
F13 18-487 Introduction to Computer Security, Network Security, and
Applied Cryptography

Homework #2

David Brumley, Ed Schwartz, Greg Nazario, Jonathan Burket

Revised on October 17, 2013

Due: 2:00 pm on October 21, 2013

Introduction

A few notes on this assignment:

• Submissions should be uploaded on Blackboard. You can submit this assignment multiple times before the
deadline without penalty. The most recent submission is the only one that will be graded.

• Please submit your homework as a PDF. LATEX is ideal.

• You may look up relevant concepts online, but you may not search for specific solutions or proofs for these
problems. Please list any resources you used (except for class materials) in your submission.

Problem 1 (15 pts)

We mentioned in class that if the key for a One-Time Pad is all zeros then the message will be sent completely in
the clear. To avoid this, we can imagine modifying the One-Time Pad such that we skip any key that is all zeros and
use the next sequence of bits off the pad instead. With this modification, does the One-Time Pad still have perfect
secrecy? Prove or Disprove.

Problem 2 (15 pts)

Suppose Alice and Bob are sending messages with DES using a shared key k. You are somehow able to recover
a single ciphertext/plaintext pair (m, c) such that DESk(m) = c. In an attempt to learn the value of the key, you
brute force possible values of k by checking if DESk′(m) = c for all k′ ∈ K. What is the approximate probability
that you will find only one k′ such that DESk′(m) = c and therefore be able to identify k as k′? For simplicity, you
may assume that for any key k, DES behaves like a completely random permutation from M →M .

This question shows a) brute force attack has high probability of finding a unique key, and b) there is a chance
it’s not right given a single PT/CT pair.

1

Problem 3 (15 pts)

Let x denote the bitwise-complement of x (i.e. 1001 = 0110). An interesting property of DES is that ifDESk(m) =
c, then DESk(m) = c. How does this property of DES help an attacker who wants to use a brute-force chosen
plaintext attack to determine the key? Give a detailed explanation. You can assume that DES is a relatively expensive
operation.

Problem 4 (15 pts)

You are given a message m with CRC(m). Let the plaintext be m||CRC(m). You decide to encrypt with a
PRNG(IV ||k), where k is chosen uniformly at random and IV is a 24-bit initialization vector that is incremented
once per message (note that k is kept constant).

Encryption is: E(m, k) = IV ||(PRNG(IV ||k)⊕m||crc(m))

How can this scheme be broken?

Problem 5 (20 pts)

In class, we briefly discussed the formal definition of a secure PRNG. The next-bit test says that a PRNG is secure if
and only if given the first i bits of PRNG output, no polynomial-time algorithm can predict bit i+1 with probability
greater than 0.5 + ε.

This test is equivalent to a slightly more general formulation that is similar to the semantic security test. Yao’s
Test says that a PRNG that produces strings of length n is secure if and only if the ensemble of uniformly distributed
of length n strings Un is computationally indistinguishable from the ensemble of stringsXn produced by the PRNG.
Two ensembles Xn and Yn are considered computationally indistinguishable if for an arbitrarily selected x from Xn

and y from Yn: P |[A(x) = 1] − P [A(y) = 1]| ≤ ε(n) for any polynomial-time algorithm A. Basically, this is
saying that no polynomial time statistical test (number of 1s vs. 0s, repeated patterns, etc.) can differentiate between
the results of the PRNG and the set of all possible strings of the same length.

One of the cooler things about secure Pseudorandom Number Generators is that they can be composed (i.e.
if f(x) and g(x) are secure PRNGs, then so is f(g(x))). Consider these other PRNG transformations and prove
whether or not they produce secure PRNGs.

(a) reverse(f(x)), for arbitrary secure PRNG f(x), where reverse returns the input sequence backwards

(b) f(x)⊕ g(x), for arbitrary secure PRNGs f(x) and g(x)

Problem 6 (20 pts)

In your latest mission as a secret agent for the 18487 hacking group, you have been assigned the task of breaking
the crypto scheme used by the world’s most villainous organization: Evil Corp. After some initial investigation, you
discover that Evil Corp has an interesting Python script running at plaid.cylab.cmu.edu:18487. The script
takes in a new username as a command line argument, then sends an encrypted message to another Evil Corp server
(Server Z) containing the new username as well as a Super Secret Number (which has the format XXX-XX-XXXX
where Xs are numbers from 1 to 9).

You also find that you can intercept the messages between the Python script and Server Z by sniffing traffic on
the network. You can also invoke the script by using nc plaid.cylab.cmu.edu 18487. The script uses a
one-time pad for encryption and never reuses or runs out of key material. Here is the Python source code:

2

w h i l e True :
s e c r e t = ”XXX−XX−XXXX” # Redac ted
name = r a w i n p u t (” ”)
message = ‘ ‘ A u t h o r i z e %s , My SSN i s %s . Repea t %s ’ ’ % (name , s e c r e t , s e c r e t)
comp msg = z l i b . compress (message)
c i p h e r t e x t = o n e t i m e p a d (comp msg)
s e n d t o s e r v e r z (c i p h e r t e x t)
p r i n t c i p h e r t e x t

Do not send more than 10 requests per second to the script. When possible, try to send
multiple requests over the same TCP connection, rather than opening a new connection for each request.

You can assume that there are no weird race conditions involving the one-time pad and that all messages always
successfully make it through the network. Given this setup, is it possible to determine the value of the Super Secret
Number (assuming that you have polynomial time bounded computation resources)? If yes, provide the Super Secret
Number and any tools you used to get it (i.e. source code for programs you wrote). If not, prove why this is the case.

3

