
Authenticated Encryption and
Cryptographic Network Protocols

David Brumley
dbrumley@cmu.edu
Carnegie Mellon University

Some Straw Men

2

TCP/IP (highly abstracted)

packet

Destination Machine

TCP/IP
Stack

Webserver
(port = 80)

dest=80 data

Bob
(port = 25)

3

Source

Encrypted with CBC and random IV

encrypted packets
with key k

Destination Machine

Webserver
(port = 80)

dest=80 msg a

Bob
(port = 25)

k

k

IV1,

dest=25 msg bIV2,

4

Source

Example Tampering Attack

Encrypted with CBC and random IV

encrypted packets
with key k

Destination Machine

Webserver
(port = 80)

dest=80 msg a

Eve
(port = 25)

k

IV1,

dest=25 msg aIV2,

Eve can change destination
(easy with CBC and rand IV)

5

k

Source

Example Tampering Attack

Encrypted with CBC and random IV

encrypted packets
with key k

Destination Machine

Webserver
(port = 80)

dest=80 msg a

Eve
(port = 25)

k

IV1,

dest=1026 msg aIV2,

Eve can change destination
(easy with CBC and rand IV)

6

k

Source

How?

7

dest=80 msg aIV1,

dest=1026 msg aIV2,

CBC encryption:
D(k, c[0]) ⨁ IV1 = “dest=80”

Attack:
IV2 = IV1 ⨁ 000...80 ⨁ 000...25

xor out “80” and
xor in “1026”

Eve

An Attack Using Only Network Access

8

Example:
Remote terminal app where each keystroke encrypted
with CTR mode

IP Hdr TCP Hdr c dAlice

Bob

16 bit
checksum keystroke

ack if valid checksum, else nothing

An Attack Using Only Network Access

{checksum(hdr, d) = t ⨁ checksum(hdr, d⨁s) } ⇒
Even can find d for many realistic checksums*

9

Example:
Remote terminal app where each keystroke encrypted
with CTR mode

IP Hdr TCP Hdr c dAlice

Bob

IP Hdr TCP Hdr t⨁ c s ⨁ dEve

16 bit
checksum keystroke

ack if valid checksum, else nothing

for all t and s

* potentially not for TCP checksum

The Story So Far

Confidentiality: semantic security against a
CPA attack

– Examples: Using CBC with a PRP, AES

Integrity: security against existential forgery
– Examples: CBC-MAC, NMAC, PMAC, HMAC

Now: security against tampering
– Integrity + Confidentiality!

10

The lesson

CPA security cannot guarantee secrecy under
active attacks.

Integrity Only ✓ Secure MAC

Integrity +
Secrecy

✗ Secure MAC +

Secure Cipher

Integrity +
Secrecy

✓Authenticated

Encryption

11

Motivating Question: Which is Best?

E(kE , m||tag)S(kI, m)

m

Encryption Key = KE; MAC key = kI

Option 1: SSL (MAC-then-encrypt)

m tag m tag

S(kI , c)E(kE, m)

m

Option 2: IPsec (Encrypt-then-MAC)

m m tag

S(kI , m)E(kE, m)

m

Option 3: SSH (Encrypt-and-MAC)

m m tag

12

Authenticated Encryption

13

An authenticated encryption system (E,D) is a
cipher where

As usual: E: K × M × N⟶ C

but D: K × C × N⟶ M ∪{⊥}

Security: the system must provide

– Semantic security under CPA attack, and

– ciphertext integrity. The attacker cannot create a
new ciphertext that decrypts properly.

reject ciphertext
as invalid

14

Chal. Adv A.

kK

c

m1 M

c1 E(k,m1)

b=1 if D(k,c) ≠⊥ and c { c1 , … , cq }

b=0 otherwise

b

m2, …, mq

c2 , …, cq

Def: (E,D) has ciphertext integrity iff for all “efficient” A:

AdvCI[A,I] = Pr [Chal. outputs 1] < ε
15

Ciphertext Integrity

For b ={0,1}, define EXP(0) and EXP(1) as:

Authenticated Encryption

Def: cipher (E,D) provides authenticated
encryption (AE) if it is

(1) semantically secure under CPA, and

(2) has ciphertext integrity

Counter-example: CBC with rand. IV does not
provide AE

– D(k, ⋅) never outputs ⊥, hence adv. always wins
ciphertext integrity game

16

Implication 1: Authenticity

Attacker cannot fool Bob into thinking a
message was sent from Alice

Alice Bob

k k

m1 , …, mq

ci = E(k, mi)

c

Cannot create
valid c ∉ { c1, …, cq }

⇒ if D(k,c) ≠⊥ Bob guaranteed message is from
someone who knows k (but could be a replay)

Eve

17

Implication 2

Authenticated encryption ⇒

Security against chosen ciphertext attack

18

Chosen Ciphertext Attacks

19

Chosen Ciphertext Attacks

Def: A CCA adversary has the capability to get
ciphertexts of their choosing decrypted.

20

Alice Bob

k

Eve

k

VPN
c = E(k,m) m

Eve sees
c and m

c’

m’

Don’t want them to
learn m’

... or even just
whether an ACK

occurred.

The Lunchtime CCA Attack

21

Alice’s Computer

Encryption
Program

k

Encrypted
File 1

It’s
Lunchtime!

Encrypted
File 2

The Lunchtime CCA Attack

22

Alice’s Computer

Encryption
Program

k

Eve’s
Encrypted

File 1

Eve’s
Encrypted

File 2

Encrypted
File 1

Encrypted
File 2

Eve

802.11b WEP: how not to do it

k k

m CRC(m)

PRG(IV || k)

ciphertextIV

23

Active attacks

Fact: CRC is linear, i.e.
∀m,p: CRC(m ⨁ p) = CRC(m) ⨁ F(p)

dest-port = 80 data CRCIV
WEP ciphertext:

attacker: 000...00…..... XX…..0000 F(XX)

⨁

IV dest-port = 25 data CRC’
XX = 25⨁80

Upon decryption CRC is valid,
but ciphertext is changed !!

24

Chosen Ciphertext Security

Adversaries Power: both CPA and CCA

– Can obtain the encryption of arbitrary messages

– Can decrypt ciphertexts of his choice

Adversaries Goal: break semantic security

25

CCA Game Definition

26

Let ENC = (E,D) over (K,M,C).
For b = {0,1}, define EXP(0) and EXP(1)

b Chal.
k K

Adv.

b’ {0,1}

mi,0 , mi,1 M : |mi,0| = |mi,1|

ci E(k, mi,b)

for i=1,…,q:
(1) CPA query:

ci C : ci ∉ {c1, …, ci-1}

mi D(k, ci)

(2) CCA query:

Ex: could
query a

changed ci

CCA Game Definition

27

Let ENC = (E,D) over (K,M,C).
For b = {0,1}, define EXP(0) and EXP(1)

b

Chal.
k K

Adv.

b’ {0,1}

mi,0 , mi,1 M : |mi,0| = |mi,1|

ci E(k, mi,b)

for i=1,…,q:
(1) CPA query:

ci C : ci ∉ {c1, …, ci-1}

mi D(k, ci)

(2) CCA query:

ENC = (E,D) is CCA secure iff
Adv[A,ENC] = |Pr[Exp(0) = 1] – Pr[Exp(1) = 1]| < ε

Example: CBC is not CCA Secure

28

Chal.
kKb

Adv.
m0 , m1 : |m0| = |m1|=1

c E(k, mb) = (IV, c[0])

c’ = (IV⨁1, c[0])

D(k, c’) = mb⨁1

blearns b

Thm: Let (E,D) be a cipher that provides AE.
Then (E,D) is CCA secure !

In particular, for any q-query eff. A there exist
eff. B1, B2 s.t.

AdvCCA[A,E] ≤ 2q⋅AdvCI[B1,E] + AdvCPA[B2,E]

29

AE implies CCA security!

So What?

Authenticated encryption assures security against:
– A passive adversary (CPA security)

– An active adversary that can even decrypt some
ciphertexts (CCA security)

Limitations:
– Does not protect against replay

– Assumes no other information other than
message/ciphertext pairs can be learned.
• Timing attacks out of scope

• Power attacks out of scope

• ...

30

AE Constructions

Cipher + MAC = security

31

History

Pre 2000: Crypto API’s provide separate MAC
and encrypt primitives

– Example: Microsoft Cryptographic Application
Programming Interface (MS-CAPI) provided HMAC
and CBC + IV

– Every project had to combine primitives in their
own way

2000: Authenticated Encryption
– Bellare and Namprempre in Crypto, 2000

– Katz and Yung in FSE, 2000

32

Motivating Question: Which is Best?

Encryption Key = KE; MAC key = kI

E(kE , m||tag)S(kI, m)

m

Option 1: SSL (MAC-then-encrypt)

m tag m tag

S(kI , c)E(kE, m)

m

Option 2: IPsec (Encrypt-then-MAC)

m m tag

S(kI , m)E(kE, m)

m

Option 3: SSH (Encrypt-and-MAC)

m m tag

✓
Always
Correct

33

Theorems

Let (E,D) by a CPA secure cipher and (S,V) a
MAC secure against existential forgery. Then:

1. Encrypt-then-MAC always provides
authenticated encryption

2. MAC-then-encrypt may be insecure against
CCA attacks

– however, when (E,D) is rand-CTR mode or rand-
CBC, MAC-then-encrypt provides authenticated
encryption

34

Standards

GCM: CTR mode encryption then CW-MAC

CCM: CBC-MAC then CTR mode (802.11i)

EAX: CTR mode encryption then CMAC

All are nonce-based.

All support Authenticated Encryption with Associated
Data (AEAD).

35

Associated
Data

Encrypted
Data

Authenticated

An example API (OpenSSL)

int AES_GCM_Init(AES_GCM_CTX *ain,

unsigned char *nonce, unsigned long
noncelen,

unsigned char *key, unsigned int klen)

int AES_GCM_EncryptUpdate(AES_GCM_CTX *a,

unsigned char *aad, unsigned long aadlen,

unsigned char *data, unsigned long datalen,

unsigned char *out, unsigned long *outlen)

36

MAC Security -- an explanation

Recall: MAC security required an attacker given (m , t)
couldn’t find a different t’ such that (m,t’) is a valid MAC

Why? Suppose not: (m , t) ⟶ (m , t’)

Then Encrypt-then-MAC would not have Ciphertext Integrity
!!

Chal.
kKb

Adv.

m0, m1

c E(k, mb) = (c0, t)

c’ = (c0 , t’) ≠ c

D(k, c’) = mb

b

(c0, t)

(c0, t’)

37

Performance

AE Cipher Code Size Speed
(MB/sec)

Raw Cipher Raw Speed

AES/GCM Large 108 AES/CTR 139

AES/CCM smaller 61 AES/CBC 109

AES/EAX smaller 61 AES/CMAC 109

AES/OCB* small 129 HMAC/SHA1 147

38

* OCB mode may have patent issues. Speed
extrapolated from Ted Kravitz’s results.

From Crypto++ 5.6.0 [Wei Dai]

Summary

Encrypt-then-MAC

• Provides integrity
of CT

• Plaintext integrity

• If cipher is
malleable, we
detect invalid CT

• MAC provides no
information about
PT since it’s over
the encryption

MAC-then-Encrypt

• No integrity of CT

• Plaintext integrity

• If cipher is
malleable, can
change message
w/o detection

• MAC provides no
information on PT
since encrypted

39

Encrypt-and-MAC
• No integrity on CT
• Integrity of PT can

be verified
• If cipher is

malleable, contents
of CT can be
altered; should
detect at PT level

• May reveal info
about PT in the
MAC (e.g., MAC of
same messages are
the same)

Wrapup

• Authenticated Encryption

– Chosen Ciphertext Attack (CCA) and
CCA-secure ciphers

– AE game = CCA + CPA secure

• Encrypt-then-MAC always right

– Don’t roll your own

40

41

Questions?

END

Case Study: TLS

43

Alice
Public key
Expiration Date

Certificates bind a public key to a user

44

Alice
Public key
Expiration Date

Certificate Authority (CA) binds certificate to person

CA
Signature

Certificate
parameters

45

Alice

Alice Sends:
User ID || public key || …

46

Alice

Alice Generates and Gives:
User ID || public key || …

CA Computes:
D=H(User ID || public key || …)
Sig = Sign(D, CA private key)

Gives Alice Sig

47

Alice

Alice Generates and Gives:
User ID || public key || …

Certificate Authority (CA)

CA Computes:
D=H(User ID || public key || …)
Sig = Sign(D, Serial, CA private key)

Gives Alice <Sig, Serial>

Alice’s Certificate
[User ID || public key || …] || CA Name || Serial || Sig || <add.

params>
48

X.509 Certificates

49

TLS and SSL

• Transport Layer Security (TLS)
– Secure socket layer (SSL) predecessor

– originally developed by Netscape

– version 3 designed with public input

– RFC 2246

• Uses TCP to provide a reliable end-to-end service

50

Protocol Stack

Telnet …

IP

TCP

SSL Record Protocol

Handshake
Change
Cipher

Alert

HTTP
Application

Layer

SSL

Transport
Layer

51

Session Establishment

Alice
Bob.com

1. ClientHello

Encrypt with symmetric cipher using shared secret

2. ServerHello

3. ClientKeyExchange

Telnet …

IP

TCP

SSL Record Protocol

Handshake
Change
Cipher

Alert

HTTP

supported
MAC’s and ciphers

52

Protocol Record

53

Telnet …

IP

TCP

SSL Record Protocol

Handshake
Change
Cipher

Alert

HTTP

Application Data

Fragment ...

Compress

MAC t

Encrypt t

thdrPrepend Hdr

Other Fields

Change cipher: Re-initiate handshake protocol, e.g., to re-
negotiate the keying material used for encryption

Alert: Signal warning or fatal problem
– Fatal: unexpected message, bad record mac, decompression

failure, handshake failure, illegal parameter

– Warning: close notify, no certificate, bad certificate,
unsupported certificate, certificate revoked, certificate
expired, certificate unknown

Telnet …

IP

TCP

SSL Record Protocol

Handshake
Change

Cipher
Alert

HTTP

54

Detailed Protocol

55

TLS Crypto

Unidirectional keys: kb⇾s , ks⇾b

Stateful encryption:
– Each side maintains two 64-bit counters: ctrb⇾s , ctrs⇾b

– Init. to 0 when session started. ctr++ for every record.

– Purpose: replay defense

56

Browser
Server

hdr record

kb⇾s , ks⇾b kb⇾s , ks⇾b

TLS Record Encryption

Type Version Length

Data

...

Tag Tag Tag

Tag Tag Pad

57

(CBC AES-128, HMAC-SHA1)

TLS Record

kb⇾s = (kmac , kenc)

Browser side enc(kb⇾s , data, ctrb⇾s) :
step 1: tag ⟵ S(kmac , [++ctrb⇾s || header || data])
step 2: pad [header || data || tag] to AES block size
step 3: CBC encrypt with kenc and new random IV
step 4: prepend header

TLS Record Decryption

58

(CBC AES-128, HMAC-SHA1)

Server side dec(kb⇾s , record, ctrb⇾s) :

step 1: CBC decrypt record using kenc

step 2: check pad format, send bad_record_mac if
invalid

step 3: check tag on [++ctrb⇾s || header || data]

send bad_record_mac if invalid

Provides authenticated encryption

(provided no other info. is leaked during decryption)

TLS Record Decryption

59

(CBC AES-128, HMAC-SHA1)

Server side dec(kb⇾s , record, ctrb⇾s) :

step 1: CBC decrypt record using kenc

step 2: check pad format, send decryption_failed if
invalid

step 3: check tag on [++ctrb⇾s || header || data]

send bad_record_mac if invalid

V1.1 Bug:
Only difference is error messages

Padding Oracles

60

Server side dec(kb⇾s , record, ctrb⇾s) :

step 1: CBC decrypt record using kenc

step 2: check pad format, abort if invalid

step 3: check tag, abort if invalid

Two different types of errors:
bad pad vs bad MAC

Two different types of errors:
bad pad vs bad MAC

Padding Attack: Attacker submits ciphertext and
learns if last byte of plaintext are a valid pad

Credit: Brice Canvel
Fixed in OpenSSL 0.9.7a

In older TLS 1.0:
padding oracle due to different alert messages.

MAC errorpad error

61

TLS Padding

Valid paddings:
– 0x01 for 1 byte padding

– 0x02 0x02 for 2 byte padding

– 0x03 0x03 0x03 for 3 byte padding

–
62

Type Version Length

Data

...

Tag Tag Tag

Tag Tag Pad

Using a Padding Oracle with CBC
Example:

Attacker has ciphertext c = (c[0], c[1], c[2]) and wants m[1].
We’ll show you how to get last byte of m[1]. (Full break
possible)

63

D(k,) D(k,)

m[0] m[1] m[2] || pad

D(k,)

c[0] c[1] c[2]IV

Step 1: Throw Away c[2]

64

D(k,) D(k,)

m[0] m[1]

c[0] c[1]IV

Step 2: Guess and Check if Padding Valid

65

D(k,) D(k,)

m[0] m[1]

c[0] c[1]IV

= last-byte ⨁ g ⨁ 0x01

if last-byte = g: valid pad

otherwise: invalid pad

⨁ g ⨁ 0x01

Let g be our guess for the last byte of m[1]

*note MAC will fail, but we get the byte.

Using a Padding Oracle

Attack: submit (IV, c’[0], c[1]) to padding oracle
⇒ attacker learns if last byte = g

Repeat with g = 0,1, …, 255 to learn last byte of m[1]

Then use a (0x02, 0x02) pad to learn the next byte
and so on …

66

Another TLS Bug Prior to 1.1

IV for CBC is predictable using chained IV

– IV for next record is last ciphertext block of
current record.

– Not CPA secure (see block cipher lecture).
BEAST attack is a practical implementation

67

Other Problems

The TLS header leaks the length of TLS records
• Lengths can also be inferred by observing network traffic

For many web applications, leaking lengths reveals
sensitive info:
• In tax preparation sites, lengths indicate the type of

return being filed which leaks information about the
user’s income

• In healthcare sites, lengths leaks what page the user is
viewing

• In Google maps, lengths leaks the location being
requested

No easy solution

68

Lesson

1. Encrypt-then-MAC would completely avoid
many problem.

– MAC is checked first and ciphertext discarded if
invalid

2. MAC-then-CBC provides Authenticated
Encryption, but padding oracle destroys it

69

Certificate Revocation

What to do if your keys are compromised.

70

Certificate Revocation

Alice Bob

1. ClientHello

2. ServerHello
(send cert., e.g., pub key e)

1. Check CA signature on key
2.
3. Accept key

What needs to
happen here?

71

Certificate Revocation

Alice Bob

1. ClientHello

2. ServerHello
(send cert., e.g., pub key e)

Verification protocol

Verification Authority

72

Certificate Verification Protocols

• Expiration Date

• Certificate Revocation Lists (CRL) and
Certificate Revocation Trees (CRT)

• OCSP – Online Cert Status Protocol

73

Efficient Certificate Revocation Lists
(kocher98)

74

Verification
Authority

Alice

VA creates CRL and signs
using private key.
Note key very powerful.

Replica

Replica

Replica

Signed
CRL

Signed
CRL

Signed
CRL

Query Replicas

Note no
private keys

on server

Certificate Revocation Tree Generation

C1 C2 C3 C4 Ci-1 Ci…

Revoked cert Cj sorted by serial

h h h

h h

h

VASig = Sign(Hroot , VA signing key)

H1 H2

H3

H4

H5 H6

Hroot

Verification
Authority

75

Alice

1. Is Bob’s Cert C2 revoked

2. [C1, H2, H6, VASig]

3. Alice validates C2 by:
• H’root=H(H(C1, C2), H2, H6)
• H’ =?= H
• VA Sig valid?

Size of Proof:
O(log i)

VA Replica

Signed
CRL

76

Online Cert Status Protocol

Alice

1. Request(Bob’s Cert)

2. Check DB

3. Response(
Sign(Bob’s Cert {OK,BAD})
VA Signing Key
)

Verification
Authority

Implemented in IE7 (Vista+), Firefox, Safari
(by default Lion+), Opera, Chrome

77

