
Control Flow Integrity &
Software Fault Isolation

David Brumley
Carnegie Mellon University

Our story so far…

2

Unauthorized

Control

Information

Tampering

http://propercourse.blogspot.com/2010/05/i-believe-in-duct-tape.html

Adversary Model Matters!

Cowan et al., USENIX Security 1998

StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks

“Programs compiled with StackGuard are safe from
buffer overflow attack, regardless of

the software engineering quality of the program.”

3

What if the adversary is more powerful?
How powerful is powerful enough?

Reference Monitors

4

5

Files
Sockets
Computer Operations

People
Processes
Computer Operations

Op request

Op response

Subject Object

6

Subject Object

Op request

Op response

Reference
Monitor

Op request

Op response

Principles:
1. Complete Mediation: The reference monitor must

always be invoked
2. Tamper-proof: The reference monitor cannot be

changed by unauthorized subjects or objects
3. Verifiable: The reference monitor is small enough to

thoroughly understand, test, and ultimately, verify.

Policy

Inlined Referenced Monitor

7

Subject Object

Op request

Op response

Reference
Monitor

Policy

Today’s Example:
Inlining a control flow policy into a program

Control Flow Integrity

Assigned Reading:

Control-Flow Integrity: Principles,
Implementation and Applications
by Abadi, Budiu, Erlingsson, and Ligatti

8

Control Flow Integrity

• protects against powerful adversary

– with full control over entire data memory

• widely-applicable

– language-neutral; requires binary only

• provably-correct & trustworthy

– formal semantics; small verifier

• efficient

– hmm… 0-45% in experiments; average 16%

9

CFI Adversary Model

CAN

• Overwrite any data
memory at any time

– stack, heap, data segs

• Overwrite registers in
current context

CANNOT

• Execute Data
– NX takes care of that

• Modify Code
– text seg usually read-only

• Write to %ip
– true in x86

• Overwrite registers in
other contexts
– kernel will restore regs

10

CFI Overview

Invariant: Execution must follow a path in a control flow
graph (CFG) created ahead of run time.

Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time
– add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time
– direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time
– indirect jumps have matching IDs

“static”

11

Control Flow Graphs

12

Defn Basic Block: A consecutive sequence of instructions /
code such that

• the instruction in each position always executes before
(dominates) all those in later positions, and

• no outside instruction can execute between two
instructions in the sequence

control is “straight”
(no jump targets except at the beginning,

no jumps except at the end)

Basic Block

14

1. x = y + z
2. z = t + i

3. x = y + z
4. z = t + i
5. jmp 1

6. jmp 3

3 static
basic blocks

1. x = y + z
2. z = t + i
3. x = y + z
4. z = t + i
5. jmp 1

1 dynamic
basic block

CFG Definition

A static Control Flow Graph is a graph where

– each vertex vi is a basic block, and

– there is an edge (vi, vj) if there may be a transfer
of control from block vi to block vj.

Historically, the scope of a “CFG” is limited to a
function or procedure, i.e., intra-procedural.

15

Call Graph

• Nodes are functions. There is an edge (vi, vj)
if function vi calls function vj.

void orange()

{

1. red(1);

2. red(2);

3. green();

}

void red(int x)

{

green();

...

}

void green()

{

green();

orange();

}

orange red green

16

Super Graph

• Superimpose CFGs of all procedures over the
call graph

1: red
1

2

3 2: red

A context sensitive
super-graph for
orange lines 1 and 2.

void orange()

{

1. red(1);

2. red(2);

3. green();

}

void red(int x)

{

..

}

void green()

{

green();

orange();

}

17

Precision: Sensitive or Insensitive

The more precise the analysis, the more accurate it
reflects the “real” program behavior.

– More precise = more time to compute

– More precise = more space

– Limited by soundness/completeness tradeoff

Common Terminology in any Static Analysis:

– Context sensitive vs. context insensitive

– Flow sensitive vs. flow insensitive

– Path sensitive vs. path insensitive

18

Things I say

Soundness

If analysis says X is true,
then X is true.

True Things

Things I say

Completeness

If X is true, then analysis
says X is true.

True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!
19

Context Sensitive
Whether different calling contexts are

distinguished

void yellow()

{

1. red(1);

2. red(2);

3. green();

}

void red(int x)

{

..

}

void green()

{

green();

yellow();

}

Context sensitive
distinguishes 2 different

calls to red(-)

21

Context Sensitive Example

a = id(4);

b = id(5);

void id(int z)

{ return z; }

Context-Sensitive
(color denotes
matching call/ret)

a = id(4);

b = id(5);

void id(int z)

{ return z; }

Context-Insensitive
(note merging)

22

Context sensitive can tell one call returns 4, the other 5

Context insensitive will say both calls return {4,5}

Flow Sensitive

• A flow sensitive analysis considers the order (flow) of
statements

– Flow insensitive = usually linear-type algorithm

– Flow sensitive = usually at least quadratic (dataflow)

• Examples:

– Type checking is flow insensitive since a variable has a
single type regardless of the order of statements

– Detecting uninitialized variables requires flow sensitivity

x = 4;

....

x = 5;

Flow sensitive can
distinguish values of x,
flow insensitive cannot

23

Flow Sensitive Example

1. x = 4;

....

n. x = 5;

Flow sensitive:
x is the constant 4 at line 1,
x is the constant 5 at line n

Flow insensitive:
x is not a constant

24

Path Sensitive

A path sensitive analysis maintains branch
conditions along each execution path

– Requires extreme care to make scalable

– Subsumes flow sensitivity

25

Path Sensitive Example

1. if(x >= 0)

2. y = x;

3. else

4. y = -x;

path sensitive:
y >= 0 at line 2,
y > 0 at line 4

path insensitive:
y is not a constant

26

Precision

Even path sensitive analysis approximates
behavior due to:

• loops/recursion

• unrealizable paths

1. if(an + bn = cn && n>2 && a>0 && b>0 && c>0)

2. x = 7;

3. else

4. x = 8;

Unrealizable path.
x will always be 8

27

Control Flow Integrity (Analysis)

28

CFI Overview

Invariant: Execution must follow a path in a control flow
graph (CFG) created ahead of run time.

Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time
– add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time
– direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time
– indirect jumps have matching IDs

29

Build CFG

30

Two possible
return sites due to

context insensitivity

direct calls

indirect calls

Instrument Binary

• Insert a unique number at each destination

• Two destinations are equivalent if CFG contains edges
to each from the same source

predicated call 17, R: transfer control to R
only when R has label 17

31

predicated ret 23: transfer
control to only label 23

Verify CFI Instrumentation

• Direct jump targets (e.g. call 0x12345678)

– are all targets valid according to CFG?

• IDs

– is there an ID right after every entry point?

– does any ID appear in the binary by accident?

• ID Checks

– is there a check before every control transfer?

– does each check respect the CFG?

32

easy to implement correctly => trustworthy

What about indirect jumps and ret?

33

ID Checks

34

Check dest label

Check dest label

Performance

Size: increase 8% avg

Time: increase 0-45%; 16% avg

– I/O latency helps hide overhead

35

16%

45%

CFI Adversary Model

CAN

• Overwrite any data
memory at any time

– stack, heap, data segs

• Overwrite registers in
current context

CANNOT

• Execute Data

– NX takes care of that

• Modify Code

– text seg usually read-only

• Write to %ip

– true in x86

• Overwrite registers in
other contexts

– kernel will restore regs

36

Assumptions are
often vulnerabilities!

Let’s check our assumptions!

• Non-executable Data

– let’s inject code with desired ID…

• Non-writable Code

– let’s overwrite the check instructions…

– can be problematic for JIT compilers

• Context-Switching Preserves Registers

– time-of-check vs. time-of-use

– BONUS point: why don’t we use the RET
instruction to return?

37

Time-of-Check vs. Time-of-Use

38

what if there is a
context switch here?

Security Guarantees

Effective against attacks based on illegitimate
control-flow transfer

– buffer overflow, ret2libc, pointer subterfuge, etc.

Allow data-only attacks since they respect CFG!

– incorrect usage (e.g. printf can still dump mem)

– substitution of data (e.g. replace file names)

39

Any check becomes non-circumventable.

Software Fault Isolation

• SFI ensures that a module only accesses
memory within its region by adding checks

– e.g., a plugin can accesses only its own memory

if(module_lower < x < module_upper)

z = load[x];

• CFI ensures inserted memory checks are
executed

SFI Check

40

Inline Reference Monitors

• IRMs inline a security policy into binary to
ensure security enforcement

• Any IRM can be supported by CFI + Software
Memory Access Control

– CFI: IRM code cannot be circumvented

+

– SMAC: IRM state cannot be tampered

41

Accuracy vs. Security

The accuracy of the CFG will reflect the level
of enforcement of the security mechanism.

Indistinguishable sites, e.g.,
due to lack of context

sensitivity will be merged
42

Context Sensitivity Problems

Suppose A and B both call C.

• CFI uses same return label in A and B.

How to prevent C from returning to B when
it was called from A?

• Shadow Call Stack
– an protected memory region for call stack

– each call/ret instrumented to update shadow

– CFI ensures instrumented checks will be run

43

Proof of Security

Theorem (Informal):
Given state S0 with

• non-writeable, well-instrumented code mem M0

Then for all runtime steps Si -> Si+1,
• Si+1 is one of the allowed successors in the CFG,

or
• Si+1 is an error state

We can make these sorts of statements precise with operational semantics.

44

CFI Summary

Control Flow Integrity ensures that control
flow follows a path in CFG

– Accuracy of CFG determines level of enforcement

– Can build other security policies on top of CFI

45

Software Fault Isolation

Optional Reading:
Efficient Software-Based Fault Isolation
by Wahbe, Lucco, Anderson, Graham

46

• Hardware
– Memory Protection (virtual address translation, x86

segmentation)

• Software
– Sandboxing

– Language-Based

• Hardware + Software
– Virtual machines

Isolation Mechanisms

47

Software Fault Isolation
≈

Memory Protection
in Software

SFI Goals

• Confine faults inside distrusted extensions

– codec shouldn’t compromise media player

– device driver shouldn’t compromise kernel

– plugin shouldn’t compromise web browser

• Allow for efficient cross-domain calls

– numerous calls between media player and codec

– numerous calls between device driver and kernel

48

Main Idea

Process Address Space

Module 1
Fault Domain 1

Module 2
Fault Domain 2

segment with id 2,

e.g., with top bits
010

segment with id 1,

e.g., with top bits
011

49

Scheme 1: Segment Matching
• Check every mem access for matching seg id
• assume dedicated registers segment register (sr)

and data register (dr)
– not available to the program (no big deal in Alpha)

Process Address Space

Module 1

Module 2

precondition:
sr holds segment id 2

dr = addr
scratch = (dr >> 29)
compare scratch, sr
trap if not equal
dst = [dr]

50

Safety

• Segment matching code must always be run
to ensure safety.

• Dedicated registers must not be writeable
by module.

51

Scheme 2: Sandboxing
• Force top bits to match seg id and continue

• No comparison is made

precondition:
sr holds segment id 2

dr = (addr & mask)
dr = (dr | sr)
dst = [dr]

52

Process Address Space

Module 1

Module 2 Enforce
top bits in
dr are sr

Segment Matching vs. Sandboxing

Segment Matching

• more instructions

• can pinpoint exact
point of fault where
segment id doesn’t
match

Sandboxing

• fewer instructions

• just ensures
memory access
stays in region
(crash is ok)

53

Communication between domains

RPC

54

Native Client

Optional Reading:

Native Client: A Sandbox for Portable,
Untrusted x86 Native Code
by Yee et al.

55

NaCL: A Modern Day Example

• Two sandboxes:
– an inner sandbox to mediate x86-specific runtime details

(using what technique?)
– an outer sandbox mediates system calls

(Using what technique?)

Browser

HTML
JavaScript

NPAPI or RPC

NaCl runtime

Quake

56

Security Goal

• Achieve comparable safety to accepted
systems such as JavaScript.
– Input: arbitrary code and data

• support multi-threading, inter-module communication

– NaCL checks that code conforms to security rules,
else refuses to run.

Quake NACL Static Analysis

Unverified

Verified

57

Obligations

What do these obligations guarantee?

58

Guarantees

• Data integrity: no loads or stores outside of
sandbox

– Think back to SFI paper

• Reliable disassembly

• No unsafe instructions

• Control flow integrity

59

NACL Module At Runtime

Untrusted Code

4 KB RW protected for NULL ptrs

60 KB for trampoline/springboard

Transfer from
trusted to

untrusted code,
and vice-versa

60

Performance - Quake

61

62

Questions?

END

TOC/TOU
• Time of Check/Time of Use bugs are a type of

race condition

$ open(“myfile”);
monitor does complex check

monitor OK’s
OS carries out action

$ ln –s myfile /etc/passwd
monitor OK’s
Action performed

time

64

Software Mandatory Access Control

Fine-grained SFI: SMAC can have different
access checks at different instructions.

• isolated code region => no need for NX data

65

Context Sensitivity Problems

Suppose A calls C

and B calls C, D.

• CFI uses same call label for C and D due to B.

How to prevent A from calling D?

• duplicate C into CA and CB, or

• use more complicated labeling mechanism

66

Optimizations

Guard Zones

• unmapped pages
around segment to
avoid checking
offsets

Lazier SP Check

• check SP only
before jumps

67

Performance

store and
jump checked

load, store and
jump checked

68

Is it counter-intuitive?

• Slow down “common” case of intra-domain
control transfer in order to speed up inter-
domain transfer

– Check every load, store, jump within a domain

• Faster in practice than hardware when inter-
domain calls are frequent

– Context switches are expensive

– Each cross-module call requires a context switch

69

Differences between NaCL SFI and
Wahbe SFI

• NaCL uses segments for data to ensure
loads/stores are within a module

– Do not need sandboxing overhead for these
instructions

• Others?

• After reading Wahbe et al, how would you
implement inter-module communication
efficiently?

70

Performance – Micro Benchmarks

71

