
Theory and Techniques for Automated
Generation of Vulnerability-Based Signatures

David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha

Abstract—In this paper, we explore the problem of creating vulnerability signatures. A vulnerability signature is based on a program

vulnerability and is not specific to any particular exploit. The advantage of vulnerability signatures is that their quality can be

guaranteed. In particular, we create vulnerability signatures from the vulnerable program itself, such that they are guaranteed to have

zero false positives by construction. We show how to automate signature creation for vulnerabilities that can be detected by a runtime

monitor. There is no one right signature representation for a vulnerability. We introduce a formalism and way of thinking about

vulnerability signature generation that is analysis centric instead of representation specific. In particular, a signature can be

represented in many ways, from using regular expression to using a full Turing-complete language. Previous systems have mostly

focused on a particular point in the design space. We show how to approximate the language of a vulnerability in many different

language classes, each of which has unique properties and benefits, by performing analysis on the program binary and vulnerability.

Our approach also considers multiple-path vulnerabilities. A multiple-path vulnerability is a vulnerability that can be exploited through

several different code paths. For example, a Web server may have a vulnerability in a URL handling routine that is called for many

different types of requests. We demonstrate techniques that can create signatures that cover multiple paths an exploit may take. We

have had to develop new algorithms to cope with the problem where enumerating vulnerable paths leads to an exponential explosion.

We develop a new approach that captures the logical semantics of multiple vulnerable program paths in Oðn2Þ space (where n is the

size of the program) instead of exponential. We provide a formal definition of a vulnerability signature and investigate the

computational complexity of creating and matching vulnerability signatures. We systematically explore the design space of vulnerability

signatures. We also provide specific techniques for creating vulnerability signatures in a variety of language classes. In order to

demonstrate our techniques, we have built a prototype system. Our experiments show that we can, using a single exploit, automatically

generate a vulnerability signature as a regular expression, as a small program, or as a system of constraints. We demonstrate

techniques for creating signatures of vulnerabilities that can be exploited via multiple program paths. Our results indicate that our

approach is a viable option for signature generation, especially when guarantees are desired.

Index Terms—Vulnerability, vulnerability signature, intrusion detection, intrusion prevention, polymorphic worm, Turing machine

signature, regular expression signature, symbolic signature.

Ç

1 INTRODUCTION

A vulnerability is a type of bug that can be used by an
attacker to alter the intended operation of a software

program in a malicious way. An exploit is an actual input
that triggers a vulnerability, typically with malicious intent
and devastating consequences. One of the most popular and
effective exploit defense mechanisms is signature-based
input filtering. These defense systems are in constant need
of new signatures as new vulnerabilities are discovered.

This paper focuses on automated techniques for gen-
erating sound signatures. We need automated signature
generation techniques because manual signature generation
is slow and error prone. Automated techniques are
important because previously unknown (“zero-day”) or
unpatched vulnerabilities can be exploited orders of

magnitude faster than a human can respond, such as
during a worm outbreak. Automated techniques have the
potential to be more accurate than manual efforts because
vulnerabilities tend to be complex and require intricate
knowledge of details such as realizable program paths and
corner conditions. Understanding the complexities of a
vulnerability has consistently proven to be very difficult for
humans at even the source code level [1], let alone COTS
software at the assembly level.

The task of automatically constructing signatures is

complicated by the fact that there are usually several

different polymorphic exploit variants that can trigger a

software vulnerability [2], [3], [4]. For example, a buffer-

overrun vulnerability in a network service may be triggered

by many different protocol messages. Another example,

sometimes referred to as metamorphism, is that exploit

variants may differ syntactically but be semantically

equivalent [5], [6], e.g., an exploit could use different

assembly instructions that have the same effect.1 Further-

more, it is fairly straightforward for attackers to produce

polymorphic exploit variants using publicly available

morphing tools such as Metasploit [7] and CLET [2]. Thus,

224 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

. D. Brumley and J. Newsome are with Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA 15217.
E-mail: {dbrumley, jnewsome}@cmu.edu.

. D. Song is with the University of California, Berkeley, Soda Hall 675,
UC Berkeley, CA 94720-1776. E-mail: dawnsong@cs.berkeley.edu.

. H. Wang and S. Jha are with the Computer Science Department, University
of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.
E-mail: {hbwang, jha}@cs.wisc.edu.

Manuscript received 8 Sept. 2006; revised 21 May 2007; accepted 13 Aug.
2008; published online 2 Sept. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0128-0906.
Digital Object Identifier no. 10.1109/TDSC.2008.55.

1. Our approach does not need to distinguish between polymorphism
and metamorphism: both are referred to as polymorphism throughout this
paper.

1545-5971/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

to be effective, the signature should be constructed based on the
property of the vulnerability, instead of an exploit (this
observation has been made by others as well [8], [9]).

Since in many cases, signatures are not only automati-
cally generated but also automatically deployed, we would
like generated signatures to have guarantees. In particular,
we would like the signature to have a guaranteed accuracy.
In this paper, we focus on signatures with a zero false-
positive rate so that if they are automatically deployed, they
will not mistakenly block legitimate traffic. We can make
this guarantee because the signature is generated by
extracting out the conditions necessary to exploit a vulner-
ability from the vulnerable program itself. As long as the
analysis is sound, the resulting signature will not have false
positives. For example, in Section 4.2, we introduce a
program with an out-of-bound write vulnerability (Fig. 3).
Our techniques extract out the necessary conditions to
exploit this vulnerability and turn that information into a
signature (shown and discussed in Section 4.4).

We also would like signatures with guaranteed evaluation
efficiency in terms of memory and processing time.
Efficiency is important because signature-based defense
systems may have constrained resources such as memory
or processing power. Since no two sites have the same
requirements, we would like signature generation algo-
rithms that can offer a wide spectrum of different guarantees,
potentially trading off accuracy for efficiency or vice versa.

Our approach, road map, and the central issues. In this
paper, we present a formal approach for reasoning about
and creating vulnerability signatures. The distinguishing
characteristic of a vulnerability signature is that it is based
upon the semantics of the vulnerability and not on
particular characteristics of an exploit. As a result, vulner-
ability signatures are less susceptible to common evasion
methods such as polymorphism. In addition, because
vulnerability signature generation is not based on attacker-
supplied data, generated signatures are immune to recent
attacks where an attacker can mislead the signature
generation mechanism itself [10], [11], [12], [13].

At a high level, the contributions of this paper include
1) a formal basis for creating vulnerability-based signatures
for a wide variety of vulnerabilities, 2) methods for creating
a vulnerability signature in a variety of language classes,
each of which has its own guarantees, and 3) an architecture
for automated vulnerability signature generation given only
a description of the vulnerability and the vulnerable
program binary.

First, we establish a formal basis for automated signature
generation for a large class of vulnerabilities, namely, those
that can be protected against by an execution monitor (EM).
Previous works have created signatures for specific types of
vulnerabilities, including those that can be detected with
dynamic taint analysis [9], [14] and memory protection
schemes [9], [15]. We provide an algorithm and approach
for automatically generating signatures for any vulnerabil-
ities that can be detected by an EM, thus providing a
generalized foundation (Section 3). The formal foundation is
not just of theoretical interest. For example, the foundation
suggests metrics for comparing the accuracy of signatures in
a manner that is not specific to the generation mechanism, as
well as techniques for signature generation itself.

Second, we provide algorithms for creating signatures in
various language classes. At a high level, a signature is a
Boolean function that returns for any input either SAFE or
EXPLOIT. We can write a signature in any language class,
from Turing-complete languages to regular languages. We
explore the trade-offs for representing signatures in each
class. Since each class has unique advantages and guaran-
tees, there is no one single best signature class for all
scenarios. Therefore, it is important to support signature
generation in many different language classes.

We develop a new approach where we can approximate
a signature written in a more powerful language with a less
expressive language in order to get better guarantees on
matching efficiency. For instance, the Vigilante end-to-end
system generates from an execution trace essentially
straight-line programs as signatures [9], which correspond
to our symbolic constraint signatures. We show how to
create signatures in other signature representations, how to
approximate signatures in one language class with regular
expression signatures, and how to handle multiple execu-
tion path vulnerabilities. As shown in Section 4.5, one of the
central problems is how to concisely represent a Turing
machine (TM) signature in a lower class language. Previous
techniques such as forward symbolic execution would often
lead to an exponential blowup when lowering from a
Turing-complete signature to a lower class [16]. We develop
new methods (and proved them correct) that reduce the
size of symbolic signatures from exponential to at most
Oðn2Þ [17] (where n is the size of the program) and, in
practice, nearly linear.

Thus, our techniques address two important design
axes in the automatic vulnerability signature generation
design space: guaranteed soundness and improved effi-
ciency for representing multiple-path vulnerabilities. In
particular, we show how to generate guaranteed sound
signatures in a signature class other than a Turing-
complete language, e.g., sound regular expression signa-
tures. Sound regular expression signatures are of interest
since most commercial signature-based defenses support
regular expression signatures.

Finally, we have implemented our approach. We can
generate guaranteed sound signatures in a variety of
language classes given only the vulnerability specification
and the vulnerable program binary (executable). Our focus
on the binary level has many advantages: 1) most users only
have access to the binary, 2) there may not be time to involve
an application vendor when generating the signature, such
as in the case of zero-day exploits, and 3) by working at the
binary level, the generated signature is precisely faithful to
the vulnerability. Working at the binary level is challenging
since fundamentally, there are only basic integer types, one
globally addressed memory region, goto’s instead of
structural control flow, and no local variables. Our imple-
mentation has addressed these challenges, and we show that
we can make signatures for many different vulnerabilities.
We are the first to automatically generate guaranteed-sound
signatures that cover multiple program paths for exploiting a
single vulnerability. Although some engineering challenges
remain, our evaluation shows that our techniques are an
important step toward automatic generation of accurate and
efficient signatures.

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 225

2 RELATED WORK

Signatures. We generate vulnerability signatures via
binary-program analysis. As shown in Section 3, our
approach can generate a signature for any vulnerability
whose exploits can be recognized by an EM.

Shield proposes a framework for manually creating
vulnerability signatures by modeling network protocols
[8]. Modeling the network protocol can be advantageous
since exploits are often understood in terms of particular
message fields, e.g., an overly long URL. However, Shield
signatures are manually generated. When available, such
protocol information could be used in a complementary
approach where protocol information is used to help guide
static analysis (e.g., provide invariants enforced by the
protocol) during signature generation. Overall, the advan-
tage of binary analysis is that the generated signature is
guaranteed to be faithful to the vulnerability as it appears in
the program.

Vigilante [9] is an end-to-end system that generates
signatures (called filters in Vigilante) that are similar to our
single-path symbolic constraint signatures from an execution
trace. Vigilante shows that this important point in the design
space can be effectively used in an end-to-end defense
system. Our work generalizes the approach to include
vulnerabilities that can be exploited via multiple paths. In
addition, we show how to take an execution trace and
produce a sound regular expression (and other signature
types). Note that Vigilante does not produce regular
expression signatures. Since regular expressions are typically
better suited for network-based defense, our techniques are
likely of interest to Vigilante and similar end-to-end systems.

Crandall et al. propose techniques for identifying tokens
that must appear literally in an input string to exploit a
given vulnerability and use their techniques to perform an
in-depth analysis of several vulnerabilities [18]. However,
they do not actually generate signatures. They conclude that
“token-based byte string signatures composed of smaller
sub-strings are only semantically rich enough to be effective
for content filtering if the vulnerability lies in a part of a
protocol that is not commonly used.” We believe that this
observation is apt; syntactic details of input strings may be
insufficiently general for some vulnerabilities. This obser-
vation motivates the need for generating signatures in more
expressive language classes (than regular languages), such
as our symbolic constraint or TM signatures.

Several researchers have proposed generating signatures
via pattern extraction [4], [19], [20], [21], [22]. These
approaches have the advantage of requiring relatively
inexpensive analysis to generate. However, the down side
of pattern-extraction-based signature generation is that the
vulnerability itself is never analyzed; only exploits supplied
by the attacker are analyzed. As a result, many of these
techniques are either incapable of handling polymorphic
worms [19], [20], [21], [22] or vulnerable in an adversarial
environment [10], [11], [12], [13]. Our techniques, on the
other hand, can provide strong guarantees since the
signature is based on the vulnerability itself.

Symbolic execution and test case generation. One
technique we use is to generate a logical formula represent-
ing a particular vulnerable execution path. A related

problem is bug finding, where program paths are explored
to see if they are vulnerable, such as with DART/CUTE
[23], [24] and EXE [25]. Our problem differs in that we know
where the vulnerability is in the program, as opposed to
trying to discover a new bug. As a result, we have adopted
more efficient techniques for generating formulas that work
backward from the vulnerability point. In particular, we
have proven that the size of our formulas over an entire
(acyclic) program are at most Oðn2Þ in the size of the
program [17], while forward symbolic execution is expo-
nential in the number of program branches. Another
difference is that we use the decision procedure to
enumerate satisfying answers to the generated formulas,
while bug finding generally only cares if a single answer
exists. We currently use STP [26] since it is designed to
model bit-level details, which are commonly important in
binary analysis; however, our methods are not specific to
the decision procedure. In particular, using other decision
procedures that return all satisfying answers would en-
hance the efficiency of our approach. However, we are not
aware of any production-quality decision procedures that
meet these criteria.

Other areas. Although the focus of our work is to protect
vulnerable programs by automatically generating signa-
tures, our approach adopts techniques from nonsecurity-
related research areas such as model checking [27], delta
debugging [28], [29], [30], compilers [31], bug finding,
decision procedures and theorem provers, and program
verification. We show in this paper how these techniques
can be extended or enhanced to analyze binary programs
and produce vulnerability signatures that are capable of
detecting polymorphic exploit variants. In particular, we
use the work of Leino in efficiently computing the weakest
preconditions as a basis for our approach [32]. Barnett and
Leino also provides an alternate approach for calculating
the weakest precondition of unstructured programs by
adding new statements to the guarded command language
(GCL) (e.g., goto) [33].

3 VULNERABILITY SIGNATURES

A vulnerability signature recognizes inputs that exploit a
vulnerability. At a high level, the distinguishing trademark
of a vulnerability signature is that it does not depend on the
behavior of a given exploit. For example, a stack-based
buffer-overflow vulnerability may be exploited in several
ways, including code injection, return-to-libc attacks, or
simply crashing the program. A vulnerability signature is
indifferent to the specifics of the attacks.

In this section, we provide formal definitions for the class
of vulnerabilities for which we create signatures, the
representation classes we consider for signatures, and
how the signature representation classes compare.

3.1 Background and Definitions

Informally, a vulnerability is a “bad thing” that can happen
in a program. A vulnerability signature should match
program inputs that cause the bad thing to happen. In this
section, we formalize the notion of “bad things,” vulner-
abilities, and what types of vulnerabilities are targeted by
our signature generation techniques.

226 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

We adopt the notation from the work of Schneider [34].
Let denote the universe of all finite and infinite execution
sequences. How execution sequences are represented is
unimportant for formalization purposes: common repre-
sentations include program states (which we use in this
paper), system steps, and atomic action sequences. Let �
and � represent a single finite or infinite execution and let
�½::k� represent a finite execution involving the first k steps.
Let �½::k�� represent a finite execution �½::k� followed by � .
Let P ðiÞ : � denote that the execution of P on input i results
in execution �.

The set of “bad things” that we should disallow is
specified in a security policy, which is a Boolean predicate
on the space of program executions, represented as Q. A
target program P defines �P � corresponding to possible
infinite and finite executions of P . A program is safe with
respect to a security policy if 8� 2 �P : Qð�Þ ¼ true.

In this paper, we specifically consider the class of policies
that can be enforced using an EM [34]. EM-enforceable
policies are security policies that can be enforced considering
only a single execution of a program. Typical examples of
EM policies include firewalls, access control policies,
and control flow and memory integrity. In particular, EM-
enforcement mechanisms enforce policies that are safety
properties. A security policyQ is a safety property if

Qð�Þ ¼ false) 9k : 8� 2 : Q �½::k��ð Þ ¼ falseð Þð Þ: ð1Þ

This definition implies thatQ is a safety property if when it
is false, one can prove it false in finite time (i.e., Q is
characterized by a set of finite execution prefixes �½::k�) [34],
[35]. In particular, a violation of a security policy that is a
safety property cannot be “undone” at some point in the
future. This makes sense for EM enforcement since at any step
in the execution, an EM should be able to decide if the current
state violates the policy without considering future execu-
tions (or other executions).

3.2 Vulnerability Signatures for EM-Enforceable
Policies

In this paper, we focus on techniques for generating
vulnerability signatures for vulnerabilities for which ex-
ploits can be recognized by an EM. For simplicity, we use
the term vulnerability to denote this class of vulnerabilities.2

For example, specific previous instances of signatures
generated from EMs include dynamic taint analysis [9],
[14] and memory protection schemes [9], [15]; our approach
can be viewed as a general framework for these schemes.

We focus on generating signatures for a single vulner-
ability. For example, Q may specify control flow integrity
within the program [36], i.e., control flow during execution
acts as intended by the programmer. However, a program
with multiple buffer overflows will violate this property at
multiple places. We will generate a signature for each buffer
overflow independently.

In order to precisely specify a single vulnerability, we
define two auxiliary predicates, the vulnerability condition c
and the vulnerability point vp, which together specify a single

vulnerability as hvp; ci. The vulnerability condition is
satisfied when the security policy is violated:

P ðiÞ : � ‘ cð�Þ ¼ true, Qð�Þ ¼ false: ð2Þ

The vulnerability point is the point where an execution goes
wrong. Equation (1) implies that for all executions such that
Qð�Þ ¼ false, there is a k such that Qð�½::k�Þ ¼ false. We
defined vp as the program instruction corresponding to the
first such k. The pair hvp; ci thus specify all inputs that result in
violating the safety policy at a particular point in the program.

The language of a vulnerability V is characterized by the set
of all input strings x in the domain of the program that
satisfy the vulnerability condition at the vulnerability point:

Vhvp;ci¼
: 8x 2 domðP ÞjP ðxÞ : � ‘ c �½::vp�

� �
¼ true

� �
: ð3Þ

Note that the vulnerability is defined such that c is true at
exactly instruction vp. Inputs that trigger other vulnerabil-
ities before vp will not necessarily be within V.

Given a specification of a single vulnerability hvp; ci, our
goal is to automatically generate a signature S that
recognizes exploits, i.e., members of the language V. We
model a signature as a Boolean function over the input
domain of P :

8x 2 domðP Þ : SðxÞ ! fSAFE;EXPLOITg:

A sound signature returns EXPLOIT only for inputs that
would really exploit the program. Unsound signatures have
false positives by mistaking legitimate inputs for exploits. A
sound signature is defined as

SðxÞ ¼ EXPLOIT) P ðxÞ : � ‘ c �½::vp�
� �

¼ true: ð4Þ

If a signature will always return EXPLOIT for a real
exploit, then the signature is complete:

8x 2 domðP Þ : P ðxÞ : � ‘ cð�½::vp�Þ ¼ true) SðxÞ
¼ EXPLOIT: ð5Þ

An incomplete signature has false negatives because it may
miss some exploits.

We say a vulnerability signature perfectly recognizes the
language of the vulnerability when

SðxÞ ¼EXPLOIT, x 2 V:

Note that soundness and completeness are guarantees:
when we say a signature is sound, then we are guaranteeing
no false positives with respect to the vulnerability specifica-
tion hvp; ci, and similarly for complete signatures.

Throughout this paper, we focus on generating sound
but possibly incomplete signatures. We take this approach
since, as we will see, we cannot always have a sound and
complete signature. Sound but potentially incomplete
signatures are well suited for low-risk environments where
it is better to miss exploits than deny a legitimate user
access. Complete but unsound signatures are well suited for
high-assurance environments where it is better to block an
input that cannot be explicitly verified as safe. In Section 7,
we describe how a simple transformation allows us to
generate complete but potentially unsound signatures.

Formalism discussion. The above formalism is useful for
mathematically describing vulnerability signatures for a

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 227

2. There may exist other classes of security policies and vulnerabilities
for which signatures can be created. However, we do not address other
classes in this work.

large class of vulnerabilities without regard to a specific
vulnerability, representation, or signature generation algo-
rithm. Mathematical precision is useful in a number of ways.

First, it exactly describes what we do and do not target
by our vulnerability signature algorithms. In particular, at
any point, we can say that a program is exploited or not
exploited. For example, in a multistage attack, multiple
messages are required to exploit the server. We only return
EXPLOIT when the server is exploited; we do not look into
the future to determine if possible future messages might
exploit the server.

Second, the formalism is useful as an abstraction for
comparing the accuracy of a generated signature. For
example, we propose in Section 3.4 that we can measure
the completeness of a signature with respect to a perfect
signature for the vulnerability language.

Third, by basing signature generation on EM-enforceable
policies, we arrive at a natural way to perform signature
composition (also called signature merging). Suppose we
have two EM-enforceable policies Q1 and Q2. EM policies
can be composed, and a single EM policy for both policies is
given by their conjunction Q1 ^Q2. The corresponding
vulnerability signature for a violation of either EM policy is
then given by S1 _ S2, since a violation of either policy
should be detected. Note that non-EM security policies may
not compose, so signatures for vulnerabilities of those
policies may also not compose. In practice, this means that
we are justified in composing signatures by taking their
disjunction, e.g., for regular expressions, vulnerability
signature composition is carried out by the “j” operator.

3.3 Signature Representation Classes: Properties
and Trade-Offs

A vulnerability signature that perfectly recognizes all
exploits can be constructed by constructing an EM for the
security policy. After all, an EM for a safety property already
recognizes all safety violations, so all that needs to be changed
is for the EM to return EXPLOIT instead of terminating the
program. Equation (1) implies that evaluating such a
signature on exploits will return EXPLOIT. However, a
signature constructed in this way will not return SAFE unless
the original program terminates, since there are no guaran-
tees about executions that do not violate the safety property.

In a perfect world, a signature would be sound and
complete while using almost no resources. Unfortunately, a
perfect signature—a signature that is both sound and
complete—must be at least of the same language class as
the vulnerability language. In most cases, this means a

perfect signature must be written in a Turing-complete
language. However, signatures in Turing-complete lan-
guages offer few performance guarantees. In practice, we
often want signatures that offer minimum efficiency
guarantees. In this section, we examine three signature
classes, TM signatures, symbolic constraint signatures, and
regular expression signatures, and describe the trade-offs
between accuracy and efficiency among the classes.

Signature operations. We consider the efficiency of the
operations shown in Table 1. The operations include
generation time, signature size, matching time, minimiza-
tion time, and equivalence time. The generation time and
the signature size are specific to our algorithm, while all
other measurements are general bounds. Note that signa-
ture minimization takes a signature S and computes the
smallest signature Smin in the same class language as S. A
minimized signature takes the least amount of space and is
generally more efficient to match. Signature equivalence is
to determine whether two signatures S1 and S2 match the
same language. Signature equivalence is useful in many
scenarios, e.g., an administrator receives two signatures
from different parties and wants to know if they are for the
same vulnerability.

3.3.1 Turing Machine (TM) Signatures

A TM signature is a signature written in a Turing-complete
language. At a high level, any EM-enforceable policy can be
turned into an initial TM signature by inlining the EM
vulnerability condition at the vulnerability point. An initial
signature can then be refined to eliminate unnecessary
computation (see Section 4.4). Unfortunately, TM signatures
inherit the performance guarantees of Turing-complete
languages, namely, almost none. In particular, determining
whether a TM signature will return an answer is undecid-
able, along with minimization and equivalence.

The lack of guarantees does not mean that TM signatures
are unimportant. Since a perfect signature must be in the
same language class as a vulnerability and most vulner-
abilities are likely Turing complete, TM signatures serve as
an important landmark. For example, while ultimately, a
sound and complete TM signature may not be practical,
they serve as a good starting point in our approach. By
starting with a sound and complete TM signature, we only
need to be careful to maintain the properties we want, such
as soundness, at each step. An approach that does not start
with a sound signature has a more significant burden to
make similar guarantees.

228 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

TABLE 1
Summary of Approximate Bounds for the Three Vulnerability Signature Representations

We Consider for a Program of Length N and Signature Size S

PolyðXÞ denotes a function polynomial in X, and expðXÞ denotes a function exponential in X.

3.3.2 Symbolic Constraint Signatures

A symbolic constraint signature is a Boolean formula,
which in our approach approximates a TM signature. The
approximation is loop free but may have universal and
existential quantifiers. Unlike TM signatures, matching
(evaluating) a symbolic constraint signature on an input x
will always terminate. Symbolic constraint signatures only
approximate constructs such as loops. As a result, symbolic
constraint signatures cannot be both sound and complete.

Symbolic constraint signatures can be viewed as a TM
signature on a finite domain.3 The signature S is a Boolean
program, i.e., all the variables in the program can only take
values from a finite domain. The Boolean program match-
ing (BPM) problem is

We prove that the BPM problem is PSPACE-complete in
the Appendix.

3.3.3 Regular Expression Signatures

Regular expressions are the least powerful signature
representation of the three and may have a considerable
error rate in some circumstances. For example, a well-
known limitation is that regular expressions cannot count
[37] and therefore cannot succinctly express conditions such
as checking that a message has a proper checksum or even
simple inequalities such as x½i� < x½j�. However, regular
expression signatures are widely used in practice because
matching a regular expression is efficient.

Regular expression signatures are well understood and
are the primary mechanism many production NIDSs use to
detect exploits. A regular expression signature can be
matched in OðnÞ time (where n is the size of the input)
when represented as a deterministic finite automaton
(DFA), then signatures can be matched in OðjnjÞ time
(where n is the size of the input). A signature can be
minimized in time OðS logSÞ, where S is the size of the DFA
[38]. Equivalence of two signatures S1 and S2 is done by
first computing the minimum DFA of each signature and
then checking if the states and transitions are the same.

3.3.4 Other Signature Types

Signatures can be represented in other language classes. For
example, the call/return semantics of procedures can be
represented accurately as a context-free language [39].
Finding efficient methods for creating signatures in other
language classes such as a context-free language is an
interesting open problem.

3.4 Monomorphic Execution Path (MEP) and
Polymorphic Execution Path (PEP)
Signature Coverage

We introduce the notion of vulnerability signature coverage
in which we create a vulnerability signature with respect to
only a subset of vulnerable programs. The ability to
consider a subset of paths to a vulnerability (as opposed
to all program paths an exploit may follow) is important,

since creating a signature for all program paths that lead to
the vulnerability may be too expensive. For example, in
order to scale it may be necessary to take an iterative
approach of generating an initial signature which considers
only a few paths, and incrementally updating it to include
more paths via signature composition.

First, consider a single path in the program an input may
take that satisfies the vulnerability condition, which we call
Monomorphic Execution Path (MEP) coverage. Our initial
MEP is usually the path taken by the sample exploit. Within
an MEP, for each conditional branch encountered, one
target is an instruction leading toward the vulnerability
point, while the other target is a state SAFE. An MEP is
therefore a straight-line program. At the vulnerability point,
the vulnerability condition is evaluated, which returns
either SAFE or EXPLOIT. The vulnerability signature consists
of all inputs that reach the EXPLOIT state. Note that straight-
line programs do not imply that only a single input leads to
the vulnerability point: there usually exist many other
inputs x0 6¼ x that reach the vulnerability point, and the
vulnerability condition evaluates to EXPLOIT (others have
noted this as well [18]). For example, exploits usually have a
payload that executes arbitrary attacker code. A straight-
line program will return EXPLOIT for exploits with different
payloads because the execution of different variants only
differs after the vulnerability condition has been satisfied.

A Polymorphic Execution Path (PEP) coverage includes
many different paths (i.e., many MEPs) to the vulnerability
point. A complete PEP coverage includes all paths to the
vulnerability point. Therefore, a complete PEP coverage
signature accepts all inputs2 V, i.e., the signature is complete.

In our setting, we think about program paths that can
reach the vulnerability in terms of the program’s control flow
graph (CFG) G ¼ ðV ;EÞ. The CFG of a program consists of a
node v 2 V for each statement and an edge ðvi; vjÞ if there is
control flow from statement i to j. Complete PEP coverage
could include the entire program. However, many paths in
the program may not be relevant to a vulnerability.

The instructions relevant to the vulnerability constitute a
subgraph of the CFG. Intuitively, any instruction that could
be executed from where the input is read in to the
vulnerability is included as a relevant instruction. In
program analysis, the subgraph is called the “chop” of the
program with respect to a source node (where the input is
read in) and a sink node (the vulnerability point) [40], [41].
One metric for judging the false-negative ratio of a
signature is to determine how many different vulnerable
code paths—i.e., code paths from the chop—are handled by
the signature. Therefore, we can use the chop as a metric for
measuring the completeness of a vulnerability signature.

We describe our algorithm for computing the chop in
Section 4.4.2. Note that a particular chopping algorithm
may be imprecise, e.g., due to limitations of pointer
analysis, path sensitivity, etc. However, an imprecise chop
means that strictly more statements are included than
necessary to evaluate whether a particular input is SAFE or
EXPLOIT; thus, chop precision is an efficiency issue and not
a correctness issue. As a result, minimizing the chop using
program analysis and optimization techniques is an im-
portant area of research. Our experiments indicate that even
using our rough chopping scheme, we can create signatures
that evaluate (i.e., match) in microseconds.

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 229

3. Note that restricting the logic will change the theorem, e.g., if
quantifiers are disallowed then signature evaluation may be more efficient.

4 APPROACH AND TECHNIQUES FOR AUTOMATED

VULNERABILITY SIGNATURE GENERATION

In this section, we describe our approach and techniques for
generating vulnerability signatures. Our techniques depart
from the traditional approaches of analyzing the exploit or
its behavior. Instead, we take a program-centric approach for
generating signatures where we synthesize the vulnerability
signature from the vulnerable program. The central benefits
of our approach are the following: 1) signature accuracy can
be guaranteed, and 2) signatures can be created in a language
class appropriate for the particular user requirements.

We are given a vulnerable binary program P and a
vulnerability specification hvp; ci. In addition, our techniques
also require a single sample exploit x. We preprocess the
program and translate it into an easier-to-analyze modeling
language. The steps to compute the vulnerability signature
are the following (Fig. 1):

. Translate the �86 binary program to our modeling
language.

. Synthesize a TM signature from the program by
inlining the vulnerability condition at the vulner-
ability point and computing the chop of the program
model. Stop if this is the final representation.

. Synthesize a symbolic constraint signature from the
TM signature. Stop if this is the final representation.

. Synthesize a regular expression signature from the
symbolic constraint signature. Stop if this is the final
representation.

In this section, we describe each step in detail.

4.1 Input to Signature Generation

We focus on generating signatures for known vulnerabil-
ities. The input to our signature generation algorithm is the
vulnerable program P , the vulnerability specification hvp; ci,
and a sample exploit x. The sample exploit requirement

addresses the practical problem of calculating signatures for
programs that have multiple types of inputs. For example, a
typical program may read in a configuration file, set global
variables, and only then read in the user input. We use the
trace to determine which inputs can come from the attack
and which inputs are from nonattack system calls such as
reading in configuration files. Let vi be the point where the
input is first read in in the sample trace. We compute our
signatures with respect to the program state at vi. If vi is not
the initial start of the vulnerable program, then there may
be a state at vi, e.g., the contents of memory, that is relevant
in determining whether an input is an exploit or not. For
example, a signature for a vulnerability in a Web server
should be with respect to the state the Web server is in
when the input would be processed.

Note that we do not care how the vulnerability point,
condition, and sample exploit are determined: this is
addressed by work in exploit detection. For example, in
the Vigilante end-to-end system, new exploits are dis-
covered by EMs that participate in the Vigilante system.
The vulnerability condition c would be the condition
imposed by the Vigilante EM. Another option is to use
honeypots to collect exploits. Given the exploit x, the vp
can be ascertained by first generating an execution trace of
P ðxÞ : � and then applying c on each step in the trace �
[42]. From (1), we know that there will be a single
instruction vp that results in the program being exploited.

4.2 Vine: Our Modeling Language

We have developed the language shown in Fig. 2, called
Vine, in order to model assembly and facilitate analysis of
assembly code. We translate �86 instructions into this
language. The translation does not depend on the vulner-
ability and thus can be performed as a preprocessing step
ahead of time. The formal semantics of this language are
available in [43]; here, we give an informal presentation.

230 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 1. A high-level view of the steps to compute a vulnerability signature.

Fig. 2. Our modeling language, called Vine. In our implementation, we translate �86 assembly instructions into this language.

Our language has assignments ðr :¼ vÞ, binary and
unary operations ðr :¼ r1 �b v and r :¼ �uv, where �b and
�u are binary and unary operators), loading a value from
the memory into a register ðr1 ¼ �ðr2ÞÞ, storing a value
ð�r1 :¼ r2Þ, direct jumps (jmp ‘) to a known target label
(label ‘), indirect jumps to a computed value stored in a
register (ijmp r), and conditional jumps (if r then jmp ‘1

else jmp ‘2).
Our implementation translates �86 into this language in

a syntax-directed fashion (Section 5). Like assembly, our
language is not structural and does not have procedures.
For example, a call instruction in assembly is modeled as
a two-part operation that stores the current instruction
address in memory and then jmp to the callee’s address. A
ret retrieves a 32-bit address index by the variable sp and
performs an ijmp. Recovering higher level semantics such
as procedure boundaries is not necessary for our techni-
ques, though it can increase efficiency.

One important point to keep in mind is that the translated
program is not the assembly itself; it is a semantically
equivalent model for all well-defined executions. When
assembly is not safe, e.g., out-of-bound writes, the opera-
tional semantics of our modeling language are safe. In other
words, just like in assembly, you can write unsafe programs
in our modeling language and analyze that program.
However, when you go to run a program written in the
modeling language, safety is dynamically checked to ensure
that no unsafe operations really happen.

While the full operational semantics of the modeling
language are outside the scope of this paper (they are
available as part of other work [44]), an example is helpful
to clarify the distinction. For example, an assembly program
may have an out-of-bound read or write to memory. The
corresponding program in the modeling language, however,
simulates the effects of the reads and writes safely by raising
a runtime error for any out-of-bound access (as opposed to
assembly, which would just make the access with no error).

Example. Fig. 3 shows a typical buffer overflow in Vine.
Fig. 3a shows the program text, while Fig. 3b shows the

memory configuration after executing line 6. This
example is a simplified version of a classical buffer
overflow. In the example, we assume that the variable sp
corresponds to the stack pointer, pc corresponds to the
instruction pointer, and input contains the address of
an input source buffer. We assume that input is the
only input into this program.

On line 1, we record the value of the current program
counter. On lines 2-3, an assembly call statement is issued,
which in our language consists of two statements: one that
saves the current instruction pointer and one that transfers
control to the called function “vulnerable.” The vulnerable
function allocates 4 bytes of space for buffer dst on line 5
by decrementing the stack pointer. The function copies
bytes from the input buffer to the dst buffer on lines 8-12
until NULL (0) byte in src is reached. To make things
interesting, this copy only happens if the first byte of input
begins with “g.” Finally, on lines 14-15, we show the
function epilogue, where we read and jump to the saved
return address on the stack. This program has a vulner-
ability if there is not a NULL within the first 4 bytes.

In our running example, the safety property states that
the saved return address from executing the call statement
should be equal to the address on the stack at the time of
ret. In our setting, the vulnerability condition is then
c ¼ saved pc <> orig pc, and the vulnerability point is
line 14. This is a typical vulnerability condition. Note that
an alternate vulnerability condition would be that writes to
dst should stay within the allocated stack frame, e.g.,
dst < sp.

Our goal is to create a vulnerability signature for this
vulnerability. A perfect signature would match all inputs
greater than 4 bytes long that begin with “g.” A sample
exploit for our vulnerable program is “gaaaa.”

4.3 Generate an Instruction Trace

We first execute P ðxÞ to generate an instruction trace �. The
instruction trace contains the address of each instruction

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 231

Fig. 3. Our running example. On the left, a vulnerable program that will overtime the saved return address if �input is greater than 4 bytes is shown.

On the right, the memory configuration after executing line 2 is shown.

executed, along with the value of all instruction operands.
Instruction traces can be efficiently generated for most
modern architectures including �86 via hardware [45], [46]
or software [47], [48], [49]. Although the number of
instructions executed may be large, the corresponding trace
can be efficiently represented [50], [51].

Given sample input “gaaaa,” the instruction trace for
Fig. 3 would include instructions � ¼ 1; 2; 3; 5; 6; 7; 8;
f9; 10; 11; 12g5; 13; 14.

4.4 Generating a TM Signature

4.4.1 Generate an MEP TM Signature

We create the MEP TM signature with respect to the path
followed in the instruction trace. Therefore, the initial
signature will match the sample exploit and certain exploit
variants such as changing the exploit payload.

We create the TM signature by translating each instruc-
tion executed into a straight-line program. We then insert
two special return labels for EXPLOIT and SAFE. We then
replace all conditional and indirect jumps in the program
with checks to make sure that the execution path is
followed. In our running example, each time line 12 is
executed except the last, we would replace the jump to
ret_label with a jump to safe, where safe is a label
corresponding to the SAFE state. We then inline the
vulnerability condition at the vulnerability point. If c
returns true, the signature jumps to EXPLOIT; else, it issues
a jump to SAFE. In our example, this results in the following
code being inserted after line 14:

if saved pc <> orig pc jmp exploit else jmp safe

label exploit: return exploit

label safe: return safe

The result is a TM signature that recognizes exploits for
the same path the sample exploit followed. Again, note that
although there may be an out-of-bound write in the original
program, this does not correspond to an out-of-bound write
in the model, as the modeling language is safe (while
assembly is not). In our implementation, we compile down
the resulting signature to object code and then evaluate it on
inputs by running the program.

4.4.2 Generate a PEP TM Signature

We compute a TM signature for multiple paths by first
inlining the vulnerability condition at the vulnerability
point. However, instead of considering the single execution
path in the trace, we compute all program paths from the
exploit input to the vulnerability point. We first prepare a
CFG of the program where each vertex is a statement and
each edge represents a possible flow of control between two
statements. Note that in the CFG, call sites are linked up
with the called functions (this type of CFG is sometimes
called a supergraph [52]).

We then “chop” the CFG so that only paths starting at
where exploits are read in to the vulnerability condition are
considered. Let vi be where an input is read in, e.g., as
determined by the sample exploit. We compute the chop
from vi to the vulnerability point vp. The chop includes at
least all instructions that are relevant to the vulnerability,
i.e., could be executed starting at vi and producing a value
that is used to reach vp and satisfy c.

A precise chop is performed by only considering how
input values propagate during execution. Noninput vari-
ables are given the same value as in the trace. However,
safely determining which variables are affected by input
requires data dependency and alias analysis. Calculating
precise data dependency and alias analysis is very challen-
ging at the assembly level. We sidestep this issue by
developing a safe approximation of chopping appropriate
for our problem domain, which only considers control flow.
The result of our chop may include more instructions than
necessary due to the lack of dependency analysis (thus, less
efficient to evaluate) and may be incomplete due to the
indirect control flow we could not resolve.

The chop is constructed on the full CFG. We are given
two distinguished nodes: vi, where input is read, and vp, the
vulnerability point. There must be at least one path in the
CFG from vi to vp, namely, the one taken in the exploit trace.
We add an edge ðvp; viÞ to the CFG. This creates a cycle in
the CFG. We then calculate the strongly connected
component (SCC) containing vp and vi. The SCC is our
chop, since it contains all reachable statements (based on
control flow) from vi to vp.

Note that our chopping algorithm is conservative: by
considering data dependencies, we could remove edges and
statements but never add statements. Thus, although
adding data dependency analysis would reduce the size
of the TM signature, our method still produces a sound
signature. For indirect jumps, if we cannot resolve the target
accurately, we add a special return status (UNKNOWN in
our implementation) that indicates signature failure. Sig-
nature failure does not mean that an input is SAFE or
EXPLOIT; it means that the signature generation algorithm
could not analyze the control path.

4.5 Generate a Symbolic Constraint Signature

We compute the symbolic constraint signature for multiple
paths from the TM signature. At a high level, we generate
constraints for input variables such that inputs satisfying
the constraints would exploit the vulnerability. The sym-
bolic constraint signature is an approximation of the TM
signature because we may have to statically estimate the
effects of loops. The symbolic constraint system is a logical
formula that represents the effects of executing the program
for any input. The formula is satisfied (i.e., true) for inputs
that are exploits. The steps for computing the symbolic
constraint signature are the following:

1. Transform the input TM signature into an acyclic
program P 0.

2. Translate the acyclic TM program P 0 into the GCL
P 0g. This step is needed so that we can take advantage
of optimizations described below.

3. Replace conditional jumps in the GCL program that
go outside the chop.

4. Calculate the weakest precondition S ¼ wpðP 0g; cÞ for
exploiting the acyclic GCL program. S is a symbolic
constraint signature formula.

4.5.1 Create an Acyclic Program

The first step is to transform the TM signature into a finite
program by creating an upper bound on the number of

232 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

times any single loop executes. This step is needed in order
to guarantee signature termination. We locate loops via
standard analysis, which outputs for each loop the loop
conditional and the loop back-edge [31]. For each loop, we
create a fresh loop counter variable and replace the back-
edge with a check to make sure that the loop counter does
not exceed an upper bound. At this point, we have a
program P 0 that is guaranteed to terminate. We can output
P 0 as the signature if we do not wish to create a regular
expression signature.

4.5.2 Translate into the GCL

At this point, we could iterate over each execution path in
the modified TM signature and perform forward symbolic
execution to create the symbolic constraint signature [16],
[25]. However, creating a compact representation for
multiple paths an exploit may take is key for creating a
succinct vulnerability signature. For instance, in a loop-free
program with b branches, there are Oð2bÞ program paths.
Forward symbolic execution calculates a separate formula
for each path, which results in an exponential-size formula.
For example, if there are two conditional jumps, then there
are four program paths, and forward symbolic execution
would generate f ¼ f1 ^ f2 ^ f3 ^ f4, where fi represents
the formula for path i.

In order to efficiently generate a symbolic signature, we
calculate the weakest precondition for the TM signature to
return EXPLOIT. At a high level, the weakest precondition
for a program P and a postcondition Q is a recursive
calculation for generating a formula that is satisfied for all
inputs that, when executed, cause the program to terminate
in a state satisfying the specified postcondition Q. For
example, if the program is P : y ¼ xþ 1 and Q : 2 < y < 5,
then wpðP;QÞ is 1 < x < 4. In our setting, the postcondition
is the vulnerability condition, and the weakest precondition
wpðP; cÞ is a predicate on inputs that satisfy the vulner-
ability condition. The generated formula will be true for
inputs that exploit the given vulnerability. The net result of
this process is depicted in Fig. 4.

The advantage of using the weakest precondition is that
we can take advantage of a logical transformation that
guarantees that the generated formula is at most Oðn2Þ,
where n is the number of statements in the program. Thus,
we reduce the size of the generated signature from
exponential using forward symbolic execution to at most
quadratic and, in practice, more near linear. We have a
formal proof of this in our companion paper [17]. Intuitively,
these bounds are possible because the acyclic TM signature
itself is almost a logical formula that recognizes exploits. It is
only “almost” a formula because variables and memory cells
may be assigned more than once, and functions cannot have
such updates. The weakest precondition is slightly larger
than the program because we must translate such updates

into logical updates where variables are equated and not
assigned. The formula is much smaller than the one created
with symbolic execution because the calculation sum-
marizes paths instead of enumerating all possible paths.

The weakest precondition is calculated over the GCL.
Statements in the GCL are given by the following grammar:

s ::¼ lval :¼ e j assert e j assume e j s; s j s tu s:

Although this language looks simple, it is powerful
enough to reason about general-purpose programming
languages [53], [54]. Statements s in the language are
assignments of expressions to l-values (e.g., registers and
memory cells), “assert e,” which checks that expression e is
true and fails if it is false, “assume e,” which adds an
assumption that e is true, sequences of statements, and the
choice statement “s1tus2,” which executes either s1 or s2. A
program written in GCL terminates normally iff none of the
assertions fail.

Because GCL is structural, it is straightforward to
translate a structural language into GCL. For example, the
program if e then A else B is translated into the GCL as
“ðassume e;AÞtuðassume : e;BÞ.” However, the binary
programs we analyze are not structural because of jumps.
Therefore, previous work on translating a program to GCL
does not apply in our work with binary programs.

In order to work on binaries, we have developed a new
approach for translating an unstructured binary program
into the GCL. Our algorithm is a type of structural analysis
on the CFG of the unstructured binary where we create an
appropriate GCL based upon the structure of the CFG. The
details of the algorithm are unimportant here; a full
description for the interested reader is available in [17].
The output of this step is the (acyclic) GCL program P 0g.

4.5.3 Replace Conditionals

The weakest precondition calculation will calculate a
formula that is true for all inputs that reach the vulner-
ability point and satisfy the vulnerability condition. We
alter P 0g so that any input that will not exploit the program is
a “failed” execution by replacing all conditional jumps
outside the chop to be assert statements. This step ensures
that the weakest precondition is true only when an input
satisfies the vulnerability condition at the vulnerability
point. A SAFE input will either fail an assert or not satisfy
the vulnerability condition.

4.5.4 Calculate the Weakest Precondition

We then calculate the weakest precondition on the acyclic
TM program in a syntax-directed manner. The rules for
calculating the weakest precondition are shown in Fig. 5,
where Q is any Boolean predicate. These rules can be read
as an algorithm where the “:” separates inputs from

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 233

Fig. 4. For a program P and a vulnerability c, the weakest precondition wpðP; cÞ describes the inputs which, upon execution, result in an exploited

state.

outputs. For example, we calculate the weakest precondi-
tion wpðassert etus;QÞ as follows:

wpðassume etus;QÞ : e) Q

. . .

wpðs;QÞ : Q1

wpðassume etus;QÞ : e) Q ^Q1

:

In order to get the quadratic bound, when calculating the
weakest precondition, we avoid introducing redundancy
into the formula. For example, in symbolic execution, when
a path branches, two separate formulas are created: one for
the true branch f1 and one for the false branch f2. However,
both formulas share the same prefix; thus, when calculating
whether either can be satisfied as f1 _ f2, the common prefix
is considered twice.

If we calculated the weakest precondition naively using
just the WP rules in Fig. 5, we would introduce redundancy
in two ways: 1) the postcondition is duplicated as part of
WP-CHOICE, which corresponds to duplicating the post-
condition for independent branches, and 2) WP-ASSIGN can
cause an exponential blowup during variable substitution.
To see why assignment is a problem, consider a calculation
of the following form:

wpðx1 :¼ x0 � x0;x2 :¼ x1 � x1;x3 :¼ x2 � x2; ; x3 < 5Þ:

The weakest precondition using WP-ASSIGN would even-
tually substitute all variables for x0, resulting in the
exponential formula x0 � x0 � x0 � x0 � x0 � x0 � x0 � x0 < 5.
We can eliminate duplication due to WP-CHOICE by
ensuring that all variables and memory locations are only
assigned to once and then replacing the assignment with
assumes. We use a form of single static assignment (SSA) to
make sure that all variables are only assigned once [31].
Note that memory references are also translated into SSA
form, e.g., a write creates a new memory variable, and reads
are performed from the current memory incarnation.
Translating into SSA form results in a GCL program at
most Oðn2Þ larger than the original non-SSA program.

We remove the redundancy due to the postcondition by
calculating

S¼: wp P 0g; c
� �

� wp P 0g; true
� �

^ wlp P 0g; false
� �

_ c
� �

ð6Þ

instead of wpðP; cÞ directly. Note that this equation is only
valid for assignment-free programs, i.e., have undergone
the above transformation. The final redundancy is removed
from WP-CHOICE since the postcondition is always a
constant and thus is not duplicated along each branch.
The resulting signature is at most quadratic in size due to
the conversion to SSA. [17]

We output S as our signature, which is a Boolean
formula that is true for all inputs that would exploit the
vulnerability in the acyclic program.

4.6 Generate a Regular Expression Signature

We generate a regular expression signature from the
symbolic constraint signature by using a decision procedure
to enumerate inputs that satisfy the constraint system. A
decision procedure, when given a formula, will return
whether the formula is satisfiable or not. If satisfiable, the
decision procedure will return an assignment of values to
variables that satisfy the formula. By construction, the
symbolic constraint signature is a Boolean formula that is
only satisfied by inputs that would exploit the program. In
other words, a satisfying answer is an input that exploits the
program.

More specifically, suppose in the symbolic constraint
signature, S accepts an n byte input x ¼ x1; x2; x3; . . . ; xn.
Querying the decision procedure on Swill return a satisfying
answer v ¼ v1; v2; v3; . . . ; vn, where v denotes a particular
constant value. By construction, v is an exploit. We then
iteratively query if S ^ :v is satisfiable, i.e., if there is a
satisfying answer that is not one we already know about.
When satisfiable, we get a new satisfying answer v0, and the
signature is v _ v0 or, in regular expression notation, vjv0.

The above approach will return a new v on each iteration
until we have exhausted the inputs that the symbolic
constraint signature recognizes. This procedure is guaran-
teed to terminate since a symbolic constraint signature is
over a finite domain. However, exhaustively querying may
take a long time. One thing we have found in practice is that
often, particular bytes for an exploit are unconstrained, e.g.,
in many buffer overflows, the only constraint on values for
input bytes is that they are not NULL. We have found that
querying the decision procedure specifically to find such
input bytes is an important optimization.

234 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 5. Algorithm for calculating the weakest precondition (wp) and weakest liberal precondition (wlp). The weakest liberal precondition rules are

essentially the same as the weakest precondition except for assert. The weakest liberal precondition rules are used as a subcalculation when

computing the weakest precondition.

Divide-and-conquer. The number of variables to con-
sider within a single path may be very large, e.g., millions
of variables at the assembly level. The decision procedure
must simultaneously reason about all variables, including
any possible alias relationships. Reducing the complexity of
the formula by providing alias information can signifi-
cantly improve performance. For example, in an HTTP
request, the method (e.g., GET, HEAD, etc.) is often
processed independent of the URL, e.g., in our evaluation
for Atphttpd, an HTTP request must begin with either the
keyword “head” or “get,” but it does not matter which, i.e.

ðmethod ¼ ‘‘GET} _ method ¼ ‘‘HEAD}Þ
^ ð::other conditions::Þ:

If we can prove that values for the variable “method” never
affect “url,” then the decision procedure can solve each
conjunct separately. However, if “method” and “url” could
be aliased, then the decision procedure must consider both
conjuncts simultaneously.

In our evaluation, we show that partitioning formulas
into independent subclauses can significantly reduce the
time to produce regular expressions. In our implementation
and all experiments but one, we let the decision procedure
reason about aliasing. However, we do perform one
experiment where we manually specify that such conjuncts
can be independently considered in order to demonstrate
the potential speedup.

5 IMPLEMENTATION

We have implemented a prototype system, called Vine, to
evaluate our techniques for automatically generating
signatures. Our implementation works with both Linux
(ELF) and Windows (PE) binaries. Our implementation
does not require debugging information or a symbol table.
Vine is divided into four components: a trace collector, a
lifting component, an analysis component, and a decision
procedure interface component.

We have implemented a trace collector on top of QEMU
[55], a whole system emulator. We have modified QEMU to
track how specified external inputs such as keyboard and
network inputs flow into the operating system. Instructions
whose operands are derived from external inputs are
assigned a special “taint” flag, which indicates to our
remaining system that those are potential exploit inputs.
The output log contains for each instruction executed its
address and the operand values for each instruction.

The lifting component reads a native binary, parses the
binary format, disassembles code segments to assembly,
and lifts the assembly to an intermediate representation (IR)
based on the language shown in Fig. 2. We interface with
two disassemblers: IDA-Pro, a commercial disassembler,
and the disassembler described in [56].

The advantage of the Vine language is that it makes the
�86 instruction set easier to analyze. For example, �86 has
single instruction loops (e.g., the rep prefix) and implicit
side effects (many instructions implicitly update or test the
eflags register); the same register may be addressable in
multiple ways (e.g., the al register addresses the lower
8 bits of eax) or may have different behaviors for different

operands (e.g., shifting by 0 does not set eflags, but other
values will). All these behaviors are translated into a more
manageable set of statements. Our implementation handles
almost all �86 instructions with the exception of floating-
point operations. The lifting component includes about
16,500 lines of C/C++ code.

The analysis component is responsible for subsequent
analysis discussed in Section 4, as well as type-checking,
control flow and call graph construction, data-flow analysis,
miscellaneous optimizations, and a compiler for our
language which generates C code. The C code can then be
compiled with any C compiler. The analysis component is
written in OCaml and is about 28,000 lines of code. The final
component interfaces our OCaml routines with a decision
procedure. We currently interface with STP [25], [26], [57]
and CVCL [58], both of which are satisfiability-oriented
decision procedures.

Indirect jumps. One problem we must deal with at the
binary level is the widespread use of indirect jumps, e.g.,
jmp % ? eax.4 Indirect jumps pose a potential problem when
computing the chop in that they could potentially go
anywhere. If we assume that they could go anywhere, then
the chop would include the entire program.

The most common type of indirect jump in IA-32
programs is the ret instruction, which uses a return
address previously stored on the stack, usually by the call
instruction that called the function containing the ret. In
our implementation, we assume that the program intends
ret to return to the callee when computing the chop. When
we compile our code to native �86, we generate code that
checks this assumption.

There may be indirect jumps that do not correspond to
ret instructions, e.g., function pointers in the source
language may be implemented as indirect jumps in assem-
bly. Since we do not know which function may be called, we
rewrite these jumps as a runtime error during signature
evaluation. This is a conservative approach in order to keep
the signature sound. We leave as future work implementing
an analysis to resolve nonreturn indirect jumps at compile
time instead of during signature evaluation.

6 EVALUATION

In this section, we evaluate our techniques. First, we
evaluate creating signatures in different language classes
for a single execution path (MEP). We then evaluate our
approach for creating signatures in different language
classes for many execution paths (PEP).

6.1 Experiment Setup

Our evaluation is performed under Linux on a machine
with an Intel 2.4-GHz Core Duo processor and 3 Gbytes of
addressable memory. The vulnerability condition we use is
that in our signature, the simulated return address should
not be overwritten (similar to the condition in Section 4.2).
In each case, we first obtain an exploit sample trace to
pinpoint where the user input is first read in, as well as the
vulnerability point, the instruction that overwrites the
return address.

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 235

4. A direct jump is of the form jmp c, where c is a constant.

We evaluate six different programs for creating MEP
signatures: Atphttpd, passlogd, Ghttpd, Samba, Windows
DCOM RPC Interface, and the Microsoft SQL Server.
Atphttpd is a small Web server written in C [59]. We
evaluate Atphttpd 0.4b compiled for Linux, which has a
standard sprintf-style buffer overflow in the URL proces-
sing logic [60]. Passlogd is a syslog message server and has
a buffer overflow in the sl_parse message parsing routine
[61]. Ghttpd is another small Web server. We evaluate
version 1.4.3 [62]. Samba is a server that implements the
SMB/CIFS file and print sharing protocol. We evaluate
Samba 2.2.8 compiled for Linux, which has a buffer
overflow in the call_trans2open procedure [63]. The
Windows DCOM RPC interface in Windows 2000 and
Windows XP is vulnerable to a buffer overflow. We refer to
this vulnerability as “blaster” since the blaster worm is
based on an exploit for this vulnerability [64]. Finally, the
Microsoft SQL Server 2000 contains multiple buffer over-
flows. We target the overflow exploited by the Slammer
worm [65].

For each of these vulnerabilities, the vulnerability point
is the point where an overflow may take place, e.g., the
vulnerable call to sprintf in the Atphttpd vulnerability
and a particular mov instruction in the passlogd vulner-
ability. The vulnerability condition is that the instruction or
function call will result in writing to an area known to be
outside the destination buffer, such as a saved stack pointer
or return address.

6.2 Monomorphic Execution Path

We first generated MEP TM signatures, symbolic constraint
signatures, and regular expression signatures for several of
the vulnerabilities. Table 2 summarizes our results.

We begin by converting the instruction trace into the
Vine language and creating a single-path TM signature.
Considering only the code path taken by a sample exploit
has previously been shown to generate effective signa-
tures [9], [42]. The time to generate a TM signature was
under 20 seconds in all cases. Profiling reveals that most
of this time is spent in converting the trace to straight-line
code. This step is currently implemented by executing the
Vine translation on our prototype Vine evaluator to
determine the exact path followed and is only necessary
due to a previous limitation of our infrastructure. It is
straightforward to eliminate this step by obtaining the

path directly from the given execution trace. With this
step removed, generating the TM signature takes no more
than 1.6 seconds.

We also give the total number of statements of the TM
signature for the single path. Many instructions along the
single path are irrelevant to the particular vulnerability. We
perform a dead-code elimination step to remove these
statements. The number of statements after dead-code
elimination [31] is also shown. Dead-code elimination
removes any statement that computes a result that is never
subsequently referenced. We also report the time to generate
C code for a TM signature and compile the resulting C code
using gcc 4.1. Finally, we measure the evaluation time of
the TM signatures. The evaluation time is averaged over
1,000 runs including both safe and exploit input samples.
The numbers indicate that TM signature evaluation is
efficient. We then generate a symbolic constraint signature.
This step took less than half of a second in all cases.

Surprisingly, our PEP signatures (Section 6.3) produced
signatures that were smaller and more efficient to evaluate.
The reason for this is an artifact of our implementation:
given a trace, we convert the whole trace to a signature (and
then perform dead-code elimination), including each in-
struction each time it is executed. Since an instruction may
be executed multiple times, e.g., as part of multiple function
call invocations, this is inefficient. However, when creating
a full PEP TM signature, we have access to the whole
program and convert each instruction only once, resulting
in a smaller and more efficient signature. This implementa-
tion limitation will likely be addressed in future work.

Regular expression generation. We gave the symbolic
constraint signature to the decision procedure STP to
generate an example of an input that would satisfy the
constraints. Table 2 shows the time to generate the initial
regular expression, i.e., the time to check if the symbolic
constraint signature formula is satisfiable. The total time to
generate an initial regular expression is 293 seconds for
Atphttpd, 38 seconds for Blaster, 212 seconds for Slammer,
and 103 seconds for Samba.

We investigated the dominating time factors for regular
expression signature generation and found that one
primary case was reasoning about memory operations. In
our current infrastructure, STP must reason about the entire
formula, including all potential alias relationships in the
generated constraints. One obvious trick is to provide more
information to STP so that it can consider clauses in the
formula independently (Section 4.6). We manually in-
spected the formula for Atphttpd and found that we could
divide it up into 10 distinct terms, i.e., 10 clauses could be
reasoned about independently. Partitioning the formulas
into 10 components and solving each independently
reduces the total time to 0.1216 second [16]. Thus, this
experiment indicates that sound assembly alias analysis and
the ability to automatically partition formulas would be
extremely valuable in a production system.

Next, we evaluated how well our techniques work at
generalizing regular expression signatures. Vigilante has
previously created an MEP signature for both Blaster and
Slammer [9] but did not create regular expressions or
symbolic signatures. In that work, Costa et al. manually
inspected their single-path signature to summarize the

236 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

TABLE 2
Performance Numbers for MEP Signature Creation and

Signature Evaluation Time in Seconds

The total number of statements in the trace is the same as the
second-row TM signature size.

necessary conditions for an exploit to match their generated
TM signature. In order to automatically generate a regular
expression that matched their description, we let STP iterate
for 3 days to discover the value ranges for each byte. STP
answered 2,189 queries for Blaster and 181 for Slammer.
The resulting automatically created regular expression
signature confirmed the criteria specified by Costa et al.
For example, the signature restricted the first byte of
Slammer to be 0x4, while allowing most other bytes to be
any nonzero value.

Comparison with other signatures. We compare the
quality of our generated signature for Atphttpd with
signatures created via pattern extraction by Hamsa [22].
Hamsa [22] extracts signatures from a pool of traffic using
machine learning techniques to extract common tokens
common to only exploits. Although Atphttpd has two
vulnerable code paths, one via an HTTP “GET” request and
one via an HTTP “HEAD” request, both signatures appear
to have been generated using only “GET” requests (neither
identified “HEAD” as a token). Hamsa includes, among
others, the token “HTTP=1:1 n r n n” in their signature for
Atphttpd. Our analysis and formulas indicate that this
token does not need to appear in an exploit. In fact,
Atphttpd does not even check the HTTP method field
where “HTTP=1:1 n r n n” would be checked.

These examples highlights the trade-offs one gets from
different approaches. Hamsa and similar signature genera-
tion algorithms are fast but do not analyze the vulnerability
and thus cannot make any guarantees. Our approach can
give guarantees but requires more expensive analysis. In
practice, both approaches are valuable. One interesting
future line of work is to use our techniques to verify
signatures created by less expensive methods.5

6.3 Polymorphic Execution Path TM Evaluation

Next, we consider multiple execution paths. In this section,
we focus on vulnerable Linux servers. We do this because
analyzing all paths in the Windows servers is complicated
by the fact that the core functionality is strewn through
multiple dynamically loaded libraries.6 For example, the
Slammer vulnerability point is inside a DLL and not in the
server executable. Due to the research nature of our current
infrastructure, we do not address simultaneous disassembly
of multiple DLLs and executables.

We created TM signatures for three Linux programs:
Atphttpd, Ghttpd, and Passlogd. Each program can be
exploited via multiple program paths. We create these
signatures by calculating all paths reachable from the input
statement in the sample trace to the vulnerability point.
Table 3 shows our results. We first measure the total
number of statements for the executable in our modeling
language. These numbers show that with our current
prototype, the total signature is about 9 percent of the
original code size. In practice, the C compiler will further
significantly reduce the total size. For example, we
implemented the global value numbering and dead-code
elimination optimizations for our language [31], which

reduced the total number of statements to 1 percent of the
code size. Since these optimizations are standard in
compilers, we currently let the C compiler perform them
instead of duplicating the work in our implementation.
These numbers indicate that TM signatures in our
experiments could be only 1 percent of the original
vulnerable program (i.e., 1 percent of the initial signature
where c is inlined at vp). We again measure how long it
takes to generate the TM signature, convert the TM
signature to C, and compile the C code. We also measure
evaluation time, averaged over 1,000 inputs that are both
benign and malicious.

The time to generate a TM PEP signature is much
smaller than that for a single path. The reason for this is
that the MEP signature contains a statement for each
instruction actually executed. For example, if a loop
contains 100 instructions and is executed four times, there
are 400 instructions. The PEP signature, on the other hand,
replicates the loop semantics and therefore does not have
the unnecessary duplication. In addition, the MEP signa-
ture contains a statement for instructions executed as part
of a library call. For example, Atphttpd calls strcmp in
several places, and each time, every instruction executed in
strcmp is included in the signature. The PEP signature, on
the other hand, does not consider instructions that are part
of called libraries. Instead, the PEP signature uses a stub
function to call the actual library itself during signature
evaluation. For example, we set up a stub to call strcmp in
the Atphttpd signature.

6.4 Polymorphic Execution Path Symbolic
Constraint Evaluation

In this next experiment, we created a PEP constraint
symbolic signature for Atphttpd and Samba. We first
consider creating a PEP symbolic signature where libraries
are not analyzed. Similar to a TM signature, if a PEP
symbolic constraint signature is the final signature repre-
sentation, the signature can call external functions directly.
However, if we wish to create a regular expression
signature, we must include the logical semantics of library
calls directly in the formula. This is a typical problem in
model checking, which is often solved by creating summary
functions of called procedures.

Table 4 show our results where the symbolic constraint
signature considers both when summary functions are both
available and when they are not available. These results are

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 237

5. Another possible extension would be to use our techniques to generate
exploits that do not match known signatures; we leave that extension to the
black hat community.

6. Vigilante also points out this issue [9].

TABLE 3
Performance for Creating TM Multipath Signatures

for All Vulnerable Paths

also reported in [17]. The idea is that if we were to generate
regular expressions, we would use these formulas as a
basis. We unrolled each loop once; thus, the signature
considers all branches. Thus, this measures how big
formulas would be if we were to cover all possible branches
in the signature. We also measure the size of the formula
generated with forward symbolic execution, as is com-
monly done in bug finding [16], [25], [66], [67], [68].

Our results show a number of things. First, formulas

built using forward symbolic execution are too large to be

useful. For Samba, the size of the formula exceeded the

64-bit counter. This demonstrates that forward symbolic

execution is likely not a good candidate to use for PEP

signature generation. Second, formulas built with WP are

only a bit larger than the original number of statements.

This measurement concurs with other applications of WP

at the source code level [69]. Third, without function

summaries, even efficient algorithms are likely to generate

formulas too big for a decision procedure to consider. If

we assume summary functions, then the formula size is

within the realm of current decision procedures.

7 DISCUSSION

In this section, we discuss our approach, future work, and

alternate directions.
Using heuristics. Our approach is geared toward

guaranteeing soundness for generated signatures. Our
experiments indicate that our approach for generating TM
signatures and symbolic constraint signatures for a large
number of paths is practical. Regular expression signature
generation currently seems best suited when only a few
paths are considered at a time.

Although heuristics to improve signature quality may be

attractive in practice, from a research point of view, it is

equally as important to push how far we can get without

them. Part of the reason our formalism is useful is because it

defines exactly the class of vulnerabilities for which we can

generate accurate signatures. However, we can only make

such guarantees for fixed-length inputs currently. This

seems to be part of the nature of providing guarantees for

programs: even established fields such as model checking

often only consider a finite number of steps. In practice,

however, heuristics may be useful in some scenarios. For

example, we have previously proposed heuristics such as

automatic widening of input bytes to be anything after a

finite number of queries [16]. Vigilante proposes additional

heuristics, which work well in their test cases [9].

Vulnerability conditions. In our paper, we inline the

vulnerability condition at the vulnerability point. In the

worst possible case, the safety policy predicate may need to

be evaluated at each execution step. We have found, as

others, that such draconian interposition is often not

necessary [34]. The vulnerability conditions we have found

most useful are often the simplest, such as limiting the

range of a particular memory write instruction.
Regular expressions. Our experiments indicate a few

things. First, it would be useful for decision procedures to
return more than one satisfying answer at a time, i.e., a
decision procedure for ALL-SAT instead of simply SAT.
Interfacing with an appropriate ALL-SAT solver is left as
future work. Second, our experiment on Atphttpd indicates
that alias analysis could offer huge performance benefits.
For example, regular expression signature generation for
Atphttpd without alias analysis took almost 300 seconds,
while with alias information, it took less than 1 second [16].
Currently, we construct our queries such that the SAT
solver must reason about all potential alias relationships.
There is work on alias analysis that is suitable for assembly
[44], [70], [71]. We expect adding even simple alias analysis
to our infrastructure would increase efficiency by orders of
magnitude.

System calls. In our current implementation, we assume
that all nonexploit inputs are given exactly the same as the
trace for MEP. Note that any system call is treated as an
input to the program. For PEP, we may have a system call
that is not handled in the execution trace, i.e., an alternate
path to the vulnerability may make a system call. In this
case, it is unclear what the right solution is. One approach
that we have previously taken is to quantify over all
possible values of such inputs [17]. This approach is not
completely sound, however, since the quantification may be
too general. For example, quantification may result in a
statement that says a particular file may exist when in fact,
on the vulnerable system, it never will. Our current
implementation does not automatically quantify anything:
it requires the user to specify the effects of the system calls.
Such specifications can be done ahead of time or during
signature creation. It is not clear whether in practice, there is
one single right answer: quantification may be appropriate
in some scenarios, and it may be best to allow the user to
specify. We leave exploring this issue as future work.

Multistage attacks. Sometimes an attack on a vulner-
ability may take several steps to accomplish. For example, a
buffer overflow may be exploitable only after an otherwise
benign input is received. It is unclear in such attacks what
inputs are exploits and which are benign, i.e., should we
consider the priming message that leaves the server in a

238 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

TABLE 4
Symbolic Signature Size for Full Path Coverage Using Weakest Preconditions and Forward Symbolic Execution

We consider both with and without summary functions for dynamic libraries.

vulnerable state malicious or not? Our approach has the
same limitation as EMs: we cannot see into the future. This
means that in a multistage, in order for a signature to be
complete, it would have to wait until all input messages are
received before allowing the signature to make a decision.
We leave addressing multistage attacks as future work.

Complete signatures. A complementary approach to
sound signature generation is to guarantee complete but
perhaps unsound signatures, i.e., overapproximate the set of
possible exploits. Our approach can easily be adapted to
this setting. At a high level, a symbolic signature can be
made complete but unsound by calculating the weakest
precondition for the negated vulnerability condition, e.g.,
wpðP;:cÞ. The resulting formula will be true for all inputs
that do not satisfy c. For example, we could use this
approach to find an upper bound on the length of safe input
strings. Other techniques are possible, e.g., abstract inter-
pretation techniques such as data-flow analysis have also
been proposed [72].

Application to nondeterministic programs. We cur-
rently only address programs that execute sequentially in
our infrastructure. We consider multithreaded applications
in which each request has its own thread sequential since
we really only need to analyze a single thread. Many
servers fall into this class. At a high level, there is no a priori
reason why our techniques will not work with multi-
threaded applications for EM-enforceable properties. How-
ever, we currently have no experimental data on this type of
problem; thus, we leave exploring any special issues raised
by multithreaded applications as future work.

8 CONCLUSION

We presented a general framework for generating vulner-
ability signatures. Given a single sample exploit, we
presented techniques for automatically generating a signa-
ture that is guaranteed to be sound. Our formulation works
for vulnerabilities that can be exploited by multiple paths.
In particular, we discuss three distinct types of vulnerability
signature representations: TM, symbolic constraints, and
regular expressions. We provide theoretical and practical
insights into these three signature representations. Our
evaluation indicates that our approach is promising.

APPENDIX

Theorem 1. The BPM problem is PSPACE-complete.

We prove this by first establishing that BPM is PSPACE-
complete for nonrecursive Boolean signatures and then
extend the proof to the recursive case.

Lemma 1. BPM for a nonrecursive Boolean program is
PSPACE-complete.

Proof. At a high level, signature matching can be reduced to
the model checking problem (MCP), which is known to
be PSPACE-complete.

Let B be a nonrecursive Boolean program. Since all the
variables can take values from a finite domain, without
loss of generality, we can assume that B only contains
Boolean variables (a variable with a finite domain can be

encoded using a finite set of Boolean variables). More-
over, we can assume that every variable in B appears
only once on the left-hand side of an assignment
statement (this can be done by converting B to SSA form
[31]). Since B is nonrecursive, we can inline all the
function calls and hence assume that B does not have
function calls.

The MCP is defined as follows:
Given a model M, an initial state I, and a Boolean

formula f , determine if there exists a state reachable
from I that satisfies f .

It is well known that MCP is PSPACE-complete [27],
[73]. If there exists a state reachable from I in M that

satisfies f , we will write it as M, I � f . With the

transformations outlined above, it is easy to see that we

can write a finite state model MB corresponding to the

Boolean program B, where the state variables of MB are

the variables of B, and the transition relation of MB
corresponds to the transformers of the statements in B.

An initial state I of the model MB corresponds to an
assignment of the input variables. Let f be a Boolean

formula on the state variables of MB. Let x be an input to

the program B and let Ix be the initial state MB that

assigns values to the input variables according to x and

assigns 0 to all local variables. Assume that the condition

c associated with the vulnerability signature can be

expressed as a Boolean formula fc over the variables of

B. It is easy to see that M, Ix � fc iff x 2 SatðB; cÞ.
Hence, we have a PSPACE algorithm for checking if an

input x is in the set SatðB; cÞ. This proves that TSM is in

PSPACE.
Given a model M with a finite set of state variables

and a transition relation, it is easy to construct a Boolean
program BM whose variables correspond to the state
variables of M and statements correspond to the
transitions of M. Moreover, M, I � f iff xI 2 SatðB; cfÞ,
where the input xI corresponding to the initial state I
and the condition c corresponding to the Boolean
formula f are constructed as before. Therefore, TSM is
PSPACE-hard. Hence, TSM is PSPACE-complete. tu

Lemma 2. BPM for a Boolean program is PSPACE-complete.

Proof. Let B be a Boolean program. The main complication

is that in general, B can have recursive calls. In this case,

we can construct a pushdown system PS corresponding

to B such that PS, Ix � fc iff x 2 SatðB; cÞ, where Ix and

fc have exactly the same meaning as in the previous

theorem. Fortunately, the MCP for pushdown systems

can be performed in PSPACE [74]. This proves that the

TSM for general Boolean programs is in PSPACE. Since

the TSM for nonrecursive Boolean programs is PSPACE-

hard, the TSM for general programs is also PSPACE-

hard. Therefore, TSM is PSPACE-complete. tu

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation (NSF) under Grant 0448452,
the US Department of Energy (DoE) Los Alamos
National Laboratory under Grant W-7405-ENG-36, and

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 239

the Navy/ONR under Grant N00014-01-1-0708. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and

do not necessarily reflect the views of the US National

Science Foundation (NSF), the DoE, or the Navy/ONR.

REFERENCES

[1] C. Cerrudo, Story of a Dumb Patch, http://argeniss.com/research/
MSBugPaper.pdf, 2005.

[2] T. Detristan, T. Ulenspiegel, Y. Malcom, and M.V. Underduk,
Polymorphic Shellcode Engine Using Spectrum Analysis, http://
www.phrack.org/show.php?p=61&a=9, 2003.

[3] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Polymophic Worm Detection Using Structural Information of
Executables,” Proc. Int’l Symp. Recent Advances in Intrusion
Detection, 2005.

[4] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
Generating Signatures for Polymorphic Worms,” Proc. IEEE Symp.
Security and Privacy, May 2005.

[5] M. Jordan, “Dealing with Metamorphism,” Virus Bull. Magazine,
2002.

[6] P. Szor, “Hunting for Metamorphic,” Proc. 11th Ann. Virus Bull.
Conf. and Exhibition, 2001.

[7] “Metasploit,” http://metasploit.org, 2008.
[8] H.J. Wang, C. Guo, D. Simon, and A. Zugenmaier, “Shield:

Vulnerability-Driven Network Filters for Preventing Known
Vulnerability Exploits,” Proc. ACM SIGCOMM ’04, Aug. 2004.

[9] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: End-to-End Containment of Internet
Worms,” Proc. 20th ACM Symp. Operating System Principles (SOSP),
2005.

[10] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic Blending Attacks,” Proc. 15th Usenix Security Symp.,
2006.

[11] S. Chung and A. Mok, “Allergy Attack against Automatic
Signature Generation,” Proc. Ninth Int’l Symp. Recent Advances in
Intrusion Detection (RAID), 2006.

[12] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting
Signature Learning by Training Maliciously,” Proc. Ninth Int’l
Symp. Recent Advances in Intrusion Detection (RAID ’06), Sept. 2006.

[13] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif,
“Misleading Worm Signature Generators Using Deliberate Noise
Injection,” Proc. IEEE Symp. Security and Privacy, May 2006.

[14] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on
Commodity Software,” Proc. 12th Ann. Network and Distributed
System Security Symp. (NDSS ’05), Feb. 2005.

[15] Z. Liang and R. Sekar, “Fast and Automated Generation of Attack
Signatures: A Basis for Building Self-Protecting Servers,” Proc.
12th ACM Conf. Computer and Comm. Security (CCS), 2005.

[16] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards
Automatic Generation of Vulnerability-Based Signatures,” Proc.
IEEE Symp. Security and Privacy, pp. 2-16, 2006.

[17] D. Brumley, H. Wang, S. Jha, and D. Song, “Creating Vulnerability
Signatures Using Weakest Pre-Conditions,” Proc. 20th IEEE
Computer Security Foundations Symp. (CSF), 2007.

[18] J. Crandall, Z. Su, S.F. Wu, and F. Chong, “On Deriving Unknown
Vulnerabilities from Zero-Day Polymorphic and Metamorphic
Worm Exploits,” Proc. 12th ACM Conf. Computer and Comm.
Security (CCS), 2005.

[19] H.-A. Kim and B. Karp, “Autograph: Toward Automated,
Distributed Worm Signature Detection,” Proc. 13th Usenix Security
Symp., Aug. 2004.

[20] C. Kreibich and J. Crowcroft, “Honeycomb—Creating Intrusion
Detection Signatures Using Honeypots,” Proc. Second Workshop
Hot Topics in Networks (HotNets ’03), Nov. 2003.

[21] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting,” Proc. Sixth ACM/Usenix Symp. Operating System
Design and Implementation (OSDI ’04), Dec. 2004.

[22] Z. Li, M. Shanghi, B. Chavez, Y. Chen, and M.-Y. Kao, “Hamsa:
Fast Signature Generation for Zero-Day Polymorphic Worms with
Provable Attack Resilience,” Proc. IEEE Symp. Security and Privacy,
2006.

[23] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” Proc. ACM SIGPLAN Int’l Conf.
Programming Language Design and Implementation (PLDI), 2005.

[24] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit
Testing Engine for C,” Proc. Fifth Joint Meeting of the European
Software Eng. Conf. and ACM SIGSOFT Symp. Foundations of
Software Eng. (ESEC/FSE ’05), pp. 263-272, 2005.

[25] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
A System for Automatically Generating Inputs of Death Using
Symbolic Execution,” Proc. 13th ACM Conf. Computer and Comm.
Security (CCS ’06), Oct. 2006.

[26] V. Ganesh and D. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” Proc. 19th Int’l Conf. Computer Aided Verification Conf.
(CAV ’07), Aug. 2007.

[27] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[28] D.B. Whalley, “Automatic Isolation of Compiler Errors,” ACM
Trans. Programming Languages and Systems, vol. 16, no. 5,
pp. 1648-1659, Sept. 1994.

[29] B. Ness and V. Ngo, “Regression Containment through Source
Change Isolation,” Proc. 21st Int’l Computer Software and Applica-
tions Conf. (COMPSAC ’97), p. 616, 1997.

[30] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not.
Why?” Proc. Seventh European Software Eng. Conf Held Jointly with
the Seventh ACM SIGSOFT Symp. Foundations of Software Eng.
(ESEC/FSE ’99), pp. 253-267, Sept. 1999.

[31] S. Muchnick, Advanced Compiler Design and Implementation.
Academic Press, 1997.

[32] K.R.M. Leino, “Efficient Weakest Preconditions,” Information
Processing Letters, vol. 93, no. 6, pp. 281-288, 2005.

[33] M. Barnett and K.R.M. Leino, “Weakest-Precondition of Unstruc-
tured Programs,” Proc. ACM SIGPLAN-SIGSOFT Workshop Pro-
gram Analysis For Software Tools and Eng. (PASTE), 2005.

[34] F.B. Schneider, “Enforceable Security Policies,” ACM Trans.
Information and System Security, vol. 3, no. 1, pp. 30-50, Feb. 2000.

[35] L. Lamport and F.B. Schneider, “Formal Foundation for Specifica-
tion and Verification,” Distributed Systems. Methods and Tools for
Specification. An Advanced Course., M. Paul and H. Siegert, eds.,
vol. 190, pp. 203-270, 1985.

[36] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” Proc. 12th ACM Conf. Computer and Comm. Security
(CCS ’05), pp. 340-353, 2005.

[37] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[38] J. Hopcroft, An n logn Algorithm for Minimizing the States in a Finite
Automaton, Z. Kohavi, ed., Academic Press, 1971.

[39] T. Reps, “Program Analysis via Graph Reachability,” Information
and Software Technology, vol. 40, nos. 11-12, 1998.

[40] D. Jackson and E. Rollins, “Chopping: A Generalisation of
Slicing,” Proc. Second ACM SIGSOFT Symp. Foundations of Software
Eng. (FSE), 1994.

[41] T. Reps and G. Rosay, “Precise Interprocedural Chopping,” Proc.
Third ACM SIGSOFT Symp. Foundations of Software Eng. (FSE),
1995.

[42] J. Newsome, D. Brumley, D. Song, J. Chamcham, and X. Kovah,
“Vulnerability-Specific Execution Filtering for Exploit Prevention
on Commodity Software,” Proc. 13th Ann. Network and Distributed
System Security Symp. (NDSS), 2006.

[43] D. Brumley, “Analysis and Defense of Vulnerabilities in Binary
Code,” PhD dissertation, School of Computer Science, Carnegie
Mellon Univ., 2008.

[44] D. Brumley and J. Newsome, “Alias Analysis for Assembly,”
Technical Report CMU-CS-06-180, School of Computer Science,
Carnegie Mellon Univ., 2006.

[45] P. Bosch, A. Carloganu, and D. Etiemble, “Complete �86
Instruction Trace Generation from Hardware Bus Collect,” Proc.
23rd IEEE EUROMICRO Conf., 1997.

[46] P.A. Sandon, Y. Liao, T. Cook, D. Schultz, and P.M. de Nicolas,
“NStrace: A Bus-Driven Instruction Trace Tool for PowerPC
Microprocessors,” IBM J. Research and Development, vol. 41, no. 3,
1997.

[47] “Dynamorio,” http://www.cag.lcs.mit.edu/dynamorio/, 2008.
[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V.J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation,” Proc. ACM SIGPLAN Int’l Conf. Programming Language
Design and Implementation (PLDI ’05), June 2005.

240 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

[49] N. Nethercote and J. Seward, “Valgrind: A Program Supervision
Framework,” Proc. Third Workshop Runtime Verification (RV ’03),
July 2003.

[50] A. Milenkovic, M. Milenkovic, and J. Kulick, “N-Tuple Compres-
sion: A Novel Method for Compression of Branch Instruction
Traces,” Proc. ISCA 16th Int’l Conf. Parallel and Distributed
Computing (PDCS), 2003.

[51] R.A. Uhlig and T. Mudge, “Trace-Driven Memory Simulation: A
Survey,” ACM Computing Surveys, vol. 29, 1997.

[52] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, second ed. Addison-Wesley, 2007.

[53] E. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
[54] D. Detlefs, K.R.M. Leino, G. Nelson, and J. Saxe, “Extended Static

Checking,” Technical Report 159, Compaq Systems Research
Center, Dec. 1998.

[55] QEMU—Open Source Processor Emulator, http://fabrice.bellard.
free.fr/qemu/, 2008.

[56] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static
Disassembly of Obfuscated Binaries,” Proc. 13th Usenix Security
Symp., 2004.

[57] V. Ganesh and D. Dill, “STP: A Decision Procedure for Bit-Vectors
and Arrays,” http://theory.stanford.edu/vganesh/stp, 2008.

[58] C. Barrett and S. Berezin, “CVC Lite: A New Implementation of
the Cooperating Validity Checker,” Proc. 16th Int’l Conf. Computer
Aided Verification Conf. (CAV ’04), R. Alur and D.A. Peled, eds.,
2004.

[59] Y. Ramin, “Atphttpd 0.4b,” http://jnewsome.net/src/
atphttpd.html, 2008.

[60] r code, “Atphttpd Remote Get Request Buffer Overrun Vulner-
ability,”http://www.securityfocus.com, Bugtraq ID 8709.

[61] dong-h0un U, “Passlog Daemon sl_parse Remote Buffer Overflow
Vulnerability,” http://www.securityfocus.com, Bugtraq ID 7261,
2008.

[62] pyramid-rp@hushmail.com, “ghttpd log() Function Buffer Over-
flow Vulnerability,” http://www.securityfocus.com, Bugtraq ID
5960, 2008.

[63] D. Defense, “Samba call_trans2open Remote Buffer Overflow
Vulnerability,” http://www.securityfocus.com/bid/7294/dis-
cuss, 2003.

[64] Symantec, Blaster Worm, http://www.symantec.com/security_
response/writeup.jsp?docid=2003-081113-0229-99, 2003.

[65] Symantec, W32.sqlexp.worm (Slammer Worm), http://www.
symantec.com/security_response/writeup.jsp?docid=2003-
012502-3306-99, 2003.

[66] J. King, “Symbolic Execution and Program Testing,” Comm. ACM,
vol. 19, pp. 386-394, 1976.

[67] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple
Execution Paths for Malware Analysis,” Proc. IEEE Security and
Privacy Symp., 2007.

[68] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Automating Mimicry Attacks Using Static Binary Analysis,”
Proc. 14th Usenix Security Symp., 2005.

[69] C. Flanagan and J. Saxe, “Avoiding Exponential Explosion:
Generating Compact Verification Conditions,” Proc. 28th ACM
Symp. Principles of Programming Languages (POPL), 2001.

[70] G. Balakrishnan and T. Reps, “Analyzing Memory Accesses in
�86 Executables.,” Proc. 13th Int’l Conf. Compiler Construction
(CC ’04), pp. 5-23, 2004.

[71] S.K. Debray, R. Muth, and M. Weippert, “Alias Analysis of
Executable Code,” Proc. 15th Ann. Symp. Principles of Programming
Languages (POPL ’88), pp. 12-24, 1988.

[72] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, Theory and
Techniques for Automatic Generation of Vulnerability-Based Signatures,
Technical Report CMU-CS-06-108, Computer Science Dept.,
Carnegie Mellon Univ., Feb. 2006.

[73] A.P. Sistla and E.M. Clarke, “The Complexity of Propositional
Linear Temporal Logics,” J. ACM, vol. 32, no. 3, pp. 733-749,
1985.

[74] A. Bouajjani and O. Maler, “Reachability Analysis of Pushdown
Automata,” Proc. Int’l Workshop Verification of Infinite-State Systems
(Infinity), 1996.

David Brumley received the PhD degree from
Carnegie Mellon University, Pittsburgh, Penn-
sylvania, in 2008, and he is an assistant
professor. His work focuses on computer secur-
ity. His interests also include formal methods,
compilers, and programming languages.

James Newsome received the bachelor’s de-
gree in computer engineering in 2002 from the
University of Michigan and the PhD degree in
electrical and computer engineering from Car-
negie Mellon University, Pittsburgh, in 2008. He
is currently with Carnegie Mellon University. In
the course of his thesis work, he has published
several papers on automatic detection, analysis,
and mitigation of software exploits.

Dawn Song received the PhD degree in
computer science from the University of
California, Berkeley (UC Berkeley) in 2002.
She is an assistant professor at UC Berkeley.
Prior to joining UC Berkeley, she was an
assistant professor at Carnegie Mellon Univer-
sity from 2002 to 2007. Her research interest
lies in security and privacy issues in computer
systems and networks. She is the author of
more than 70 research papers in software

security, networking security, database security, distributed systems
security, and applied cryptography. She is the recipient of various
awards, including the US National Science Foundation CAREER
Award, the IBM Faculty Award, the George Tallman Ladd Research
Award, the Sloan Award, the Okawa Foundation Research Grant
Award, and Best Paper Awards in top security conferences.

Hao Wang completed the PhD degree from the
Computer Sciences Department, University of
Wisconsin, Madison, in 2007, where he worked
under the guidance of Professor Somesh Jha.
He is currently with the Computer Science
Department, University of Wisconsin. His pri-
mary research interests are static and dynamic
techniques for malware analysis, detection, and
prevention.

Somesh Jha received the BTech degree in
electrical engineering from Indian Institute of
Technology, New Delhi, and the PhD degree in
computer science from Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, in 1996. Cur-
rently, he is an associate professor in the
Computer Science Department, University of
Wisconsin, Madison, which he joined in 2000.
His work focuses on analysis of security proto-
cols, survivability analysis, intrusion detection,

formal methods for security, and analyzing malicious code. Recently, he
has also worked on privacy-preserving protocols. He has published
more than 90 papers in highly refereed conferences and prominent
journals. He has won numerous best paper awards. He also received
the US National Science Foundation CAREER Award in 2005.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRUMLEY ET AL.: THEORY AND TECHNIQUES FOR AUTOMATED GENERATION OF VULNERABILITY-BASED SIGNATURES 241

