Message Authentication Codes (MACs) and Hashes

David Brumley
dbrumley@cmu.edu
Carnegie Mellon University

Credits:
Many slides from Dan Boneh’s June 2012 Coursera crypto class, which is awesome!
Recap so far

• Information theoretically secure encryption: ciphertext reveals nothing about the plaintext

• Secure PRNG: Given first k output bits, adversary should do not better than guessing bit $k+1$
 – Principle: next bit is secure, not just “random looking” output

• Secure PRF: Adversary can’t tell the difference between real random function and PRF
 – Principle: computationally indistinguishable functions

• Semantic security (computationally secure encryption): Adversary picks m_0, m_1, receives encryption of one of them, can’t do better than guessing on which messages was encrypted.
 – Principle: ciphertext reveals no information about plaintext
 – Security is not just about keeping key private
Message Integrity

Goal: *integrity* (not secrecy)

Examples:

- Protecting binaries on disk.
- Protecting banner ads on web pages

Security Principles:

- Integrity means no one can forge a signature
Is this Secure?

- No! Attacker can easily modify message m and re-compute CRC.
- CRC designed to detect *random errors*, not malicious attacks.
Message Authentication Codes (MAC)

Defn: A *Message Authentication Code (MAC)* \(MAC = (S,V) \) defined over \((K,M,T) \) is a pair of algorithms:

- \(S(k,m) \) outputs \(t \) in \(T \)
- \(V(k,m,t) \) outputs `yes’ or `no’
- \(V(k, S(k,m), t) = ‘yes’ \) (consistency req.)
Example

Authorized Stock Ticker Publisher
1. $k = \text{KeyGen}(l)$
2. For each price update:
 $t = S(\text{stock||price},k)$

Adversary
$t = A(\text{stock||price up})$

Publish to the world

A secure MAC should prevent this

e.g., to cause a buying frenzy
Example: Tripwire

At install time, generate a MAC on all files:

\[
\begin{align*}
F_1 & \quad t_1 = S(k, F_1) \\
F_2 & \quad t_2 = S(k, F_2) \\
\cdots & \\
F_n & \quad t_n = S(k, F_n)
\end{align*}
\]

Later a virus infects system and modifies system files
User reboots into clean OS and supplies his password
– Then: secure MAC \implies all modified files will be detected
Secure MAC Game

Challenger
1. \(k = \text{KeyGen}(l) \)
2. Computes \(i \) in \(0 \ldots q \):
 \[t_i = S(m_i, k) \]
3. Generates \(t_{m_1}, \ldots, t_{m_q} \)
4. Generates \(m, t \)
5. Verifies \(b = V(m, t, k) \)

\[b = \{ \text{yes}, \text{no} \} \]

Adversary A
1. Chooses \(m_1, \ldots, m_q \)
2. Forges \(t_{m_1}, \ldots, t_{m_q} \)
3. Generates \(m, t \)
4. Verifies \(b = \{ \text{yes}, \text{no} \} \)

Existential forgery if \(b = \text{"yes"} \)

Security goal: \(A \) cannot produce a valid tag on a message
- Even if the message is gibberish
Def: $I=(S,V)$ is a **secure MAC** if for all “efficient” A:

$$\text{Adv}_{\text{MAC}}[A,I] = \Pr[\text{Chal. outputs 1}] < \epsilon$$
Let $I = (S,V)$ be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$S(k, m_0) = S(k, m_1) \quad \text{for } \frac{1}{2} \text{ of the keys } k \text{ in } K$$

Can this MAC be secure?

1. Yes, the attacker cannot generate a valid tag for m_0 or m_1
2. No, this MAC can be broken using a chosen msg attack
3. It depends on the details of the MAC

1. A sends m_0, receives (m_0, t_0)
2. A wins with (m_1, t_0)
3. $Adv[A,I] = \frac{1}{2}$ since prob. of key is $\frac{1}{2}$.
MACs from PRFs
Secure PRF implies secure MAC

For a PRF $F: K \times X \rightarrow Y$, define a MAC $I_F = (S, V)$ as:

- $S(k,m) = F(k,m)$
- $V(k,m,t)$: if $t = F(k,m)$, output ‘yes’ else ‘no’

Attacker who knows $F(k,m_1), F(k,m_2), \ldots, F(k, m_q)$ has no better than $1/|Y|$ chance of finding valid tag for new m
Thm: If $F: K \times X \rightarrow Y$ is a secure PRF and $1/|Y|$ is negligible (i.e., $|Y|$ is large), then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F, there exists an eff. PRF adversary B attacking F s.t.:

$$Adv_{MAC}[A, I_F] \leq Adv_{PRF}[B, F] + 1/|Y|$$

A can’t do better than brute forcing
Proof Sketch

Let f be a truly random function

Challenger

2. f from FUNS[X,Y]
3. Calculates $t_i = f(k, m_i)$

Adversary A

1. Picks m_1, \ldots, m_q
4. picks m **not** in m_1, \ldots, m_q. Generates t

A wins iff $t = f(k, m)$ and m not in m_1, \ldots, m_q

$\Pr[A \text{ wins}] = \Pr[A \text{ guesses value of rand. function on new pt}]$

$= 1/|Y|$
Question

Suppose \(F: K \times X \rightarrow Y \) is a secure PRF with \(Y = \{0,1\}^{10} \)

Is the derived MAC \(I_F \) a *practically* secure MAC system?

1. Yes, the MAC is secure because the PRF is secure
2. No tags are too short: guessing tags isn’t hard
3. It depends on the function \(F \)

\[\text{Adv}[A,F] = 1/1024 \]
(we need \(|Y|\) to be large)
Secure PRF implies secure MAC

\[S(k,m) = F(k,m) \]

Assuming output domain \(Y \) is large

So AES is already a secure MAC....

... but AES is only defined on 16-byte messages
Building Secure MACs

Given: a PRF for shorter messages (e.g., 16 bytes)

Goal: build a MAC for longer messages (e.g., gigabytes)

Construction examples:
- CBC-MAC: Turn small PRF into big PRF
- HMAC: Build from collision resistance
Construction 1: Encrypted CBC-MAC (ECBC-MAC)

Let $F: K \times X \rightarrow X$ be a PRP.
Define new PRF $F_{ECBC} : K^2 \times X^{\leq L} \rightarrow X$.

\[
\text{raw CBC}
\]

\[
\begin{align*}
F(k, \cdot) & \quad F(k, \cdot) & \quad F(k, \cdot) & \quad F(k, \cdot) \\
\oplus & \quad \oplus & \quad \oplus & \quad \\
\text{m[0]} & \quad \text{m[1]} & \quad \text{m[3]} & \quad \text{m[4]}
\end{align*}
\]

IV \rightarrow \oplus

assume 0

\[\leq L \text{ means any length}\]

Why?

\[F(k_1, \cdot)\]
Suppose we define a MAC $I_{RAW} = (S,V)$ where

$$S(k,m) = \text{rawCBC}(k,m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

1. Choose an arbitrary one-block message $m \in X$
2. Request tag for m. Get $t = F(k,m)$
3. Output t as MAC forgery for the 2-block message $m||t \oplus m$
Attack

Break in 1-chosen message attack

Problem: \[\text{rawCBC}(k, m\| t\oplus m) \]
\[= F(k, F(k,m)\oplus(t\oplus m)) = F(k, t\oplus(t\oplus m)) = F(k,m) = t \]
Recall: We built ECBC-MAC from a PRP (e.g., block cipher)

\[F: K \times X \rightarrow X \]

Theorem: For any \(L > 0 \),

For every eff. \(q \)-query PRF adv. \(A \) attacking \(F_{\text{ECBC}} \) or \(F_{\text{NMAC}} \) there exists an eff. adversary \(B \) s.t.:

\[\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2 q^2 / |X| \]

CBC-MAC is secure as long as \(q \ll |X|^{1/2} \)

After signing \(|X|^{1/2}\) messages, rekey
Implications

\[\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2q^2 / |X| \]

Suppose we want \(\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq 1/2^{32} \)

- then \((2q^2 / |X|) \) < \(1/2^{32} \)
- AES: \(|X| = 2^{128} \) \(\Rightarrow \) \(q < 2^{48} \)
- 3DES: \(|X| = 2^{64} \) \(\Rightarrow \) \(q < 2^{16} \)

msgs MAC'ed with key

128-32 = 96
\(q^2 = 2^{48*2} = 2^{96} \).

Must change key after \(2^{48}, 2^{16} \) msgs
Suppose the underlying PRF F is a PRP (e.g., AES). Let F_{BIG} be ECBC. Then F_{BIG} has the following \textit{extension property}:

\[
\forall x, y, w:\quad F_{BIG}(k, x) = F_{BIG}(k, y) \implies F_{BIG}(k, x||w) = F_{BIG}(k, y||w)
\]

\[\begin{array}{c}
\text{m[0]} \\
\downarrow \\
F \\
\downarrow \\
\text{F(k,x) = F(k,y)} \\
\text{here}
\end{array} \quad \begin{array}{c}
\ldots \\
\downarrow \\
F \\
\downarrow \\
F(k,x||w) = F(k,y||w) \\
\text{here}
\end{array} \quad \begin{array}{c}
w \\
\downarrow \\
F \\
\downarrow \\
\text{F(k,x||w) = F(k,y||w)} \\
\text{here}
\end{array}\]

Attacker just needs to find such an x and y
Collisions and the Birthday Paradox
Birthday Paradox

Put \(n \) people in a room. What is the probability that 2 of them have the same birthday?

\[
\text{PR}[P_i = P_j] > 0.5 \text{ with } 23 \text{ people. (Think: } n^2 \text{ different pairs)}
\]
Birthday Paradox Rule of Thumb

Given N possibilities, and random samples x_1, ..., x_j, $\text{PR}[x_i = x_j] \approx 50\%$ when $j = N^{1/2}$
Generic attack on hash functions

Let \(H : M \rightarrow \{0,1\}^n \) be a hash function \((|M| >> 2^n)\)

Generic alg. to find a collision **in time** \(O(2^{n/2}) \) hashes

Algorithm:
1. Choose \(2^{n/2} \) random messages in \(M \):
 \(m_1, \ldots, m_{2^{n/2}} \) (distinct w.h.p)
2. For \(i = 1, \ldots, 2^{n/2} \) compute \(t_i = H(m_i) \in \{0,1\}^n \)
3. Look for a collision \((t_i = t_j) \). If not found, got back to step 1.

How well will this work?
The birthday paradox

Let \(r_1, ..., r_i \in \{1,...,n\} \) be indep. identically distributed integers.

Thm:
when \(i = 1.2 \times n^{1/2} \) then \(\Pr[\exists i \neq j: \ r_i = r_j] \geq \frac{1}{2} \)

If \(H: M \rightarrow \{0,1\}^n \), then
\(\Pr[\text{collision}] \sim \frac{1}{2} \)
with \(n^{1/2} \) hashes
$B = 10^6$

50% probability of collision with approximately 1200 hashes.
Recall

\[\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2q^2 / |X| \]

Suppose we want \(\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq 1/2^{32} \)

- then \((2q^2 / |X|) < 1/2^{32}\)
- AES: \(|X| = 2^{128} \Rightarrow q < 2^{47}\)
- 3DES: \(|X| = 2^{64} \Rightarrow q < 2^{15}\)

Reason: the Birthday Paradox.
Generic attack

Let $F_{\text{BIG}} : K \times M \rightarrow Y$ be a MAC with the extension property (e.g., CBC-MAC):

$$F_{\text{BIG}}(k, x) = F_{\text{BIG}}(k, y) \implies F_{\text{BIG}}(k, x||w) = F_{\text{BIG}}(k, y||w)$$

1. For $i = 1, \ldots, 2^{n/2}$ get $t_i = F(k, m_i)$
2. Look for a collision ($t_i = t_j$). (birthday paradox)
 If not found, got back to step 1.
3. Choose some w and for query $t = F_{\text{BIG}}(m_i || w)$
4. Output forgery $(m_j || w, t)$
Implications

\[
\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2 \frac{q^2}{|X|}
\]

Suppose we want \(\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq 1/2^{32} \)

- then \((2q^2 / |X|) < 1/2^{32} \)
- AES: \(|X| = 2^{128} \Rightarrow q < 2^{47} \)
- 3DES: \(|X| = 2^{64} \Rightarrow q < 2^{15} \)

Need PRF that can quickly change keys.
Padding
What is msg not a multiple of block size?

Recall CBC-MAC
CBC MAC padding

Idea: pad m with 0’s

| m[0] | m[1] | m[0] | m[1] | 0000 |

Is the resulting MAC secure?

- Yes, the MAC is secure
- It depends on the underlying MAC

No

Problem: given tag on msg m attacker obtains tag on m||0 because pad(m) = pad(m’||0)
CBC MAC padding

For security, padding must be one-to-one (i.e., invertible)!

\[m_0 \neq m_1 \Rightarrow \text{pad}(m_0) \neq \text{pad}(m_1) \]

ISO: pad with “1000...00”. Add new dummy block if needed.

- The “1” indicates beginning of pad.

If \(m \) is same as block size, add 1 block pad for security
CMAC (NIST standard)

Variant of CBC-MAC where \(\text{key} = (k, k_1, k_2) \)

- No final encryption step
 (extension attack thwarted by last keyed xor)

- No dummy block
 (ambiguity resolved by use of \(k_1 \) or \(k_2 \))

\[
\begin{align*}
\text{m[0]} & \quad \text{m[1]} \quad \ldots \quad \text{m[w]} \quad \text{100} \\
F(k, \cdot) & \quad F(k, \cdot) \quad F(k, \cdot) & \quad F(k, \cdot) \quad F(k, \cdot) \\
\oplus & \quad \oplus & \quad \leftarrow k_1 \\
\text{tag} & \quad \downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow & \quad \text{tag} \\
\end{align*}
\]

\(k_1 \) != multiple B.S, \(k_2 \) = multiple B.S.
HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.
Hash Functions
Collision Resistance

Let \(H: X \rightarrow Y \) be a hash function \((|X| >> |Y|)\)

A collision for \(H \) is a pair \(m_0, m_1 \in M \) such that:
\[
H(m_0) = H(m_1) \quad \text{and} \quad m_0 \neq m_1
\]

A function \(H \) is collision resistant if for all (explicit) “eff” algs. \(A \):
\[
\text{Adv}_{\text{CR}}[A,H] = \Pr[A \text{ outputs collision for } H]
\]
is “negligible”.

Example: SHA-256 (outputs 256 bits)
General Idea

Hash then PRF construction
MACs from Collision Resistance

Let $I = (S,V)$ be a MAC for short messages over (K,M,T) (e.g. AES)

Let $H : X \to Y$ and $S : K \times Y \to T \quad (|X| >> |Y|)$

Def: $I^{\text{big}} = (S^{\text{big}}, V^{\text{big}})$ over (K, X^{big}, Y) as:

\[S^{\text{big}}(k,m) = S(k,H(m)) \quad ; \quad V^{\text{big}}(k,m,t) = V(k,H(m),t) \]

Thm: If I is a secure MAC and H is collision resistant, then I^{big} is a secure MAC.

Example: $S(k,m) = \text{AES}_{2\text{-block-cbc}}(k, \text{SHA}-256(m))$ is secure.
Collision resistance is necessary for security:

Suppose: adversary can find \(m_0 \neq m_1 \) s.t. \(H(m_0) = H(m_1) \).

Then: \(S^{\text{big}} \) is insecure under a 1-chosen msg attack

1. step 1: adversary asks for \(t \leftarrow S(k, m_0) \)
2. step 2: output \((m_1, t) \) as forgery
Sample Speeds

<table>
<thead>
<tr>
<th>Function</th>
<th>Size (bits)</th>
<th>Speed (MB/sec)</th>
<th>Attack Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>160</td>
<td>153</td>
<td>2^{80}</td>
</tr>
<tr>
<td>SHA-256</td>
<td>256</td>
<td>111</td>
<td>2^{128}</td>
</tr>
<tr>
<td>SHA-512</td>
<td>512</td>
<td>99</td>
<td>2^{256}</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>512</td>
<td>57</td>
<td>2^{256}</td>
</tr>
</tbody>
</table>

* best known collision finder for SHA-1 requires 2^{51} hash evaluations.
Collision Resistance and Passwords
Passwords

How do we save passwords on a system?

– Idea 1: Store in cleartext
– Idea 2: Hash

Enrollment: store h(password), where h is collision resistant

Verification: Check h(input) = stored passwd
Brute Force

Online Brute Force Attack:
 input: \(hp = \text{hash(password)} \) to crack
 for each \(i \) in dictionary file
 if\((h(i) == hp) \)
 output success;

Time Space Tradeoff Attack:
 precompute: \(h(i) \) for each \(i \) in dict file in hash tbl
 input: \(hp = \text{hash(password)} \)
 check if \(hp \) is in hash tbl

“rainbow tables”
Salts

Enrollment:
1. compute \(\text{hp} = h(\text{password} + \text{salt}) \)
2. store salt || hp

Verification:
1. Look up salt in password file
2. Check \(h(\text{input}||\text{salt}) = \text{hp} \)

What is this good for security, given that the salt is public?

Salt doesn’t increase security against online attack, but does make tables much bigger.
Merkle-Damgard

How to construct collision resistant hash functions
http://www.merkle.com/
The Merkle-Damgard iterated construction

Given $h: T \times X \rightarrow T$ (compression function)

we obtain $H: X^{\leq L} \rightarrow T$. H_i - chaining variables

PB: padding block

1000...0 $\|\$ msg len

If no space for PB add another block

64 bits
Security of Merkle-Damgard

Thm: if \(h \) is collision resistant then so is \(H \).

Proof Idea:
via contrapositive. Collisions on \(H \Rightarrow \) collision on \(h \)

Suppose \(H(M) = H(M') \). We build collision for \(h \).
Compr. func. from a block cipher

$E: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher.

The **Davies-Meyer** compression function

$h(H, m) = E(m, H) \oplus H$

Thm: Suppose E is an ideal cipher (collection of $|K|$ random perms.). Finding a collision $h(H,m)=h(H',m')$ takes $O(2^{n/2})$ evaluations of (E,D).

Best possible !!
Hash MAC (HMAC)

Most widely used approach on the internet, e.g., SSL, SSH, TLS, etc.
Thm:
h collision resistant implies H collision resistant

Can we build a MAC out of H?
Let $H: X^{\leq L} \rightarrow T$ be a Merkle-Damgard hash, and:

$S(k, m) = H(k||m)$

is this secure? no! why?

Existential forgery:

$H(k||m) = H(k||m||PB||w)$

(just one more h)
Hash Mac (HMAC)

Build MAC out of a hash

\[
\text{HMAC: } S(k, m) = H(k \oplus \text{opad} , H(k \oplus \text{ipad} \| m))
\]

• Example: \(H = \text{SHA-256} \)
HMAC

PB: Padding Block
Recap

• MAC’s from PRF
 – NMAC
 – CBC-MAC
 – PMAC

• MAC’s from collision resistant hash functions
 – Make CRF with merkle-damgard from PRF

• Attackers goal: existential forgery
Further reading

- Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219
Questions?
END
Protecting file integrity using C.R. hash

When user downloads package, can verify that contents are valid

H collision resistant \Rightarrow attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space
Construction 2: Nested MAC (NMAC)

cascade

Let \(F: K \times X \rightarrow K \) be a PRF
Define new PRF \(F_{\text{NMAC}}: K^2 \times X^{\leq L} \rightarrow K \)
Cascade is insecure

cascade

\[\text{cascade}(m, k_0) = t, \]
\[\text{can derive } \text{cascade}(m || w, t) = t' \]
• ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small PRF ??
Construction 3: PMAC – Parallel MAC

P(k, i): an easy to compute function

Let $F: K \times X \rightarrow X$ be a PRF
Define new PRF $F_{\text{PMAC}}: K^2 \times X^{\leq L} \rightarrow X$

key = (k, k₁)

P(k, #) prevents block swapping attack
Cool Feature: Incremental Updates

Suppose F is a PRP, and suppose we change a $m[i]$ to $m'[i]$. Then recomputing the tag is easy.
Cool Feature: Incremental Updates

\[
\text{tag'} = F^{-1}(k_1, \text{tag}) \; \text{; reverse tag} \\
\oplus F(k_1, m[1] \oplus P(k,1)) \; \text{; xor out } m[1] \\
\oplus F(k_1, m[1]' \oplus P(k,1)) \; \text{; recompute pmac}
\]
HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.
Proof: collision on $H \rightarrow$ collision on h

Let $|M| = |M'|$, $M \neq M'$, and $H(M) = h_i(m_i, H_{i-1})$ with $m_0 = IV$

Suppose $H(M) = H(M')$. We build a collision on h.

Case 1: $m_i \neq m'_i$ or $H_{i-1} \neq H'_{i-1}$. But since $f(m_i, H_{i-1}) = f(m'_i, H'_{i-1})$ there is a collision in h and we are done. Else recurse
Proof: collision on $H \rightarrow$ collision on h

Let $|M| = |M'|$, $M \neq M'$, and $H(M) = h_i(m_i, H_{i-1})$ with $m_0 = IV$

Suppose $H(M) = H(M')$. We build a collision on h.

Case 2: $m_i = m'_i$ and $H_{i-1} \neq H'_{i-1}$ for all i. But then $M = M'$, violating our assumption.
Suppose we define \(h(H, m) = E(m, H) \)

Then the resulting \(h(\ldots) \) is not collision resistant.

To build a collision \((H, m)\) and \((H', m')\), i.e.,

\[E(m, H) = E(m', H') \]

choose random \((H, m, m')\) and construct \(H' \) as follows:

1. \(H' = D(m', E(m, H)) \)
2. \(H' = E(m', D(m, H)) \)
3. \(H' = E(m', E(m, H)) \)
4. \(H' = D(m', D(m, H)) \)

\[
E(m', H')
= E(m', D(m', E(m, H)))
= E(m, H)
\]
HMAC

Assume h is a PRF

Think of h_1 as k_1

Think of h_4 as k_2

PB: Padding Block