Static Analysis of Mobile Apps
for Security and Privacy

Manuel Egele

megele@cmu.edu
Carnegie Mellon University

Mobile Devices are Ubiquitous

400 Million

100m | 400Mm

Total Activations Total Activations
¢
e’

I0S devices sold through June =

400 million iOS devices in total 400 million Android devices in total
(June 2012) (June 2012)

Today, about 1 billion smart devices!

Mobile Apps — A Success Story

&
Apple App Store (J |
* 775,000 apps
* 40 billion downloads

» $5 billion to developers

Google Play l',&
* 490,000 apps /
* ~ $247 million / year

Google play

Are All Apps Good?

TPV VW
2 L 2 2

PEVVOY
LSl Ll

g
.";/

BEEERE
TOVVPVW
U2 i 3
TPV PVW

Detecting Bad Apps

Bad apps available on App Stores

 Find & Call—leak address book from iOS and
Android, contacts receive spam SMS

e Path—circumvent denied location access

* MogoRoad—Ileaked phone numbers lead to
marketing calls

My system identified

more than 200 bad apps

My Vision:
Automatically assess the
security of mobile applications.

Security Properties

1. Define a security property
— Privacy of sensitive data
— Integrity of control-flow
— Correct application of crypto primitives

2. Build system to evaluate security property
— PiOS (Privacy)
— MoCFI (Control-flow integrity)
— Cryptolint (Crypto primitives)

3. Evaluate the property on real-world data
— 1,407 10S apps
— 16,943 Android apps

Challenge — Software

Ul driven and interactive Y aYXa

* Complex runtime environments 8 \J;

— Objective-C runtime

— Android framework

* Apps mix type-safe and unsafe code

Novel analysis techniques necessary

Overview

* Mobile security challenges

* Analysis of mobile apps

— Statically detect privacy leaks
— Retrofit apps with CFI
— Misused crypto

Mobile Applications on iOS [NDSS’11]

* Third party developers build

applications

* Binaries vetted by Apple during

application review process

* Users expect sensitive data
to be protected from misbehaving
3" party applications

10

Research Goals

1. Analyze if user’s expectation of privacy holds

A CRYPTO NERD's WHAT WoULD
1 IMAGINATION 1 ACTUALLY HAPPEN:
HIS LAPTOPS ENCRYPTED. H'S LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
l:msTER To CRACK \T. THIS $5 WRENCH UNTIL
NO GooD! TS HE‘I'ELlSUS.THEPPfﬁI-DED_
uoGe -BIT REP&" GOT T,

= iR

2. Perform analysis on a large number of apps

ﬁﬁﬁﬁfhﬁhhhhh

e

e ’ri, /r“ @ r“ r“ r“ rf rf

o

P N P N Z e P
] y y y y))))]]]

e I S

Plan of Action

1. Security property: “Apps should not
access privacy sensitive information and
transmit this information over the
Internet without user intervention or

consent”
2. System to evaluate the property - PiOS

3. Evaluate on 1,407 real-world apps

12

PiOS — System Overview

Specification Application

Robust static analysis

1111111111
1111111111
1111111111

0000000000
0000000000

Does not leak data Leaks data

13

How To ...

detect apps that access privacy sensitive information
and transmit this information over the Internet
without user intervention or consent?

1. Identify whether app accesses privacy sensitive

information - a source (e.g., address book API)

2. Identify whether app communicates with the Internet - a
sink (e.g., networking API)

3. Analyze whether data accessed in 1. is transmitted in 2.

14

Static Analysis of iOS Apps

__text:00002AB8 [:GDE 32

__text:00002AB8

__text:00002A88 EXPORT start
__text:00002A88 =tart

__text:00002AB8 MRCLS pl, &, S5P,cl3,c0, 3
__text:00002ABC STRMNE R5, [R1,R9,6ASR#20]
__text:00002A90 STRHIB R10, [R10], #-0xC5é
__text:00002A54 TEQGE R7, R3,L5L El

Please confinm

The file is encrypted. The disassembly of it will likely be useless.

:tmr. ;
__tex /v\ Do you want to continue?

Background —iOS & DRM
* Apps are encrypted and signed by Apple

— Individual key for each user

* i0S loader verifies signature and performs

decryption in memory

* Decrypt App Store apps
— Attach with debugger while app is running
— Dump decrypted memory regions

— Reassemble binary

16

Background — Static Analysis

* Reason about program without executing it

* Terminology and concepts:
— Basic Block
— Control Flow Graph (CFG)
— Call Graph (CG)
— Super Control Flow Graph (sCFG)

17

Basic Block

A maximal sequence of instructions that
always execute in the same order together.

=— 3 basic blocks

18

Control Flow Graph (CFG)

A static Control Flow Graph is a graph where
— each vertex v, is a basic block, and

— there is an edge (v, vj] if there may be a transfer
of control from block v; to block v;.

Historically, the scope of a CFG is limited to a
function or procedure, i.e., intra-procedural.

19

CFG — Example

* each vertex v; Is a basic block, and
» there Is an edge (v;, v) If there may be a transfer
of control from block v; to block v;.

"a = readline() S a = readline();
X =0 X =0
\i'F (a > 5) { Y, if (a > 5)
(-t — f(gtJJ N
. X =42 .
} else { t = “gt”
Tt = “Tte” D < = 42
X =7

‘print(“input was “ +
t + (3 5).’)

\

20

Call Graph

Nodes are functions. There is an edge (v, v,) it
function v; calls function v;.

volid orange () volid red() volid green ()

{ { {

green () ; e green () ;
red () ; } orange () ;
}

}

orange

21

Super Control Flow Graph

Superimpose CFGs of all procedures over the
call graph

22

PiOS — Static Analysis

S

0101010101
0101010101

H E

Start from Step 1: Step 2: Identify Step 3:
Application Binary Extract Super CFG Sources and Sinks Data-Flow Analysis

1.Extract super control flow graph from
binary application

2.1dentify sources of sensitive information and
network communication sinks

3.Data flow analysis between sources & sinks

(\ 4 N
001100101%
1010101101
1010101010 ::> :> :>
1001010101
—

23

Running Example (Tank Wars)

24

Static Analysis of iOS Apps

IDA Pro: Call-graph for “Tank Wars”

_objc_msgSend

25

Extract Super CFG

f —)
0011001010
1010101101
1010101010 - > m ——
1001010101
0101010101
0101010101

Sa6a

26

PiOS — Analysis

* MostiOS apps are written in Objective-C

* Cornerstone: objc_msgSend dispatch function

* Task: Resolve type of receiver and value of selector

for objc_msgSend calls

— Backwards slicing
— Forward propagation of constants and types

27

objc_msgSend

Dynamic Dispatch Function

Arguments

* Receiver (Object)

* Selector (Name of method, string)
* Arguments (vararg)

Method look-up at runtime

* Traverses class hierarchy

* Calls method denoted by selector

* Information available at runtime,
challenging to extract statically

Similar to reflection in Java
* Objective-C only uses reflection

28

PiOS — Analysis (Super CFG)

Novel analysis approach for object-oriented binaries
written in Objective-C based on two key techniques:

1) Resolve type of receiver and value of selector for
objc_msgSend calls

a) Backwards slicing [Weiser ‘81]

b) Forward propagation of constants and types

2) Multiple candidate types for receiver
= class hierarchy

29

D

A A AN

R

objc_msgSend Example

R0,
1,
R0,
1,

=0ff 24C58 —UlDevice
=0ff_247F4 —currentDevice

[RO]
[R1]

NSString:init
(fmt: “uniqueid

51X _objc_nsgsent

gl Q: What method is invoked here?

WithFormat
cor‘es)

30

PiOS — Analysis (Super CFG)

Novel analysis approach for object-oriented binaries
written in Objective-C based on two key techniques:

1) Resolve type of receiver and value of selector for
objc_msgSend calls
a) Backwards slicing [Weiser ‘81]
b) Forward propagation of constants and types

2) Multiple candidate types for receiver
= class hierarchy

Result: Super-CFG constructed from successfully

resolved calls to objc_msgSend

33

ldentify Sources and Sinks

- ~
0011001010
1010101101
1010101010 I:‘>
1001010101
0101010101
0101010101
—

34

PiOS — Finding Privacy Leaks

Based on super-CFG
Reachability Analysis (find paths)

— From interesting sources

N

— To network sinks

Sources and sinks identified by API calls

35

Dataflow Analysis

0011001010
1010101101
1010101010
1001010101
0101010101
0101010101

36

Data-Flow to Model Security Properties

* Tracks how information is propagated through an
application or system

* Data-flow captures confidentiality problems well
(e.g., how is sensitive information used)

Now we can detect apps that access privacy sensitive

information and transmit this information over the
Internet without user intervention or consent.

37

PiOS — Evaluation
* 1,407 Applications
(825 from App Store, 582 from Cydia)

* Pervasive ad and app-telemetry libraries

— 772 apps (55%) contain at least one such library

— Leak UDIDs, GPS coordinates, etc.

* Apple requires that libraries are

statically linked

38

Advertisement Libraries

82% of apps that use Ads use AdMob (Google)
Send UDID and AppID on start and ad-request

Ad company can build detailed usage profiles
Problem: Location-aware apps
— Access to GPS is granted per app/binary

— Libraries linked into location-aware apps
have access to GPS

39

PiOS — Evaluation: Leaked Data

Source #App Store #Cydia Total
82/5\ 582 1407
DevicelD 170((21%)) 25(4%) 195(14%)
Location 35(4% 1(0.2%) 36(3%)
Address book 1(0.5%) 1(0.2%) 5(0.4%)
Phone number 1M 0(0%) 1(0.1%)
Safari history 0(0%) 1(0.2%) 1(0.1%)
Photos 0(0%) 1(0.2%) 1(0.1%)

40

PiOS — Evaluation: Case Studies

From: iTunes Store =smsmac@apple.com>
To: iphonedev@iseclab.org
Subject: Re: App Store; Follow-up: 104124416
Date: Sun, 9 May 2010 16:00:45 -0700 (PDT) (05/09/2010 07:00:45 PM)

Dear Manuel,
Thank you for your patience while this matter was under review.
I understand you have privacy concerns with the "Gowalla" application.

For information on Apple's Privacy Policy, you can review the Terms of Sale for
the App Store:

I located a section for you that applies to your concern:

"Apple is not responsibledfor Third Party Products, the content therein, or any
les or claj you or any other party may have relating to that

Third Party Product or vyour use of the Third Party Product.”

You may also consider contacting the developer regarding your concerns about
this application.

I was able to locate this emalt guuTeEsSs T(OT YOO, trom thelir website

(http://gowalla.com/) in which you may contact the developer about their
Privacy Policy:

live@gowalla.com

41

ars

ars technica

BUSINESS

GUIDES REVIEWS APPS

Impact in Popular Media

GADGETS GAMING

12:37PM

Developers say Apple needs to overhe

By Chris Foresman | Published f

technology
review

Published by MIT

English | en Espafiol | auf Deutsch | in taiano | 100 | inIndia | ¢

HOME COMPUTING -

Technology Review

A o MFAAT,
A new progr

Users have learned over the last few
years that Apple’s “walled garden”

‘ approach to third party apps isn’t
quite as protective of their sensitive
data as it might sound. More
surprising, perhaps, is another
revelation: that the popular
unauthorized apps outside those walls
tend to respect privacy better than the

ENER

approved ones inside.
COMPUTINC

Want tc As the scandal swirled this past week _
an App for That

lyzes iPhone apps and finds the

ones that are grabbing y

TUESDAY, JANUARY 25,2011 | BY ROBERT LEMOS

Audio »
Mare than half of all iPhone apps collect and share a

unigue code that could be used to track users without their
knowledge, according to a recent study.

Forbes

Unauthorized iPhone And iPad

e Apps Leak Private Data Less Often
Than Approved Ones

ch | intaliano | C1C0 | inindia | em Portugués
COMMUNICATIONS

e | s
COMMUNICATIONS

Apple Ignored Warning on
Address-Book Access

lhe company Kne

2010 that an app was grabbing
“Path” Would Like To Access
Your Contacts

eere nerco] farmatio
users personal information.

THURSDAY, FEERUARY 16, 2012 | EY TOM SIMOMNITE

Not all apps recover successfully

Audio =

)

Data Less Than Approved Ones

from having their Contacts access
revoked.

Don't Allow [12:114M

—

A screenshot of the ContactPrivacy feature in the unofficial

Cydia i0S app platform
"In the wake of news that the iFhone app Fath uploads users' entire contact lists without permission, Forbes dy
Systems Lab that aimed to analyze how and where iFhone apps transmit users' private data. Mot only did the r
could potentially identify users and allow profiles to be huilt of their activities; they also discovered that program
far less frequently than Apple's approved apps. The researchers ran their analysis on 1,407 free apps (FDF) on
for instance, compared with only four percent of unauthorized apps.”

LFI

100 of 179 comments loaded

42

Overview

* Mobile security challenges

* Analysis of mobile apps

— Statically detect privacy leaks
— Retrofit apps with CFI
— Misused crypto

43

Attacks on Mobile Software

* Developers make mistakes (bugs)

* A bug becomes a security vulnerability if it
can be exploited through an attack

 Attackers can compromise a device through

such attacks s amess
JailbreakMe

by comex (et al.

. ‘j ilbreakMe
Jailbreak to get tweaks and apps
Apple won't allow in the App Store.
Free, legal, safe.

You should sync with iTunes before
using this tool.

More Info »

44

Control Flow Attacks

* Many attacks rely on hijacking of control flow
— Buffer overflows
— Function pointer overwrites

* i0S has powerful defenses
- WEX
— Stack canaries
— Mandatory code signing
— ASLR
* Attacks leverage return-oriented-programming
— pwnZown contest

45

Control Flow Integrity [Abadi’05]

1

e Shellcode
Library function

46

MoCFI — Static Analysis [NDSS'12]

* sSCFG recovery using PiOS
* Identify branch instructions

* Identify instructions implementing “return”
—1dr PC,[R12]
— pop {R4-R7,PC}

* Bundle meta information with the app

48

MoCFl — Dynamic Enforcement

* Enforcement code in dynamic library

* Library parses the metadata and modifies
application in memory
— Rewrite control-flow instructions to enforce CFI

(i.e., only perform the original control-flow
instruction if validation succeeds)

Attackers can no longer hijack control flow

49

Overview

* Mobile security challenges

* Analysis of mobile apps

— Statically detect privacy leaks
— Retrofit apps with CFI
— Misused crypto

50

Security Properties

Approach is to evaluate security properties

* Privacy of sensitive data
* Integrity of control-flow

 What about programming errors?

Do developers apply crypto correctly?

51

Detecting Crypto Misuse

* App developers handle sensitive data
* They realize encryption is good
* App developers are no security experts

Plaintext

52

Block Cipher Modes (ECB)

Blockcipher

Encrypt one block of n-bit length plaintext into one
block of n-bits of cipher text (For AES128, n = 128)

Plaintext Plaintext Plaintext
EEEEEEEE EEEEEEEE EEEEEEEE

l l l

Key—> BUREVAS Key—> BVSREWAY Key—> [VORNVAS

l l l

VA VA A A VA A VA

ANV
Ciphertext Ciphertext Ciphertext

Electronic Code Book (ECB) Mode

AV

53

Block Cipher Modes (ECB)

Plaintext AES128/ECB

Block Cipher Modes (CBC)

Blockcipher

Encrypt one block of n-bit length plaintext into one
block of n-bits of cipher text (For AES128, n = 128)

Plaintext Plaintext
HEEEEEER HEEEEEER
Initialization
Vector Y Y, Cipher Block Chaining
| I—>€
D D (CBC) Mode
v \ 4

Key—> RVINEVAS Key—> [VIREAS

:

T %
Ciphertext Clphertext

55

Block Cipher Modes (CBC)

Plaintext AES128/CBC

Crypto APIs in Android

Cryptographic service providers (CSP) are
interfaces to:

— (A-) symmetric crypto

— MAC algorithms

— Key generation

— TLS, OpenPGP, etc.
Android uses BouncyCastle as CSP

BouncyCastle is compatible to Java Sun JCP

57

Commonly Used Crypto Primitives

Symmetric encryption schemes
Block ciphers: AES/|3]DES
Encryption modes: ECB/CBC/CTR

Password-based encryption Cracking resistance

Deriving key material from user passwords

Pseudo random number generators

Random seed

58

1)
2)
3)
4)
5)
6)

Common Rules

Do not use ECB mode for encryption

Do not use a static IV for CBC mode

Do not use constant symmetric encryption keys
Do not use constant salts for PBE

Do not use fewer than 1,000 iterations for PBE

Do not use static seeds to seed SecureRandom()

59

Cryptolint

Static program analysis techniques
1. Extract a super control flow graph from app
2. ldentify calls to cryptographic APIs
3. Static backward slicing to evaluate security rules

Automatically detect if developers do not

use crypto correctly!

60

Static Program Slicing [Weiser ‘81]

Slicing criterion:
Program point p and a variable x

Slice:

All program instructions that might affect the value

of X at point p

61

Rule 1: Thou Shalt Not Use ECB

Transformation string specifies:
— Algorithm
— Block Cipher Mode (optional)
— Padding (optional)

Cipher.getInstance(CAES/ECB/PKCS7Padding”) “BC”);

Default for block ciphers: ECB (undocumented)

Problem: Bad defaults

63

Rule 2: Thou Shall Use Random 1Vs

CBC$ algorithm specifies random IV

c = Cipher.getInstance(“AES/CBC/PKCS7Padding”);
c.getIV();

Developer can specify IV herself

public final void init (int opmode, Key key,

AlgorithmParameterSpec params)
IvParameterSpec @

Problem: Insufficient Documentation

64

Rule 3: Thou Shalt Not Use Static
Symmetric Encryption Keys

Key embedded in application = not secret

Symmetric encryption schemes often specify a
randomized key generation function

To instantiate a key object: .
Secr‘etKeySpec String algorithm)

Problem: Developer Understanding

65

Rule 4: Thou Shalt Not Use Constant
Salts for Password Based Encryption

RFC2898 (PKCS#5):

“4.1 Salt ... producing a large set of keys ... one is
selected at random according to the salt.”

PBEParameterSpec(byte|] s@

int iterationCount)

Problem: Poor Documentation

67

Rule 5: Thou Shalt Not Use Small
Iteration Counts for PBE

RFC2898 (PKCS#5):

“4.2 Iteration Count: For the methods in this
document, a minimum of 1,000 iterations is
recommended.”

PBEParameterSpec(byte[] salt,

dnt iterationCount)

Problem: Poor Documentation

68

Rule 6: Thou Shalt not Seed
SecureRandom() With Static Values

Android documentation for SecureRandom() PRNG:

“This class generates cryptographically secure pseudo-
random numbers. It is best to invoke SecureRandom

using the default constructor. “ g—-.v"';‘-"

= ',
’y
/

o F
Mo SN

“Seeding SecureRandom may be insecure

eee '
(X X]
o009 !

SecureRandom() V@r‘eRandom(byte[] s@

Problem: Developer Understanding

69

Evaluation

145,095 Apps downloaded from Google Play

Only Apps that use
— javax/crypto
— java/security

— Filter popular libraries (advertising, statistics, etc.)

11,748 Apps analyzed

70

Evaluation

11,748 apps use crypto
13% use static salt

() @ | T I
for passwords

65% use ECB N e i W

b @ - W

Eo W _
: B @ % 319% use static

13% use small CESESE-RY symmetric key

iteration counts & e @

16% use known IV for CBC

14% misuse SecureRandom()

88% have major crypto problem

71

Password Manager (2010)

private String encrypt(byte [] key, String clear) {

byte [] encrypted;
byte [] salt = new byte[2];

Random rnd = new Random();
//Cipher cipher = Cipher.getInstance("AES");
Cipher cipher =

Cipher.getInstance(TAES/ECB/PKCS7Padding®, "BC");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);

rnd.nextBytes(salt);
cipher.update(salt);
encrypted = cipher.doFinal(clear.getBytes());

72

Password Manager (+6 days)

private String encrypt(byte [] key, String clear) {

byte [] encrypted;
byte [] salt = new byte[2];

Random rnd = new Random();
Cipher cipher =

Cipher.getInstanc ing™> "BC");
byte [] iv = 9,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivSpec);
rnd.nextBytes(salt);

cipher.update(salt);

encrypted = cipher.doFinal(clear.getBytes());

73

Password Manager (+2yrs, 5mo)

private String encrypt(byte [] key, String clear) {

<E§E§ég~rnd = new Randé@iii)
Cipher cipher—

Cipher.getInstance(CAES/CBC/PKCS7Padding”y "BC");
byte [] iv = new byte[16];

rnd.nextBytes(iv
IvParametersSpec ivSpec = new IvParameterSpec(iv);

cipher.init(Cipher.ENCRYPT_MODE, skeySpec,ivSpec);
encrypted = cipher.doFinal(clear.getBytes());

74

Password Manager (key)

public static byte []
hmacFr‘omPasswor‘d(Str'ing {
byte [] key = null;

Mac hmac = Mac.getInstance("HmacSHA256");
hmac.init (new SecretieySpec

('Qotverysecretiv)/ getBytes("UTF-8"), "RAW"));
hmac.update(p getBytes("UTF-8"));
key = hmac.doFinal();

return key;

75

How Do Developers Learn Crypto?

Google

android crypto example]

Google Search I'm Feeling Lucky

76

Google

android crypto example n

) www.androidsnippets.com/encryptdecrypt-strings
I
private static byte[] encrypt(byte[] raw, byte[] clear) throws Exception {
SecretkeySpec skeySpec = new Secretkey cl . "AES"Y,
Cipher cipher = Cipher.getInstancd("AES")
rinbhar AmitiMrAinkhar FMCRVET MNANE clave A
() www.example8.com/category/view/id/15562

T

ws Exception

skeySpec = new SecretkeySpec r .
cipher = Cipher.getInstancegl 'AES/ECB/PKCSEPadding' I

E’*j @ stackoverflow.com/questions/6788018/android-encry

yption-decryption-with-aes

2 Answers active oldest votes

y . You could use functions like these:

34 private static byte[] encryptibyte[] raw, byte[] clear)
-w SecretkeySpec skeySpec = new Secre

c(raw, "AES"),
Cipher cipher = f.:j.|:-I‘|-':|'.getInstanc:
V cipher.init(Cipher. ENCRYPT_MODE, sPwySpef)
byte[] encrypted = cipher.doFinal{clear);
return encrypted;

throws Exception {

by

E_ﬂ) www.java2s.com/Code/Android/Security/AESEncryption.htm

skeySpec = new SecretkeySpec(k . —
cipher = Cipher.getInsta 'AES/ECB/PECSSFadding"),
EVamuUromladpp QugspoL e . FeRdailpie-[Or-2nc iy e dllu- U e Ty —

l by Klaus Villaca - in 44 Google+ circles
Mow 17, 2012 - Example for Encrypt and Decrypt using

B T T T T

AES with Android 4.2 77

I T -

keyCzar

i

“Developers should not be able to inadvertently
expose key material, use weak key lengths or
deprecated algorithms, or improperly use
cryptographic modes.”

Crypter crypter = new Crypter("/path/to/your/keys");
String ciphertext = crypter.encrypt("Secret message");

Supported Operations

Encrypt Decrypt Authenticated Encryption, used to send messages

78

Crypto in Apple iOS

* Apple provides ECB and CBC
* Better default (CBC)

— But: man CCCryptor (IV ... initialization vector)
“If CBC mode is selected and no IV is provided,
an IV of all zeros will be used.”

— Constant [V: m[0] ==m’[0] = ¢|0] == c’[0]

79

Automatically assess the security

of mobile applications.

V] Privacy

v] Control-flow
vl Crypto misuse
Many others

80

> 1 billion > 1 million
- e - (S I’i .

Let’'s make mobile secure!

82

