
Static Analysis of Mobile Apps
for Security and Privacy

Manuel Egele

megele@cmu.edu
Carnegie Mellon University

Mobile Devices are Ubiquitous

400 million iOS devices in total
(June 2012)

400 million Android devices in total
(June 2012)

2

Today, about 1 billion smart devices!

Mobile Apps – A Success Story

Apple App Store

• 775,000 apps

• 40 billion downloads

• $5 billion to developers

Google Play

• 490,000 apps

• ~ $247 million / year

3

Are All Apps Good?

4

Detecting Bad Apps

Bad apps available on App Stores

• Find & Call—leak address book from iOS and
Android, contacts receive spam SMS

• Path—circumvent denied location access

• MogoRoad—leaked phone numbers lead to
marketing calls

5

My system identified
more than 200 bad apps

6

My Vision:
Automatically assess the

security of mobile applications.

Security Properties

1. Define a security property
– Privacy of sensitive data
– Integrity of control-flow
– Correct application of crypto primitives

2. Build system to evaluate security property
– PiOS (Privacy)
– MoCFI (Control-flow integrity)
– Cryptolint (Crypto primitives)

3. Evaluate the property on real-world data
– 1,407 iOS apps
– 16,943 Android apps

7

Challenge – Software

• UI driven and interactive

• Complex runtime environments

– Objective-C runtime

– Android framework

• Apps mix type-safe and unsafe code

8

Novel analysis techniques necessary

Overview

• Mobile security challenges

• Analysis of mobile apps

– Statically detect privacy leaks

– Retrofit apps with CFI

– Misused crypto

9

Mobile Applications on iOS [NDSS’11]

• Third party developers build

applications

• Binaries vetted by Apple during

application review process

• Users expect sensitive data

to be protected from misbehaving

3rd party applications

10

1. Analyze if user’s expectation of privacy holds

2. Perform analysis on a large number of apps

Research Goals

11

Plan of Action

1. Security property: “Apps should not

access privacy sensitive information and

transmit this information over the

Internet without user intervention or

consent”

2. System to evaluate the property – PiOS

3. Evaluate on 1,407 real-world apps

12

ApplicationSpecification

Leaks data

Alert
+

Report

Does not leak data

PiOS – System Overview

13

Robust static analysis

How To ...

detect apps that access privacy sensitive information
and transmit this information over the Internet

without user intervention or consent?

1. Identify whether app accesses privacy sensitive

information – a source (e.g., address book API)

2. Identify whether app communicates with the Internet – a

sink (e.g., networking API)

3. Analyze whether data accessed in 1. is transmitted in 2.

14

Static Analysis of iOS Apps

15

Background – iOS & DRM

• Apps are encrypted and signed by Apple
– Individual key for each user

• iOS loader verifies signature and performs

decryption in memory

• Decrypt App Store apps

– Attach with debugger while app is running

– Dump decrypted memory regions

– Reassemble binary

16

Background – Static Analysis

• Reason about program without executing it

• Terminology and concepts:

– Basic Block

– Control Flow Graph (CFG)

– Call Graph (CG)

– Super Control Flow Graph (sCFG)

17

Basic Block

A maximal sequence of instructions that
always execute in the same order together.

18

1. x = y + z

2. z = t + i

3. x = y + z

4. z = t + i

5. jmp 1

6. jmp 3

3 basic blocks

Control Flow Graph (CFG)

A static Control Flow Graph is a graph where

– each vertex vi is a basic block, and

– there is an edge (vi, vj) if there may be a transfer
of control from block vi to block vj.

Historically, the scope of a CFG is limited to a
function or procedure, i.e., intra-procedural.

19

a = readline()
x = 0
if (a > 5) {
t = “gt”
x = 42

} else {
t = “lte”
x = 7

}
print(“input was “ +
t + “ 5”)

CFG – Example

20

a = readline();
x = 0

if (a > 5)

print (…)

t = “lte”
x = 7

t = “gt”
x = 42

• each vertex vi is a basic block, and

• there is an edge (vi, vj) if there may be a transfer

of control from block vi to block vj.

Call Graph

Nodes are functions. There is an edge (vi, vj) if
function vi calls function vj.

void orange()

{

green();

red();

}

void red()

{

...

}

void green()

{

green();

orange();

}

21

orange red green

Superimpose CFGs of all procedures over the
call graph

Super Control Flow Graph

22

...

... ...

...

...

... ...

...

...

...

...

PiOS – Static Analysis

1.Extract super control flow graph from
binary application

2.Identify sources of sensitive information and
network communication sinks

3.Data flow analysis between sources & sinks

Start from
Application Binary

Step 1:
Extract Super CFG

Step 2: Identify
Sources and Sinks

Step 3:
Data-Flow Analysis

23

Running Example (Tank Wars)

24

Static Analysis of iOS Apps

IDA Pro: Call-graph for “Tank Wars”

25

_objc_msgSend

Extract Super CFG

26

PiOS – Analysis

• Most iOS apps are written in Objective-C

• Cornerstone: objc_msgSend dispatch function

• Task: Resolve type of receiver and value of selector

for objc_msgSend calls

– Backwards slicing

– Forward propagation of constants and types

27

objc_msgSend
Dynamic Dispatch Function

Arguments
• Receiver (Object)

• Selector (Name of method, string)

• Arguments (vararg)

Method look-up at runtime
• Traverses class hierarchy

• Calls method denoted by selector

• Information available at runtime,
challenging to extract statically

Similar to reflection in Java
• Objective-C only uses reflection

28

PiOS – Analysis (Super CFG)

Novel analysis approach for object-oriented binaries
written in Objective-C based on two key techniques:

1) Resolve type of receiver and value of selector for

objc_msgSend calls

a) Backwards slicing [Weiser ‘81]

b) Forward propagation of constants and types

2) Multiple candidate types for receiver

⇒ class hierarchy

29

objc_msgSend Example

1 LDR R0, =off_24C58
2 LDR R1, =off_247F4
3 LDR R0, [R0]
4 LDR R1, [R1]
5 BLX _objc_msgSend
...

13 BLX _objc_msgSend

Type of R0 Value of R1

UIDevice
currentDevice

:

Q: What method is invoked here?

30

(fmt: “uniqueid=%@&scores=%d”)

NSString:initWithFormat

PiOS – Analysis (Super CFG)

Novel analysis approach for object-oriented binaries
written in Objective-C based on two key techniques:

1) Resolve type of receiver and value of selector for

objc_msgSend calls

a) Backwards slicing [Weiser ‘81]

b) Forward propagation of constants and types

2) Multiple candidate types for receiver

⇒ class hierarchy

33

Result: Super-CFG constructed from successfully
resolved calls to objc_msgSend

Identify Sources and Sinks

34

PiOS – Finding Privacy Leaks

• Based on super-CFG

• Reachability Analysis (find paths)

– From interesting sources

– To network sinks

• Sources and sinks identified by API calls

35

Dataflow Analysis

36

Data-Flow to Model Security Properties

• Tracks how information is propagated through an
application or system

• Data-flow captures confidentiality problems well
(e.g., how is sensitive information used)

37

Now we can detect apps that access privacy sensitive
information and transmit this information over the

Internet without user intervention or consent.

PiOS – Evaluation

• 1,407 Applications
(825 from App Store, 582 from Cydia)

• Pervasive ad and app-telemetry libraries

– 772 apps (55%) contain at least one such library

– Leak UDIDs, GPS coordinates, etc.

• Apple requires that libraries are

statically linked

38

Advertisement Libraries

• 82% of apps that use Ads use AdMob (Google)

• Send UDID and AppID on start and ad-request

• Ad company can build detailed usage profiles

• Problem: Location-aware apps

– Access to GPS is granted per app/binary

– Libraries linked into location-aware apps

have access to GPS

39

PiOS – Evaluation: Leaked Data

Source #App Store
825

#Cydia
582

Total
1407

DeviceID 170 (21%) 25(4%) 195(14%)

Location 35(4%) 1(0.2%) 36(3%)

Address book 4(0.5%) 1(0.2%) 5(0.4%)

Phone number 1(0.1%) 0(0%) 1(0.1%)

Safari history 0(0%) 1(0.2%) 1(0.1%)

Photos 0(0%) 1(0.2%) 1(0.1%)

40

• UDIDs cannot be linked to a person directly
• But UDID can be aggregated with additional

information e.g.,
– Google app can link UDID to a Google account

– Social networking app get user's profile (often name)

• Address book contents
– Apps had unrestricted access to the address book

– Gowalla transmits the complete address book

– Feb. 2012: Media picks up this and similar cases

⇒ Apple changed policies and implements restrictions

41

PiOS – Evaluation: Case Studies

Impact in Popular Media

42

Overview

• Mobile security challenges

• Analysis of mobile apps

– Statically detect privacy leaks

– Retrofit apps with CFI

– Misused crypto

43

Attacks on Mobile Software

• Developers make mistakes (bugs)

• A bug becomes a security vulnerability if it
can be exploited through an attack

• Attackers can compromise a device through
such attacks

44

Control Flow Attacks

• Many attacks rely on hijacking of control flow
– Buffer overflows

– Function pointer overwrites

• iOS has powerful defenses
– W ⊕ X

– Stack canaries

– Mandatory code signing

– ASLR

• Attacks leverage return-oriented-programming
– pwn2own contest

45

46

5

6

3

4

2

1

Shellcode
Library function

Control Flow Integrity [Abadi’05]

MoCFI – Static Analysis [NDSS'12]

• sCFG recovery using PiOS

• Identify branch instructions

• Identify instructions implementing “return”

– ldr PC,[R12]

– pop {R4-R7,PC}

• Bundle meta information with the app

48

MoCFI – Dynamic Enforcement

• Enforcement code in dynamic library

• Library parses the metadata and modifies
application in memory

– Rewrite control-flow instructions to enforce CFI
(i.e., only perform the original control-flow
instruction if validation succeeds)

49

Attackers can no longer hijack control flow

Overview

• Mobile security challenges

• Analysis of mobile apps

– Statically detect privacy leaks

– Retrofit apps with CFI

– Misused crypto

50

Security Properties

Approach is to evaluate security properties

• Privacy of sensitive data

• Integrity of control-flow

• What about programming errors?

51

Do developers apply crypto correctly?

Detecting Crypto Misuse

• App developers handle sensitive data

• They realize encryption is good

• App developers are no security experts

52

Plaintext

Block Cipher Modes (ECB)

53

Blockcipher

Encrypt one block of n-bit length plaintext into one
block of n-bits of cipher text (For AES128, n = 128)

Electronic Code Book (ECB) Mode

Key

Plaintext

AES128

Ciphertext

Key

Plaintext

AES128

Ciphertext

Key

Plaintext

AES128

Ciphertext

Block Cipher Modes (ECB)

54

AES128/ECBPlaintext

Block Cipher Modes (CBC)

55

Blockcipher

Encrypt one block of n-bit length plaintext into one
block of n-bits of cipher text (For AES128, n = 128)

Initialization
Vector

Key

Plaintext

Ciphertext

AES128

⊕

Key

Plaintext

Ciphertext

AES128

⊕ Cipher Block Chaining
(CBC) Mode

Block Cipher Modes (CBC)

56

AES128/CBCPlaintext

Crypto APIs in Android

Cryptographic service providers (CSP) are
interfaces to:

– (A-) symmetric crypto

– MAC algorithms

– Key generation

– TLS, OpenPGP, etc.

Android uses BouncyCastle as CSP

BouncyCastle is compatible to Java Sun JCP

57

Commonly Used Crypto Primitives

Symmetric encryption schemes

Block ciphers: AES/[3]DES

Encryption modes: ECB/CBC/CTR

Password-based encryption

Deriving key material from user passwords

Pseudo random number generators

Random seed

58

IND-CPA

Cracking resistance

Secure seed

Common Rules

1) Do not use ECB mode for encryption

2) Do not use a static IV for CBC mode

3) Do not use constant symmetric encryption keys

4) Do not use constant salts for PBE

5) Do not use fewer than 1,000 iterations for PBE

6) Do not use static seeds to seed SecureRandom()

59

Cryptolint

Static program analysis techniques

1. Extract a super control flow graph from app

2. Identify calls to cryptographic APIs

3. Static backward slicing to evaluate security rules

60

Automatically detect if developers do not
use crypto correctly!

Static Program Slicing [Weiser ‘81]

Slicing criterion:

Program point p and a variable x

Slice:

All program instructions that might affect the value

of x at point p

61

Rule 1: Thou Shalt Not Use ECB

Transformation string specifies:

– Algorithm

– Block Cipher Mode (optional)

– Padding (optional)

Cipher.getInstance(“AES/ECB/PKCS7Padding”, “BC”);

Default for block ciphers: ECB (undocumented)

63

Problem: Bad defaults

Rule 2: Thou Shall Use Random IVs

CBC$ algorithm specifies random IV

c = Cipher.getInstance(“AES/CBC/PKCS7Padding”);

c.getIV();

Developer can specify IV herself

public final void init (int opmode, Key key,
AlgorithmParameterSpec params)

IvParameterSpec(byte[] iv)

64

Problem: Insufficient Documentation

Key embedded in application ⇒ not secret

Symmetric encryption schemes often specify a
randomized key generation function

To instantiate a key object:
SecretKeySpec(byte[] key, String algorithm)

Rule 3: Thou Shalt Not Use Static
Symmetric Encryption Keys

65

Problem: Developer Understanding

Rule 4: Thou Shalt Not Use Constant
Salts for Password Based Encryption

RFC2898 (PKCS#5):

“4.1 Salt … producing a large set of keys … one is
selected at random according to the salt.”

PBEParameterSpec(byte[] salt,
int iterationCount)

67

Problem: Poor Documentation

Rule 5: Thou Shalt Not Use Small
Iteration Counts for PBE

RFC2898 (PKCS#5):

“4.2 Iteration Count: For the methods in this
document, a minimum of 1,000 iterations is

recommended.”

PBEParameterSpec(byte[] salt,

int iterationCount)

68

Problem: Poor Documentation

Rule 6: Thou Shalt not Seed
SecureRandom()With Static Values

Android documentation for SecureRandom() PRNG:

“This class generates cryptographically secure pseudo-
random numbers. It is best to invoke SecureRandom

using the default constructor. “

…

“Seeding SecureRandom may be insecure”

SecureRandom() vs. SecureRandom(byte[] seed)

69

Problem: Developer Understanding

Evaluation

• 145,095 Apps downloaded from Google Play

• Only Apps that use

– javax/crypto

– java/security

– Filter popular libraries (advertising, statistics, etc.)

• 11,748 Apps analyzed

70

Evaluation

71

11,748 apps use crypto

88% have major crypto problem

65% use ECB

31% use static
symmetric key

16% use known IV for CBC

14% misuse SecureRandom()

13% use static salt
for passwords

13% use small
iteration counts

Password Manager (2010)

private String encrypt(byte [] key, String clear) {
byte [] encrypted;
byte [] salt = new byte[2];
...
Random rnd = new Random();
//Cipher cipher = Cipher.getInstance("AES");
Cipher cipher =

Cipher.getInstance("AES/ECB/PKCS7Padding", "BC");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
rnd.nextBytes(salt);
cipher.update(salt);
encrypted = cipher.doFinal(clear.getBytes());

72

Password Manager (+6 days)

private String encrypt(byte [] key, String clear) {
byte [] encrypted;
byte [] salt = new byte[2];
...
Random rnd = new Random();
Cipher cipher =

Cipher.getInstance("AES/CBC/PKCS7Padding", "BC");
byte [] iv = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivSpec);
rnd.nextBytes(salt);
cipher.update(salt);
encrypted = cipher.doFinal(clear.getBytes());

73

Password Manager (+2yrs, 5mo)

private String encrypt(byte [] key, String clear) {
...
Random rnd = new Random();
Cipher cipher =

Cipher.getInstance("AES/CBC/PKCS7Padding", "BC");
byte [] iv = new byte[16];
rnd.nextBytes(iv);
IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE,skeySpec,ivSpec);
encrypted = cipher.doFinal(clear.getBytes());
...

74

Password Manager (key)

public static byte []

hmacFromPassword(String password) {

byte [] key = null;

...

Mac hmac = Mac.getInstance("HmacSHA256");

hmac.init (new SecretKeySpec

("notverysecretiv".getBytes("UTF-8"), "RAW"));

hmac.update(password.getBytes("UTF-8"));

key = hmac.doFinal();

...

return key;

75

How Do Developers Learn Crypto?

76

77

“Developers should not be able to inadvertently
expose key material, use weak key lengths or

deprecated algorithms, or improperly use
cryptographic modes.”

78

Crypto in Apple iOS

• Apple provides ECB and CBC

• Better default (CBC)

– But: man CCCryptor (IV … initialization vector)
“If CBC mode is selected and no IV is provided,
an IV of all zeros will be used.”

– Constant IV: m[0] == m’[0] ⇒ c[0] == c’[0]

79

80

Automatically assess the security

of mobile applications.
 Privacy

 Control-flow

 Crypto misuse

Many others

Let’s make mobile secure!

82

> 1 billion > 1 million

83

Questions?

