) 1.4 524 (88.8%) 2.0 1619 (71.5%) 2.2

-
√

528 (64.4%) 1.9 439 (76.0%) 2.8 613 (87.1%) 1.4 507 (89.1%) 2.0 1524 (73.1%) 2.8

Pseudo - 653 (56.0%) 2.2 535 (70.8%) 5.1 706 (85.2%) 1.9 978 (79.0%) 5.0 1893 (66.6%) 2.0

Pseudo
√

599 (59.7%) 2.3 535 (70.8%) 5.1 706 (85.2%) 1.9 627 (86.5%) 1.7 1555 (72.6%) 3.1

Real
√

394 (73.5%) 2.9 285 (84.4%) 2.3 485 (89.8%) 4.4 315 (93.2%) 1.1 1391 (75.5%) 2.2

Policies stud tig uzbl webdis yajl
Time
stamp

Real
Root

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

LCA
Mismatch

Avg
Dist

- - 901 (65.7%) 1.5 552 (66.6%) 2.6 584 (77.8%) 2.2 479 (89.5%) 1.3 479 (74.7%) 3.0

-
√

878 (66.6%) 1.5 225 (86.4%) 1.4 331 (87.4%) 2.6 479 (89.5%) 1.3 479 (74.7%) 3.0

Pseudo - 1307 (50.3%) 7.2 824 (50.2%) 5.8 1342 (48.9%) 7.3 1533 (66.4%) 14.4 769 (59.3%) 5.2

Pseudo
√

1340 (49.0%) 7.1 524 (68.3%) 7.1 964 (63.3%) 8.8 1533 (66.4%) 14.4 751 (60.3%) 5.3

Real
√

389 (85.2%) 1.2 28 (98.3%) 2.0 211 (92.0%) 1.2 256 (94.4%) 1.4 325 (82.8%) 1.9

Table VIII: Lineage accuracy for directed acyclic graph lineage (Percentage in LCA Mismatch columns denotes accuracy.)
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(a) Ground truth
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p24
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p26

p27 p28

p29

(b) Constructed lineage

Figure 12: Ground truth and constructed lineage of webdis

line lineage method. For example, Figure 13 shows
the partial ground truth and the constructed lin-
eage by LIMetric for uzbl with pseudo times-
tamp. LIMetric without timestamp successfully re-
covered the ground truth lineage. However, the use
of pseudo timestamp resulted in poor performance.
The recovered ordering, i.e., pseudo timestamp was
p22, p40, p41, p42, p43, p23, p29, p30, p35, p36. Due to the
imprecise timestamp, the derivation relationships in the
constructed lineage was not accurate.

V. DISCUSSION

In many open source projects and malware, code size
usually grows over time [7, 28]. In other words, addition

p22 p23 p29 p30 p35 p36

p40 p41 p42 p43

(a) Ground truth

p22 p23 p29 p30 p35 p36

p40 p41 p42 p43

(b) Constructed lineage

Figure 13: Ground truth and constructed lineage of uzbl

of new code is preferred to deletion of existing code. This
also holds in our datasets except for major changes followed
by minor cleanups. Differentiating the costs of addition and
deletion helps us to decide a direction of derivation. Suppose
a deletion cost is 2 and an addition cost is 1, i.e., a deletion
is a twice expensive operation. Program pi has a feature set
fi = {m1,m2,m3}, and program pj contains a feature set
fj = {m1,m2,m4,m5}. A direction of evolution pi → pj
has a distance of 4 (=deletion of m3 and addition of m4 and
m5). On the other hand, a direction of evolution pj → pi
has a distance of 5 (=deletion of m4 and m5 and addition
of m3). Consequently, pi → pj is a more plausible scenario.

We evaluated LIMetric with a deletion cost of 2 and an
addition cost of 1 with 10 DAG lineage datasets. Overall
average accuracy remained almost the same, e.g., from
75.74% to 75.28%. One possible reason was that one line
modification of source code would result in a deletion of
a basic block (feature) and an addition of a basic block



(feature), i.e., 1 modification = 1 deletion + 1 addition. We
leave it as a future work to distinguish a modification with
a deletion and an addition.

Correct software lineage inference on a revision history
may not correspond with software release date lineage. For
example, as shown in Figure 7b, a development branch
of nano-1.3 and a stable branch of nano-1.2 are
developed in parallel. In straight line lineage, LIMetric infers
software lineage consistent with a revision history.

In our experiments, we used the symmetric difference as a
distance metric. Other distance metrics can be considered as
alternatives. For example, the Jaccard distance can be used
to calculate dissimilarity between two feature sets. However,
the downside of the Jaccard distance is that the same amount
of code change can yield different distances depending on
the size of feature sets, and the Jaccard distance does not
indicate which features are added or deleted unlike the
symmetric difference.

VI. RELATED WORK

Existing research analyzed open source projects [28] and
Linux kernel [10] to understand evolutionary relationship
among programs, and studied the security implication of
software evolution on known vulnerabilities in Firefox [21].
Empirical study was performed to evaluate the effects of
branching in software development on software quality with
Windows Vista and Windows 7 [26].

In order to describe evolutionary relationships among
malware, empirical study on malware metadata including
text descriptions and dates collected by an anti-virus vendor
was performed [11], phylogeny of remote code injection
exploits was constructed [20], and phylogeny models were
generated using n-perms of code [14]. Researchers used
derivation relationships among malware to find new variants
of well known malware [8].

There have been many approaches to abstract binary
programs. Syntax-based methods identifies code sections in
a program and extracts n-grams features on byte sequences
of program code, e.g., [13, 14, 16, 25]. Static analysis
methods translates machine code into assembly code and
use instructions [15, 24, 29] and basic blocks [9]. Dynamic
analysis methods collect information about binary programs
by monitoring program executions at run time [4, 23].

VII. CONCLUSION

In this paper, we systematically explored the entire design
space in software lineage inference. We built LIMetric to
control a number of variables and performed over 400 differ-
ent experiments on large scale real-world programs—1,777
releases for a combined 110 years of development history.
We built software lineage on two types of lineage: straight
line lineage and directed acyclic graph (DAG) lineage.
We also proposed four metrics to measure lineage quality:
number of inversions and edit distance to monotonicity for

straight line lineage, and number of LCA mismatches and
average pairwise distance to true LCA for DAG lineage.
We showed that LIMetric effectively extracted software
evolutionary relationships among binary programs with high
accuracy.
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