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Abstract. We present a framework for model checking concurrent software systems which incorporates both
states and events. Contrary to other state/event approaches, our work also integrates two powerful verification
techniques, counterexample-guided abstraction refinement and compositional reasoning. Our specification lan-
guage is a state/event extension of linear temporal logic, and allows us to express many properties of software in
a concise and intuitive manner. We show how standard automata-theoretic LTL model checking algorithms can
be ported to our framework at no extra cost, enabling us to directly benefit from the large body of research on
efficient LTL verification.

We also present an algorithm to detect deadlocks in concurrent message-passing programs. Deadlock-
freedom is not only an important and desirable property in its own right, but is also a prerequisite for the
soundness of our model checking algorithm. Even though deadlock is inherently non-compositional and is not
preserved by classical abstractions, our iterative algorithm employs both (non-standard) abstractions and compo-
sitional reasoning to alleviate the state-space explosion problem. The resulting framework differs in key respects
from other instances of the counterexample-guided abstraction refinement paradigm found in the literature.

We have implemented this work in the magic verification tool for concurrent C programs and performed
tests on a broad set of benchmarks. Our experiments show that this new approach not only eases the writing
of specifications, but also yields important gains both in space and in time during verification. In certain cases,
we even encountered specifications that could not be verified using traditional pure event-based or state-based
approaches, but became tractable within our state/event framework. We also recorded substantial reductions in
time and memory consumption when performing deadlock-freedom checks with our new abstractions. Finally,
we report two bugs (including a deadlock) in the source code of Micro-C/OS versions 2.0 and 2.7, which we
discovered during our experiments.
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1. Introduction

Control systems ranging from smart cards to automated flight controllers are increasingly being incorporated
within complex software systems. In many instances, errors in such systems can have dramatic consequences,
hence the need to be able to ensure and guarantee their correctness.

In this endeavour, the well-known methodology of model checking (CE81; CES86; QS81; CGP99) holds
much promise. Although most of its early applications dealt with hardware and communication protocols, model
checking is increasingly used to verify software systems (SLAM; BR01; BMMR01; BLAST; HJMS02; HJMQ03;
CDH+00; PDV01; Sto02; MAGIC; CCG+03; COYC03; AQR+04). Unfortunately, applying model checking to
software is complicated by several factors, ranging from the difficulty to model computer programs – due to the
complexity of programming languages as compared to hardware description languages – to difficulties in speci-
fying meaningful properties of software using the usual temporal logical formalisms of model checking. A third
reason is the perennial state-space explosion problem, whereby the complexity of verifying an implementation
against a specification becomes prohibitive.

The most common instantiations of model checking to date have focused on finite-state models and either
branching-time (CTL (CE81)) or linear-time (LTL (LP85)) temporal logics. To apply model checking to software,
it is necessary to specify (often complex) properties on the finite-state abstracted models of computer programs.
The difficulties in doing so are even more pronounced when reasoning about modular software, such as concurrent
or component-based sequential programs. Indeed, in modular programs, communication among modules pro-
ceeds via events (or actions), which can represent function calls, requests and acknowledgements, etc. Moreover,
such communication is commonly data-dependent. Software behavioral claims, therefore, are often specifications
defined over combinations of program events and data valuations.

Existing modeling techniques usually represent finite-state machines as finite annotated directed graphs, using
either state-based or event-based formalisms. Although both frameworks are interchangeable (an event can be
encoded as a change in state variables, and likewise one can equip a state with different events to reflect differ-
ent values of its internal variables), converting from one representation to the other often leads to a significant
enlargement of the state space. Moreover, neither approach on its own is practical when it comes to modular
software, in which events are often data-dependent: considerable domain expertise is usually required to annotate
the program and to specify proper claims.

In this work, we propose a framework in which both state-based and event-based properties can be expressed,
combined, and verified. The modeling framework consists of labeled Kripke structures (LKS), which are directed
graphs in which states are labeled with atomic propositions and transitions are labeled with events. The speci-
fication logic is a state/event derivative of LTL. This allows us to represent both software implementations and
specifications directly without any program annotations or privileged insights into program execution. We further
show that standard efficient LTL model checking algorithms can be applied, at no extra cost in space or time, to
help reason about state/event-based systems. We have implemented our approach within the concurrent C veri-
fication tool magic (MAGIC; CCG+03; COYC03), which extracts LKS models from C programs automatically
via predicate abstraction (GS97). We report promising results in the large set of benchmarks that we have tackled.

A core feature of magic is the use of compositional abstraction refinement techniques developed for the efficient
verification of concurrent software (COYC03). These techniques are embedded within a counterexample-guided
abstraction refinement framework (CEGAR for short) (CGJ+00). CEGAR lets us investigate the validity of
a given specification through a sequence of increasingly refined abstractions of our system, until the property
is either established or a real counterexample is found. Moreover, thanks to compositionality, the abstraction,
counterexample validation, and refinement steps can all be carried out component-wise, thereby alleviating the
need to build the full state space of the distributed system.

The verification of state/event specifications on concurrent LKSs as described above requires, in order to be
sound, that the global composed system be deadlock-free. When several components communicate via blocking
message-passing, the possibility that two components might at some point have incompatible communication
requirements can unfortunately in general not be discounted. Indeed, such an occurrence is termed deadlock and
results in a situation in which no further progress can be made. Deadlock-freedom is often a vital specification
in its own right, especially for safety-critical systems, such as embedded systems or plant controllers, that are
expected always to service requests within a fixed time limit or be responsive to external stimuli.

Unfortunately, deadlock is inherently non-compositional and moreover is not preserved by classical existen-
tial or universal abstractions. One of the main contributions of this paper is the development of new, non-standard
abstraction schemes that do preserve deadlock and are (in an appropriate sense) compositional. These abstrac-
tions are inspired from the notion of failures in the process algebra CSP (Hoa85; Ros97). As a result, we have been
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able to devise a compositional CEGAR-based framework for deadlock detection, which has led to substantial
time and space improvements over corresponding classical approaches found in the literature: our magic imple-
mentation recorded speed-ups of up to 20 times along with up to four-fold reductions in memory usage in some
of our benchmarks.

We carried out a large number of experiments to evaluate both our state/event model checking algorithm
as well as our deadlock detection scheme. Our benchmarks were for the most part derived from (1) OpenSSL-
0.9.6c, an open-source implementation of the SSL protocol; (2) IPC-1.6, an inter-process communication protocol
developed by ABB used to mediate information in a multi-threaded robotics control automation system; and
(3) Micro-C/OS 2.0 and 2.7, a real-time operating system for embedded applications. In the case of the latter, we
discovered and report two bugs (including a deadlock), which have been acknowledged by the implementors of
Micro-C/OS.

The rest of this article is organized as follows. In Sect. 2 we summarize related work. Section 3 introduces our
state/event implementation formalism, labeled Kripke structures. We also discuss existential abstractions, parallel
composition, and assorted results. This is followed by Sect. 4 in which we present our state/event temporal logic.
We review standard automata-theoretic model checking techniques, and show how these can be adapted to this
new framework. In Sect. 5, we illustrate these ideas by modeling a simple surge protector. We then contrast our
approach with pure state-based and event-based alternatives, and show that both the resulting implementations
and specifications are significantly more cumbersome. We then use magic to check these specifications, and dis-
cover that the non-state/event formalisms incur important time and space penalties during verification. Section 6
details our compositional CEGAR algorithm for model checking state/event specifications on labeled Kripke
structures, and integrates as a whole the various pieces presented in earlier sections.

Deadlock is formally introduced in Sect. 7. We then explain why classical abstractions are inadequate for han-
dling deadlock in Sect. 8, and propose new abstractions that overcome the problems raised. Section 9 explains
how these abstractions can be exploited within a compositional CEGAR framework, culminating in our deadlock
detection algorithm. Finally, Sect. 10 is devoted to experiments and case studies, while Sect. 11 concludes and
discusses future work.

2. Related work

The formalization of a general notion of abstraction first appeared in (CC77). The abstractions used in our
approach are conservative: they are guaranteed to preserve ‘undesirable’ properties of the system, so that if the
abstraction is bug-free then so is the original model, but may introduce spurious ‘bad’ behaviors not present
in the original system – for more details on conservative abstractions, see, e.g., (Kur89; CGL94). Conservative
abstractions usually lead to significant reductions in the state space but in general require an iterated abstraction
refinement mechanism (see below) in order to establish specification satisfaction.

Counterexample-guided abstraction refinement (Kur94; CGJ+00), or CEGAR, is an iterative procedure
whereby spurious counterexamples to a specification are repeatedly eliminated through incremental refinements
of a conservative abstraction of the system. CEGAR has been used, among others, in (NCOD97) (in non-auto-
mated form), and (BR01; PDV01; LBBO01; HJMS02; CCK+02; CGKS02; COYC03).

Compositionality, which features centrally in our work, is broadly concerned with the preservation of prop-
erties under substitution of components in concurrent systems. It has been extensively studied, among others,
in process algebra (e.g., (Hoa85; Mil89; Ros97)), in temporal logic model checking (GL94), and in the form of
assume-guarantee reasoning (McM97; HQR00; CGP03).

The combination of CEGAR and compositional reasoning is a relatively new approach. In (BLO98), a com-
positional framework for (non-automated) CEGAR over data-based abstractions is presented. This approach
differs from ours in that communication takes place through shared variables (rather than blocking message-
passing), and abstractions are refined by eliminating spurious transitions, rather than by splitting abstract states.

The idea of combining state-based and event-based formalisms is certainly not new. De Nicola and Vaandr-
ager (NV95), for instance, introduce ‘doubly labeled transition systems’, which are very similar to our LKSs.
From the specification point of view, our state/event version of LTL is also subsumed by the modal mu-calcu-
lus (Koz83; Pnu86; BS01), via a translation of LTL formulas into Büchi automata. The novelty of our approach,
however, is the way in which we efficiently integrate an expressive state/event formalism with powerful verification
techniques, namely CEGAR and compositional reasoning. We are able to achieve this precisely because we have
adequately restricted the expressiveness of our framework. To our knowledge, our work is the first to combine
these three features within a single setup.
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Kindler and Vesper (KV98) propose a state/event-based temporal logic for Petri nets. They motivate their
approach by arguing, as we do, that pure state-based or event-based formalisms lack expressiveness in important
respects.

Huth et al. (HJS01) also propose a state/event framework, and define rich notions of abstraction and refine-
ment. In addition, they provide ‘may’ and ‘must’ modalities for transitions, and show how to perform efficient
three-valued verification on such structures. They do not, however, provide an automated CEGAR framework,
and it is not clear whether they have implemented and tested their approach.

Giannakopoulou and Magee (GM03) define ‘fluent’ propositions within a labeled transition systems context
to express action-based linear-time properties. A fluent proposition is a property that holds after it is initiated
by an action and ceases to hold when terminated by another action. Their work exploits partial-order reduction
techniques and has been implemented in the LTSA tool (LTSA).

In a comparatively early paper, De Nicola et al. (NFGR93) propose a process algebraic framework with
an action-based version of CTL as specification formalism. Verification then proceeds by first translating the
underlying labeled transition systems (LTSs) of processes into Kripke structures and the action-based CTL spec-
ifications into equivalent state-based CTL formulas. At that point, a model checker is used to establish or refute
the property.

Dill (Dil88) defines ‘trace structures’ as algebraic objects to model both hardware circuits and their specifi-
cations. Trace structures can handle equally well states or events, although usually not both at the same time.
Dill’s approach to verification is based on abstractions and compositional reasoning, albeit without an iterative
counterexample-driven refinement loop.

In general, events (input signals) in circuits can be encoded via changes in state variables. Browne makes
use of this idea in (Bro89), which features a CTL∗ specification formalism. Browne’s framework also features
abstractions and compositional reasoning, in a manner similar to Dill’s.

Burch (Bur92) extends the idea of trace structures into a full-blown theory of ‘trace algebra’. The focus here
however is the modeling of discrete and continuous time, and the relationship between these two paradigms. His
work also exploits abstractions and compositionality, however once again without automated counterexample-
guided refinements.

Deadlock detection has been widely studied in various contexts. One of the earliest deadlock-detection tools,
for the process algebra CSP, was FDR (FSEL); see also (RD87; BR91; MJ97; Ros97; MH00). Corbett has evalu-
ated various deadlock-detection methods for concurrent systems (Cor96) while Demartini et al. have developed
deadlock-detection tools for concurrent Java programs (DIS99). However, to the best of our knowledge, none of
these approaches involve abstraction refinement or compositionality in automated form.

Very recently, the notion of stuck-freedom (FHRR04), closely related to deadlock-freedom, has been developed
for the process algebra CCS. Stuck-freedom is compositional and an algorithm for model checking stuck-free
conformance for concurrent software has been implemented in the tool zing (AQR+04).

3. Labeled Kripke structures

A labeled Kripke structure (LKS for short) is a 7-tuple (S, Init, P , L, T , �, E) with S a finite set of states, Init ⊆ S
a set of initial states, P a finite set of atomic state propositions, L : S → 2P a state-labeling function, T ⊆ S × S
a transition relation, � a finite set (alphabet) of events (or actions), and E : T → (2� \ {∅}) a transition-labeling

function. We often write s
A−→ s ′ to mean that (s, s ′) ∈ T and A ⊆ E(s, s ′).1 In case A is a singleton set {a} we

write s
a−→ s ′ rather than s

{a}−→ s ′. Note that T and E are entirely determined by the collection of transitions
of the form s

a−→ s ′. Note also that both states and transitions are ‘labeled’, the former with sets of atomic
propositions, and the latter with non-empty sets of events.

We do not assume that the transition relation is total, and indeed we will see that the possibility of deadlock
(reaching a state with no successor) is an unavoidable consequence of the blocking message-passing semantics
we have chosen to model concurrency. We are, however, mainly interested in non-deadlocking behavior, and an
algorithm to detect deadlock is presented in Sect. 9.

A path π=〈s1, a1, s2, a2, . . . 〉 of an LKS is an alternating sequence of states and events subject to the following:
for each i � 1, si ∈ S, ai ∈ �, and si

ai−→ si+1. Paths can be infinite or finite, however we require that a finite path

1 In keeping with standard mathematical practice, we write E(s, s′) rather than the more cumbersome E((s, s′)).
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end with a state (rather than with an event). We usually assume that a path is infinite unless specified otherwise.
Note that finite paths are not required to be ‘maximal’.

Given an LKS M, we write Path(M) to denote the set of infinite paths of M whose first state lies in the set Init of
initial states of M. Later on, we will also write FPath(M) to denote the collection of finite Init-rooted paths of M.

Intuitively, an LKS M represents a finite-state model of some program. States correspond to program state-
ments, and atomic state propositions correspond to predicates on the local variables of the program, or to any
other property we may wish to record of a given state. States are then labeled with precisely all of the atomic
propositions that they satisfy. Upon moving from one state to another, we assume that the LKS performs some
visible event, for potential synchronous communication purposes with another concurrent component (LKS).
The LKS may offer several distinct events – corresponding to distinct offers of synchronization – only one of
which will be performed at any one time; for this reason, transitions are labeled with non-empty sets of events.

We are mainly interested in modeling reactive systems and components intended to run indefinitely, such as
file servers or operating systems, hence our primary focus on infinite paths. Of course, systems with a well-defined
notion of termination, such as authentication protocols, can also be handled in our framework, by modeling
termination as a transition to a special ‘sink’ state, from which only self-transitions are possible.

3.1. Abstraction

The notion of abstraction is central to our approach. We list below the properties that we require of any abstrac-
tion scheme to be usable in our framework, and then give a concrete method for constructing abstractions that
meet these criteria in the next subsection.

In general, given an LKS M, we want an abstraction of M to be conservative, i.e., to over-approximate, in
a controlled manner, the behaviors of M. We want the abstraction to adequately reflect the events that M can
perform, but we may only be interested in a specific subset of the atomic state propositions of M, and consequently
require the abstraction to faithfully reflect only those state propositions that belong to this subset.

Let M=(S, Init, P , L, T , �, E) and A=(SA, InitA, PA, LA, TA, �A, EA) be two LKSs. We say thatA is an abstrac-
tion of M, written M 	 A, iff

1. PA ⊆ P ,
2. �A=�, and
3. For every path π=〈s1, a1, . . . 〉 ∈ Path(M) there exists a path π ′=〈s ′

1, a
′
1, . . . 〉 ∈ Path(A) such that, for each

i � 1, a′
i=ai and LA(s ′

i)=L(si) ∩ PA.

The set PA of atomic state propositions of the abstraction is the subset of state propositions of M that we are
interested in. An important special case is when PA=∅, in which case we really are only interested in the sequences
of events that M can perform – this will be useful when dealing with deadlock detection later on.

Note that this paper focuses on linear-time behaviors, and hence our abstractions are defined in terms of
paths rather than trees. For a branching-time account of concurrent software verification, we refer the reader
to (CCG+05).

Two-way abstraction defines an equivalence relation ∼ on LKSs: M ∼ M ′ iff M 	 M ′ and M ′ 	 M. We shall
only be interested in LKSs up to ∼-equivalence (see Proposition 3 in Sect. 4).

3.2. Existential quotients of labeled Kripke structures

We present a specific method for constructing abstractions that meet the criteria laid out above. An abstraction of
an LKS M is obtained by quotienting the states of M by a suitable equivalence relation. The idea is very similar
to the well-known notion of ‘existential abstraction’ for ordinary Kripke structures in which certain variables are
hidden (CGJ+00).

More precisely, for M=(S, Init, P , L, T , �, E), let PA ⊆ P be a subset of atomic state propositions of M, and
let ≈ be an equivalence relation on the states S of M that respects PA: if s ≈ s ′, then L(s) ∩ PA=L(s ′) ∩ PA. The
existential quotient of M (with respect to PA and ≈) is the LKS A=(SA, InitA, PA, LA, TA, �A, EA) such that:

1. SA=S/≈, the collection of equivalence classes of S,
2. InitA={[s] ∈ S/≈ | ∃s ′ ∈ [s] � s ′ ∈ Init},
3. for all s ∈ S, LA([s])=L(s) ∩ PA,
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4. �A=�, and

5. for all s, s ′ ∈ S and a ∈ �, [s1]
a−→ [s2] iff there exists s ′

1 ∈ [s1], s ′
2 ∈ [s2] such that s ′

1
a−→ s ′

2.

We write M/(PA, ≈) or even M/≈ (when the set PA is clearly understood from the context) to denote the
abstraction A of M obtained in the above manner. The main advantage of working with M/≈ is that in general
it has a smaller state space than M.

We now have:

Proposition 1 For M an LKS, any existential quotient M/(PA, ≈) of M is a genuine abstraction of M in the sense
of Subsect. 3.1: M 	 M/(PA, ≈).

In fact, one can show that any abstraction M/(PA, ≈) of M simulates M, so that existential quotients are branch-
ing-time abstractions as well as linear-time abstractions; we will not, however, make use of this fact in this paper.

Note that any PA-respecting equivalence relation ≈ on the state space of M can be viewed as a partition of this
state space. Moreover, since any refinement (sub-partition) of a PA-respecting partition is again PA-respecting,
we have Proposition 2.

Proposition 2 Let M be an LKS and let M/(PA, ≈) be an abstraction of M. For any refinement ≈′ of the partition
≈, M/(PA, ≈′) is an abstraction of M that is also a refinement of M/(PA, ≈): M 	 M/(PA, ≈′) 	 M/(PA, ≈).

We leave the straightforward proofs of Propositions 1 and 2 to the reader.

3.3. Parallel composition

The notion of parallel composition that we consider in this paper allows for communication through shared
events only; in particular, we forbid the sharing of variables. This restriction facilitates the use of compositional
reasoning in verifying specifications.

Let M1=(S1, Init1, P1, L1, T1, �1, E1) and M2=(S2, Init2, P2, L2, T2, �2, E2) be two LKSs. Assume that M1 and
M2 are compatible, i.e., that they do not share states or variables: S1 ∩ S2=P1 ∩ P2=∅. The parallel composi-
tion of M1 and M2 is given by M1 ‖ M2=(S1 × S2, Init1 × Init2, P1 ∪ P2, L1 ∪ L2, T , �1 ∪ �2, E), where (L1 ∪
L2)(s1, s2)=L1(s1)∪L2(s2), and T and E are such that (s1, s2)

A−→ (s ′
1, s

′
2) iff A �� ∅ and one of the following holds:

1. A ⊆ �1 \ �2 and s1
A−→ s ′

1 and s ′
2=s2,

2. A ⊆ �2 \ �1 and s2
A−→ s ′

2 and s ′
1=s1,

3. A ⊆ �1 ∩ �2 and s1
A−→ s ′

1 and s2
A−→ s ′

2.

In other words, components must synchronize on shared actions and proceed independently on local ac-
tions. Moreover, local variables are preserved by the respective states of each component. This notion of parallel
composition is derived from CSP (Hoa85; Ros97); see also (ACFM85).

Note that, because of our blocking semantics for parallel composition, it is possible for M1 ‖ M2 to exhibit
deadlock – i.e., reach some state with no outgoing transition – even if both M1 and M2 are deadlock-free. Dead-
lock arises through incompatible communication requirements: for example, one component might be waiting
for some input or acknowledgement that the other component is incapable of supplying. In that case the two
components are stuck and cannot make any further progress. Deadlock is clearly an undesirable behavior and is
usually symptomatic of a bug in the program.

Let M1 and M2 be as above, and let π=〈(s1
1 , s

2
1 ), a1, . . . 〉 be an alternating infinite sequence of states and events

of M1 ‖ M2. The projection π�Mi of π on Mi consists of the (possibly finite) subsequence of 〈si
1, a1, . . . 〉 obtained

by simply removing all pairs 〈aj , s
i
j+1〉 for which aj /∈ �i . In other words, we keep from π only those states that

belong to Mi , and excise any transition labeled with an event not in Mi ’s alphabet.
We now record the following theorem, which extends similar standard results for the process algebra CSP

(for related proofs, we refer the reader to (Ros97)).
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p,q q,r

a,b

c

d

Theorem 1

1. Parallel composition is associative and commutative up to ∼-equivalence. Thus, in particular, no bracketing
is required when combining more than two LKSs.

2. Let M1, . . . , Mn be compatible LKSs, and let A1, . . . , An be respective abstractions of the Mi : for each i,
Mi 	 Ai . Then M1 ‖ . . . ‖ Mn 	 A1 ‖ . . . ‖ An. In other words, parallel composition preserves the abstrac-
tion relation.

3. Let M1, . . . , Mn be compatible LKSs with respective alphabets �1, . . . , �n, and let π be an infinite alternating
sequence of states and events of the composition M1 ‖ . . . ‖ Mn. Then π ∈ Path(M1 ‖ . . . ‖ Mn) iff, for each
i, there exists π ′

i ∈ Path(Mi) such that π�Mi is a prefix2 of π ′
i . In other words, whether a path belongs to the

language of a parallel composition of LKSs can be checked by projecting and examining the path on each
individual component separately.

Theorem 1 forms the basis of our compositional approach to verification: abstraction, counterexample
validation, and refinement can all be done component-wise.

4. State/event linear temporal logic

We now present a logic enabling us to refer easily to both states and events when constructing specifications.
Given an LKS M=(S, Init, P , L, T , �, E), we consider linear temporal logic state/event formulas over the sets

P and � (here p ranges over P and a ranges over �):

φ :: =p | a | ¬φ | φ ∧ φ | Xφ | Gφ | Fφ | φ U φ.

We write SE-LTL to denote the resulting logic, and in particular to distinguish it from (standard) LTL.
Let π=〈s1, a1, s2, a2, . . . 〉 be an infinite path. Let πi stand for the suffix of π starting in state si . We then

inductively define path-satisfaction of SE-LTL formulas as follows:

1. π � p iff s1 is the first state of π and p ∈ L(s1),
2. π � a iff a is the first event of π ,
3. π � ¬φ iff π � φ,
4. π � φ1 ∧ φ2 iff π � φ1 and π � φ2,
5. π � Xφ iff π2 � φ,
6. π � Gφ iff, for all i � 1, πi � φ,
7. π � Fφ iff, for some i � 1, πi � φ, and
8. π � φ1 U φ2 iff there is some i � 1 such that πi � φ2 and, for all 1 � j � i − 1, πj � φ1.

We then let M � φ iff, for every infinite path π ∈ Path(M), π � φ.
Let us also introduce the derived W operator: φ1 W φ2 iff (Gφ1) ∨ (φ1 U φ2). We will also freely use standard

Boolean connectives such as →, etc.
As a simple example, consider the above LKS M. It has two states, the leftmost of which (doubly circled) is

the sole initial state. Its set of atomic state propositions is {p, q, r}; the first state is labeled with {p, q} and the
second with {q, r}. M’s transitions are similarly labeled with sets of events drawn from the alphabet {a, b, c, d}.
As the reader may easily verify, M � G(c → Fr) but M � G(b → Fr). Note also that M � G(d → Fr)3 , but
M � G(d → XFr).

2 By convention, an infinite sequence is prefix of another one iff they are the same.
3 Indeed, according to the semantics, a path satisfies the formula d iff d is the first event following the initial state of the path. Observe now
that the only state from which d is immediately possible if the right-hand one, in which r holds, and therefore in which a fortiori Fr holds.
This example highlights a somewhat counterintuitive feature of our semantics in which states and events are combined.
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We remark that SE-LTL formulas conform with our intuitive interpretation of specifications provided that
the LKSs under consideration are deadlock-free: indeed, an LKS with no infinite path, for example, vacuously
satisfies any SE-LTL formula! Deadlock checking is therefore a vital prerequisite for ensuring the soundness of
our analysis. A system found to exhibit deadlock should be sent back to its designer for debugging; if it turns out
the deadlocks somehow do not correspond to genuine bugs, then at the very least they should be managed via
the ‘soft’ sink-state-based approach discussed in Sect. 3.

Let us record the following proposition, which validates our decision not to distinguish between ∼-equivalent
LKSs.

Proposition 3 Let M and M ′ be LKSs with M ∼ M ′. Then, for any SE-LTL formula φ, M � φ iff M ′ � φ′.

4.1. Automata-based verification

We aim to reduce SE-LTL verification problems to standard automata-theoretic techniques for LTL. Note that
a straightforward – but unsatisfactory – way of achieving this is to explicitly encode actions through changes in
(additional) state variables, and then proceed with LTL verification. Unfortunately, this trick usually leads to a
significant blow-up in the state space, and consequently yields much larger verification times. The approach we
present here, on the other hand, does not alter the size of the LKS, and is therefore considerably more efficient.

We first recall some basic results about LTL, Kripke structures, and automata-based verification.
A Kripke structure is simply an LKS minus the alphabet and the transition-labeling function. An LTL formula

is an SE-LTL formula that makes no use of events as atomic propositions.
For P a set of atomic propositions, let BP

∼� 22P

denote the set of Boolean combinations of atomic propositions
in P .

A Büchi automaton is a 6-tuple B=(SB, InitB, P, LB, TB, Acc) with SB a finite set of states, InitB ⊆ SB a set
of initial states, P a finite set of atomic state propositions, LB : SB → BP a state-labeling function, T ⊆ SB × SB

a transition relation, and Acc ⊆ SB a set of accepting states.
Note that the transition relation is unlabeled, and that the states of a Büchi automaton are labeled with

arbitrary Boolean combinations of atomic propositions.
For π an infinite sequence of states of a Büchi automaton, let inf(π ) ⊆ SB be the set of states which occur

infinitely often in π . π is accepted by the Büchi automaton B if it is InitB-rooted, if it is consistent with the
transition relation, and if inf(π ) ∩ Acc �� ∅. The set of all such accepted paths is written Path(B).

Let M=(S, Init, P , L, T ) be a Kripke structure. The state-labeling function L : S → 2P indicates, for each
state s ∈ S, exactly which atomic propositions hold at s; such labeling is equivalent to asserting that the compound
proposition

∧ L(s) ∧ ∧{¬p | p ∈ P \ L(s)} holds at s. Let us denote this compound proposition by L̃(s). Every
Kripke structure can therefore be viewed as a Büchi automaton, where we consider every state to be accepting.

Let B=(SB, InitB, P, LB, TB, Acc) be a Büchi automaton over the same set of atomic propositions as M. We
can define the ‘standard’ product M×B=(S ′, Init′, −, −, T ′, Acc′) as a product of Büchi automata. More precisely,

1. S ′={(s, b) ∈ S × SB | L̃(s) implies LB(b)},
2. (s, b) −→ (s ′, b′) iff s −→ s ′ and b −→ b′,
3. (s, b) ∈ Init′ iff s ∈ Init and b ∈ InitB , and
4. (s, b) ∈ Acc′ iff b ∈ Acc.

The non-symmetrical standard product M × B accepts exactly those paths of M which are ‘consistent’ with
B. Its main technical use lies in the following result of Gerth et al. (GPVW95).

Theorem 2 Given a Kripke structure M and LTL formula φ, there is a Büchi automaton B¬φ such that

M � φ iff Path(M × B¬φ)=∅.

An efficient tool to convert LTL formulas into optimized Büchi automata with the above property is Somenzi
and Bloem’s Wring (WRING; SB00).

We now turn to labeled Kripke structures. Let M=(S, Init, P , L, T , �, E) be an LKS. Recall that SE-LTL
formulas allow events in � to stand for atomic propositions. For x ∈ �, let us therefore write x̃ to denote the
(formal) compound proposition x ∧∧{¬y | y ∈ � \ {x}}. We can also, given an SE-LTL formula φ over P and �,
interpret φ as an LTL formula over P ∪ � (viewed as atomic state propositions); let us denote the latter formula
by φ�. φ� is therefore syntactically identical to φ, but differs from φ in its semantic interpretation.
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We now define the state/event product of a labeled Kripke structure with a Büchi automaton. Let M be as
above, and let B=(SB, InitB, P ∪ �, LB, TB, Acc) be a Büchi automaton over the set of atomic state propositions
P ∪ �. The state/event product M ⊗ B=(S ′, Init′, −, −, T ′, Acc′) is a Büchi automaton that satisfies:

1. S ′={(s, b) ∈ S × SB | L̃(s) implies ∃� � LB(b)}, 4

2. (s, b) −→ (s ′, b′) iff there exists x ∈ � such that s
x−→ s ′ and b −→ b′ and (L̃(s) ∧ x̃) implies LB(b),

3. (s, b) ∈ Init′ iff s ∈ Init and b ∈ InitB , and
4. (s, b) ∈ Acc′ iff b ∈ Acc.

Finally, we have Theorem 3.

Theorem 3 For any LKS M and SE-LTL formula φ,

M � φ iff Path(M ⊗ B¬φ� )=∅.

Note that the state/event product does not require an enlargement of the LKS M (although we consider below
just such an enlargement in the course of the proof of the theorem).

Proof. Observe that a state of M can have several differently-labeled outgoing transitions. However, by duplicat-
ing states (and transitions) as necessary, we can transform M into a ∼-equivalent LKS M ′ having the following
property: for every state s of M ′, the transitions emanating from s are all labeled with the same (single) event.
As a result, the validity of an SE-LTL atomic event proposition a in a given state of M ′ does not depend on the
particular path to be taken from that state, and can therefore be recorded as a propositional state variable of the
state itself. Formally, this gives rise to a Kripke structure M ′′ over atomic state propositions P ∪ �.

We now claim that

Path(M ⊗ B¬φ� )=∅ iff Path(M ′′ × B¬φ� )=∅. (1)

To see this, notice first that there is a bijection between Path(M) and Path(M ′′) (which we denote π �→ π ′′).
Next, observe that any path in Path(M ⊗ B¬φ� ) can be decomposed as a pair (π, β), where π ∈ Path(M)
and β ∈ Path(B¬φ� ); likewise, any path in Path(M ′′ × B¬φ� ) can be decomposed as a pair (π ′′, β), where
π ′′ ∈ Path(M ′′) and β ∈ Path(B¬φ� ). A straightforward inspection of the relevant definitions then reveals that
(π, β) ∈ Path(M ⊗ B¬φ� ) iff (π ′′, β) ∈ Path(M ′′ × B¬φ� ), which establishes our claim.

Finally, we clearly haveM � φ iffM ′ � φ iffM ′′ � φ�. Combining this with Theorem 2 and Equation 1 above, we
get M � φ iff Path(M⊗B¬φ� )=∅, as required. �

The significance of Theorem 3 is that it enables us to make use of the highly optimized algorithms and tools
available for verifying LTL formulas on Kripke structures to verify SE-LTL specifications on labeled Kripke
structures, at no additional space or time costs (no change in the sizes of the LKS M or the formula φ).

Note that a Büchi automaton has non-empty accepted language iff it accepts a lasso, i.e., a path consisting of
a finite prefix leading to an infinite loop. Efficient algorithms for checking emptiness of Büchi automata are well-
known, see e.g., (CGP99). Moreover, these algorithms can always be required to produce an explicit witness in the
case of non-emptiness. Since a lasso in M ⊗B¬φ� clearly projects onto a lasso in M, we have the following theorem.

Theorem 4 For an LKS M and an SE-LTL formula φ, if M � φ, then one can extract a lasso π ∈ Path(M) such
that π � φ.

Such counterexamples allow us to incrementally refine our abstractions during model checking.

5. A surge protector

We describe a toy model of a safety-critical current surge protector in order to illustrate the advantages of
state/event-based implementations and specifications over both the pure state-based and the pure event-based
approaches.

The surge protector is meant at all times to disallow changes in current beyond a varying threshold. The
labeled Kripke structure in Fig. 1 captures the main functional aspects of such a protector in which the possible

4 The term ∃� � LB (b) denotes the formula LB (b) in which all atomic �-propositions have been existentially quantified out; in practice,
however, the output of Wring is presented in a format for which this operation is trivial.
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Fig. 1. The LKS of a surge protector

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

Fig. 2. The Kripke structure of a surge protector

values of the current and threshold are 0, 1, and 2. The threshold value is stored in the variable m, and changes
in threshold and current are, respectively, communicated via the events m0, m1, m2, and c0, c1, c2.5 Note, for
instance, that when m=1 the protector accepts changes in current to values 0 and 1, but not 2 (in practice, an
attempt to hike the current up to 2 should trigger, say, a fuse and a jump to an emergency state, behaviors which
are here omitted for simplicity).

The required specification is neatly captured as the following SE-LTL formula:

φse=G((c2 → m=2) ∧ (c1 → (m=1 ∨ m=2))).

By way of comparison, Fig. 2 represents the (event-free) Kripke structure that captures essentially the same
behavior as the LKS of Fig. 1. In this pure state-based formalism, nine states are required to capture all the
reachable combinations of threshold (m=i) and last current changes (c=j ) values.

The data (9 states and 39 transitions) compares unfavorably with that of the LKS in Fig. 1 (3 states and 9 tran-
sitions). Moreover, as the allowable current ranges increase, the number of states of the LKS will grow linearly, as
opposed to quadratically for the Kripke structure. The number of transitions of both will grow quadratically, but
with a roughly four-fold larger factor for the Kripke structure. These observations highlight the advantages of

5 The reader may object that we have only allowed for Boolean variables in our definition of labeled Kripke structures; it is however trivial
to implement more complex types, such as bounded integers, as Boolean encodings, and we have therefore elided such details here.
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Fig. 3. Comparison of pure state-based, pure event-based and state/event-based formalisms. Values of c and m range between 0 and Range. St
and Tr, respectively denote the number of states and transitions of the Büchi automaton corresponding to the specification. B-T is the Büchi
automaton construction time and T-T is the total verification time. All times are reported in milliseconds. A ∗ indicates that the verification
did not terminate in 10 min

a state/event approach, which of course will be more or less pronounced depending on the type of system under
consideration.

Another advantage of the state/event approach is witnessed when one tries to write down specifications. In
this instance, the specification we require is

φs = G(((c=0 ∨ c=2) ∧ X(c=1)) → (m=1 ∨ m=2))
∧G(((c=0 ∨ c=1) ∧ X(c=2)) → m=2),

which is arguably significantly more complex than φse.
The pure event-based specification φe capturing the same requirement is also clearly more complex than φse:

φe = G(m0 → ((¬c1) W (m1 ∨ m2))) ∧
G(m0 → ((¬c2) W m2)) ∧
G(m1 → ((¬c2) W m2)).

The greater simplicity of the implementation and specification associated with the state/event formalism is
not purely a matter of aesthetics, or even a safeguard against subtle mistakes; experiments also suggest that the
state/event formulation yields significant gains in both time and memory during verification. We implemented
three parameterized instances of the surge protector as simple C programs, in one case allowing message passing
(representing the LKS), and in the other relying solely on local variables (representing the Kripke structure).
We also wrote corresponding specifications, respectively as SE-LTL and LTL formulas (as above) and converted
these into Büchi automata using the tool Wring (WRING). Fig. 3 records the number of Büchi states and transi-
tions associated with the specification, as well as the time taken by magic to construct the Büchi automaton and
confirm that the corresponding implementation indeed meets the specification. The parameter Range indicates
the maximum allowable current value.

A careful inspection of the table in Fig. 3 reveals several consistent trends. First, the number of Büchi states
increases quadratically with the value of Range for both the pure state-based and pure event-based formalisms.
In contrast, the increase is only linear when both states and events are used. We notice a similar pattern among
the number of transitions in the Büchi automata. The rapid increase in the sizes of Büchi automata will naturally
contribute to increased model checking time. However, we notice that the major portion of the total verification
time is required to construct the Büchi automaton. While this time increases rapidly in all three formalisms, the
growth is observed to be most benign for the state/event scenario. The net result is clearly evident from Fig. 3.
Using both states and events allows us to push the limits of c and m beyond what is possible by using either states
or events alone.
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6. Compositional counterexample-guided SE-LTL verification

We now discuss how our framework enables us to verify SE-LTL specifications on parallel compositions of labeled
Kripke structures incrementally and compositionally.

When trying to determine whether an SE-LTL specification holds on a given LKS, the following result is the
key ingredient needed to exploit abstractions in the verification process.

Theorem 5 Let M and A be LKSs with M 	 A. Then for any SE-LTL formula φ over M which mentions only
propositions (and events) of A,

if A � φ then M � φ.

Proof. This follows easily from the fact that every path of M is matched by a corresponding property-preserving
path of A. �

Suppose now that we are given a collection M1, . . . , Mn of LKSs, as well as an SE-LTL specification φ, with
the task of determining whether M1 ‖ . . . ‖ Mn � φ. Let us assume that M1 ‖ . . . ‖ Mn is deadlock-free, a require-
ment for which we provide an algorithm in Sect. 9.6 We first create initial abstractions A1 � M1, . . . , An � Mn,
in a manner to be discussed shortly. We then check whether A1 ‖ . . . ‖ An � φ. In the affirmative, we conclude
(by Theorems 1 and 5) that M1 ‖ . . . ‖ Mn � φ as well. In the negative, we are provided (thanks to Theorem 4)
with an abstract counterexample π ∈ Path(A1 ‖ . . . ‖ An) such that π � φ. We must then determine whether this
counterexample is real or spurious, i.e., whether it corresponds to a counterexample in M1 ‖ . . . ‖ Mn or not.

This validation check can be performed compositionally, as follows. According to Theorem 1, the counter-
example is real iff for each i, the projection π�Ai corresponds to (the prefix of) a valid behavior of Mi . To this
end, we ‘simulate’ π�Ai on Mi . If Mi accepts the path, we go on to the next component. Otherwise, we refine our
abstraction Ai , yielding a new abstraction A′

i with Mi 	 A′
i 	 Ai and such that A′

i also rejects the projection
π�A′

i of the spurious counterexample π . Note that if π is a lasso (as per Theorem 4), the projection π�Ai is either
a lasso or a finite path.

This process is iterated until either the specification is proved, or a real counterexample is found. Termina-
tion follows from the fact that the LKSs involved are all finite, and therefore admit only finitely many distinct
abstractions.7

The advantage of this approach is that the abstractions that we consider here, as detailed in Sect. 3, are ob-
tained by lumping together states of the original LKSs, and have therefore smaller state spaces. Since composing
components in parallel can in general lead to an exponential blow-up of the state space, the overall reduction in
size obtained by composing the reduced abstractions together can be enormous.

Let us return to our SE-LTL specification φ, and let us fix throughout Pφ to be the set of all atomic state
propositions appearing in φ. Consider any of the Mi ’s. Recall from Sect. 3 that an abstraction of Mi is entirely
determined by a Pφ-respecting partition ≈i of the set of states of Mi : such an abstraction is denoted Mi/≈i .

The initial abstraction Mi/≈1
i is the coarsest possible: s ≈1

i s ′ iff Li(s) ∩ Pφ=Li(s ′) ∩ Pφ . Suppose now that we
are handed πi ∈ Path(Mi/≈k

i ) ∪ FPath(Mi/≈k
i ) (i.e., πi is either a lasso or a finite path of Mi/≈k

i ). We must deter-
mine whether πi is a real or spurious counterexample component, i.e., whether πi gives rise to a valid path of Mi

or not. Moreover, in the latter case, we want to refine our partition ≈k
i into ≈k+1

i so that πi is rejected by Mi/≈k+1
i .

This validation/refinement step proceeds as follows. For any set Q of states of Mi and event a, let
Succ(Q, a) ={s ′ | ∃s ∈ Q � s

a−→ s ′} denote the set of a-successors of Q in Mi . Let us first suppose that
πi=〈s1, a1, s2, a2, . . . , am, sm+1〉 is a finite path of Mi/≈k

i . Start with the set Q1=Initi ∩ s1 of those initial states of
Mi that belong to s1, and compute successively Qj+1=Succ(Qj, aj ) ∩ sj+1. If, upon reaching the end of πi , Qm+1
is non-empty, then clearly πi is a valid finite path of Mi . Otherwise, let Qj+1 be the first empty set thus generated.
Refine the partition ≈k

i by splitting sj into Qj and sj \ Qj , yielding a new partition ≈k+1
i . It is then easy to see

that Mi/≈k+1
i will reject πi .

6 Of course, as explained in Sect. 4, the procedure given here will work perfectly well whether or not M1 ‖ . . . ‖ Mn is deadlock-free.
Unfortunately, for deadlocking systems, the answer we get may not conform with our intuitive understanding of the specification φ. For that
reason, an initial deadlock-freedom check is highly recommended.
7 When the LKSs M1, . . . , Mn are generated from C programs via predicate abstraction, as is the case for magic, termination will depend
on whether magic is eventually able to generate sufficiently strong predicates. Although this in general cannot be guaranteed, as a result of
the undecidability of the halting problem, in practice it has not been observed to cause major difficulties.
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Algorithm SE-LTL Model Checking (M1, . . . , Mn ; φ)
for i : =1 to n : let ≈i : = the coarsest partition of Mi that respects the atomic state propositions in φ;
repeat forever

decide whether M1/≈1 ‖ . . . ‖ Mn/≈n � φ via automata-based algorithm (Theorems 3 and 4);
if there is no counterexample then

return “M1 ‖ . . . ‖ Mn � φ”
else suppose π ∈ Path(M1/≈1 ‖ . . . ‖ Mn/≈n) violates φ;
find i such that SE-LTL Validate/Refine(Mi, ≈i , π�Mi/≈i) reports “spurious”;
if no such i then

return “M1 ‖ . . . ‖ Mn � φ ” along with counterexample derived from π
else refine ≈i to rule out spurious counterexample π�Mi/≈i ;

endrepeat

Fig. 4. The overall SE-LTL model checking algorithm for a concurrent system M1 ‖ . . . ‖ Mn and specification φ

In case πi is a lasso, things are slightly more complicated. If Mi rejects πi , then the algorithm above will
establish this in the very same manner, by eventually producing an empty set of states Qj+1. On the other hand, if
πi is accepted by Mi then there will be sets of states Qj =Qj+p such that Qj+p is obtained from Qj by following the
loop part of πi a finite number of times. Since all state spaces involved are finite the search will always terminate
with one or the other answer after a finite number of iterations.

This validation/refinement step is similar to that originally proposed by Clarke et al. (CGJ+00); see also
(COYC03). Let us refer to this procedure as SE-LTL Validate/Refine(Mi, ≈i , πi). The full algorithm for check-
ing whether M1|| . . . ||Mn � φ is given in Fig. 4. Note that the abstraction, counterexample-validation, and
refinement steps are all performed one component at a time.

7. Deadlock

As explained earlier, as a result of our blocking message-passing semantics, a parallel composition M1 ‖ . . . ‖ Mn

of components may exhibit deadlock (reaching a state with no outgoing transition), even if each Mi is deadlock-
free. Deadlock corresponds to inconsistent communication requirements among the Mi ’s.

An important observation is that deadlock is exclusively a function of the communication structure of LKSs,
and does not depend in any way on local variables (atomic state propositions), since our framework does not
allow these to be shared. In other words, if a particular parallel composition of LKSs exhibits deadlock, then
the deadlock will remain regardless of any changes to the various state-labeling functions of its components, and
likewise for deadlock-free systems. For this reason, we shall work in the remainder of this paper with labeled
transition systems (LTSs for short) rather than LKSs.

An LTS is simply an LKS minus the state proposition structure: in other words a quintuple (S, Init, T , �, E)
with the same conventions as for LKSs. Given such an LTS M we occasionally write S(M) and �(M) to denote
S and �, respectively.

Paths are defined in the same manner as for LKSs, except that from now on we are exclusively concerned with
the finite variety. Recall that FPath(M) stands for the set of finite paths accepted by the LTS M. A trace over some
alphabet � is a finite sequence of events of �. A trace 〈a1, a2, . . . , am〉 over �(M) is accepted by M iff there exist
s1, s2, . . . , sm+1 such that 〈s1, a1, s2, a2, . . . , am, sm+1〉 ∈ FPath(M). Paths and traces are usually represented with
the letters π and θ , respectively.

A state s ∈ S(M) is said to refuse an event a ∈ �(M) iff there is no transition from s labeled by a. The refusal
of a state s is the set of all events that it refuses: Ref (s)={a ∈ �(M) | �s ′ ∈ S(M) � s

a−→ s ′}.
Let θ be a trace of M and let F ⊆ �(M) be a set of events. Suppose that M can accept θ along some path

ending in a state s with Ref (s)=F . Then we say that (θ, F ) is a failure of M. We write Fail(M) to denote the set
of all failures of M. Note that several failures can share the same trace component, since a given trace may be
accepted along more than one path.

Let M1 and M2 be two LTSs over a common alphabet �(M1)=�(M2). We say that M1 and M2 are failure-
equivalent if Fail(M1)=Fail(M2).

Finally, we say that M has a deadlock if it can reach a state which refuses its entire alphabet �(M), in other
words if (θ, �(M)) ∈ Fail(M) for some θ .
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Fig. 5. Two sample LTSs M1 and M2. Initial states are doubly circled
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Fig. 6. Parallel composition of LTSs M1 and M2 from Fig. 5

Notice that two failure-equivalent LTSs will have identical deadlocking behavior (or lack thereof). Since fail-
ure-equivalence is preserved by parallel composition (see Theorem 6 below), we shall only be interested in LTSs
up to failure-equivalence.

The notions of refusal, failure, and deadlock that we are using here are borrowed from CSP (with minor
modifications8) – see (Hoa85; Ros97).

As a simple example, consider the LTSsM1 andM2 depicted in Fig. 5. Let�(M1)={a, b, c}and�(M2)={a, b′, c}.
Then M1 has seven paths: 〈p〉, 〈p, a, q〉, 〈p, a, r〉, 〈p, a, q, b, s〉, 〈p, a, r, b, s〉, 〈p, a, q, b, s, c, t〉, and 〈p, a, r,
b, s, c, t〉. It has four traces: 〈〉, 〈a〉, 〈a, b〉, and 〈a, b, c〉, and four failures (〈〉, {b, c}), (〈a〉, {a, c}), (〈a, b〉, {a, b}), and
(〈a, b, c〉, {a, b, c}). Hence M1 has a deadlock. Also, M2 has four paths, four traces, four failures, and a deadlock.

The notion of projection defined in Sect. 3 carries over naturally to traces. Let M be an LTS, and let θ be
a sequence of events, which may or may not belong to �(M). The projection θ�M of θ on M consists of the
subsequence of θ obtained by simply removing all events not belonging to �(M).

Recall the notion of parallel composition from Sect. 3. Fig. 6, for example, shows the LTS M1 ‖ M2 where
M1 and M2 are the LTSs shown in Fig. 5. Note that its alphabet is {a, b, c} ∪ {a, b′, c}={a, b, b′, c}.

The following Theorem lists well-known results from CSP (Ros97).

8 The main difference is that our refusals are maximal, whereas in the CSP semantics refusals are only required to be subsets of disabled
events. This distinction is immaterial insofar as deadlock-checking is concerned.
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Fig. 7. Five sample LTSs. Initial states are doubly circled

Theorem 6

1. Parallel composition is associative and commutative up to failure-equivalence. Thus, in particular, no brac-
keting is required when combining more than two LTSs.

2. Parallel composition is a congruence with respect to failure-equivalence: let M1, M
′
1, M2, M

′
2, . . . , Mn, M

′
n be

LTSs, with each Mi failure-equivalent to M ′
i . Then M1 ‖ . . . ‖ Mn is failure-equivalent to M ′

1 ‖ . . . ‖ M ′
n.

3. Let M1, . . . , Mn be LTSs, θ a sequence of events, and F a set of events. Then (θ, F ) ∈ Fail(M1 ‖ . . . ‖ Mn)
iff there exist sets of events F1, . . . , Fn such that (i) F=

⋃n
i=1 Fi , and (ii) for each i, (θ�Mi, Fi) ∈ Fail(Mi).

In other words, whether a parallel composition of LTSs has a given failure can be checked by projecting and
examining the failure on each individual component separately.

Theorem 6(3) highlights the compositional aspect of failures and is a key ingredient of our deadlock-detection
algorithm, which we present in Sect. 9.

8. Abstraction

In this section, we introduce the abstractions that we shall use in the remainder of this paper. Once again these
abstractions are based on existential quotients of LTSs (see Sect. 3), although as we shall see quotient LTSs on
their own are inadequate for deadlock detection.

Recall that quotient LTSs are obtained by lumping together states of a given LTS. Since there are no atomic
state propositions to respect in the case of LTSs, any partition of the state space of an LTS gives rise to a bona fide
quotient LTS. For M an LTS and ≈ a partition of S(M), we again write M/≈ to denote the resulting quotient
LTS. The states of M are said to be concrete states, and are usually represented with lowercase Roman letters
such as s, whereas the states of M/≈, which are called abstract states, are represented either as equivalence classes
(e.g., [s]) or with the lowercase Greek letter α.

The existential nature of the transition relation of quotient LTSs immediately yields the following proposition.

Proposition 4 Let M be an LTS and M/≈ a quotient LTS of M. For any path 〈s1, a1, s2, . . . , am, sm+1〉 ∈ FPath(M),
we have 〈[s1], a1, [s2], a2, . . . , am, [sm+1]〉 ∈ FPath(M/≈).

Note the following facts about the LTSs in Fig. 7: (1) M1 and M2 both have deadlocks but M1 ‖ M2 does not;
(2) neither M3 nor M4 has a deadlock but M3 ‖ M4 does; (3) M1 has a deadlock and M3 does not have a deadlock
but M1 ‖ M3 has a deadlock; (4) M1 has a deadlock and M4 does not have a deadlock but M1 ‖ M4 does not have
a deadlock (assuming that �(M4)={a, b}); (5) M1 has a deadlock but the quotient LTS obtained by lumping all
the states of M1 into a single equivalence class does not have a deadlock; (vi) finally, M5 has no deadlock (since
state r cannot be reached from the initial state p), yet the quotient LTS obtained by lumping together states p
and q does have a deadlock.

These examples highlight the following facts: (1) deadlock is inherently non-compositional: neither its pres-
ence nor its absence is preserved by parallel composition; (2) existential abstractions on their own are inadequate
for handling deadlock: they preserve neither its presence nor its absence. (We remark that universal abstractions
are likewise inadequate for handling deadlock, for the same reason.)

The inadequacy of existential abstractions with respect to deadlock is to be contrasted with their adequacy for
SE-LTL: existential quotients preserve the non-satisfaction of SE-LTL formulas (as per Theorem 5), and thus lead
to an iterative algorithm for model checking SE-LTL formulas. In order to be able to do the same for deadlock
detection, we need to equip our existential abstractions with additional structure.

Let us take a closer look at the non-preservation of deadlock by existential abstractions. Consider a quotient
LTS M/≈ and a state α of M/≈. It is easy to see that Ref (α)=

⋂
s∈α Ref (s). In other words, the refusal of an

abstract state α under-approximates the refusals of each of its corresponding concrete states. In order to preserve
deadlock, we must instead require that refusals of concrete states be over-approximated. This can be achieved
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by simply taking the union of the refusals of the concrete states. This leads us to the notion of abstract refusals,
which we now define formally.

Let M be an LTS and ≈ a partition of the state space of M. For any abstract state α ∈ S(M/≈), define the
abstract refusal of α to be

AbsRef (α)=
⋃

s∈α

Ref (s).

Moreover, for a parallel composition M1/≈1 ‖ . . . ‖ Mn/≈n of quotient LTSs, we extend the notion of abstract
refusal by letting, for any α=(α1, . . . , αn) ∈ S(M1/≈1 ‖ . . . ‖ Mn/≈n),

AbsRef (α)=
n⋃

i=1

AbsRef (αi).

This naturally leads us to the notion of abstract failures, which are similar to failures, except that refusals are
replaced by abstract refusals. Let M̂ be an LTS for which abstract refusals are defined (i.e., M̂ is either a quotient
LTS or a parallel composition of such). Let θ be a trace of M̂ and let F ⊆ �(M̂) be a set of events. Suppose that
M̂ can accept θ along some path ending in a state α with AbsRef (α)=F . Then we say that (θ, F ) is an abstract
failure of M̂. We write AbsFail(M̂) to denote the set of all abstract failures of M̂.

The following lemma essentially states that the failures of an LTS M are always subsumed by the abstract
failures of its quotient LTS M/≈.

Lemma 1 Let M be an LTS, ≈ a partition of the state space of M, and M/≈ the quotient LTS induced by ≈.
Then for all (θ, F ) ∈ Fail(M), there exists F ′ ⊇ F such that (θ, F ′) ∈ AbsFail(M/≈).

Proof. This is a straightforward consequence of Proposition 4. �

The following lemma shows that abstract failures, like failures, are compositional: the abstract failures of a
concurrent system M‖ can be decomposed naturally into abstract failures of each of its components.

Lemma 2 Let M1/≈1, . . . , Mn/≈n be quotient LTSs, θ a sequence of events, and F a set of events. Then
(θ, F ) ∈ AbsFail(M1/≈1 ‖ . . . ‖ Mn/≈n) iff there exist sets of events F1, . . . , Fn such that (1) F=

⋃n
i=1 Fi ,

and (2) for each i, (θ�Mi/≈i , Fi) ∈ AbsFail(Mi/≈i).

Proof. This follows from the fact that θ is a trace of M1/≈1 ‖ . . . ‖ Mn/≈n iff for each i, θ�Mi/≈i is a trace of
Mi/≈i , which itself is implied by Theorem 6(3). �

In the remainder of the paper we shall often use the following facts implicitly: �(M1/≈1 ‖ . . . ‖ Mn/≈n)=⋃n
i=1 �(Mi/≈i)=

⋃n
i=1 �(Mi)=�(M1 ‖ · · · ‖ Mn).

Abstract failures lead naturally to the notion of abstract deadlocks. Let M̂‖=M1/≈1 ‖ . . . ‖ Mn/≈n be a
parallel composition of quotient LTSs. Then M̂‖ is said to have an abstract deadlock if (θ, �(M̂‖)) ∈ AbsFail(M̂‖)
for some trace θ of M̂‖. In other words, abstract deadlocks arise from traces in the abstracted system that lead to
an abstract refusal of the entire alphabet.

9. Compositional counterexample-guided deadlock detection

We now discuss how the abstractions defined in the previous section enable us to decide incrementally and
compositionally whether or not a parallel composition of LTSs is deadlock-free.

Analogously to Theorem 5, the following result is the key ingredient needed to exploit our abstractions in the
deadlock-checking process:

Theorem 7 Let M1, . . . , Mn and ≈1, . . . , ≈n be LTSs and partitions of the state spaces of the Mi , respectively. If
M1/≈1 ‖ . . . ‖ Mn/≈n has no abstract deadlock, then M1 ‖ . . . ‖ Mn is deadlock-free.

Proof. Let us establish the contrapositive. To this end, write M‖=M1 ‖ . . . ‖ Mn and M̂‖=M1/≈1 ‖ . . . ‖ Mn/≈n,
and suppose that (θ, �(M‖)) ∈ Fail(M‖). By Theorem 6(3), there are sets of events F1, . . . , Fn whose union
is �(M‖) and such that (θ�Mi, Fi) ∈ Fail(Mi) for each i. From Lemma 1, there are sets of events F ′

1, . . . , F ′
n

with each F ′
i ⊇ Fi and such that (θ�Mi, F

′
i ) ∈ AbsFail(Mi/≈i) for each i. Since θ�Mi=θ�Mi/≈i , we can invoke

Lemma 2 to conclude that (θ, �(M̂‖)) ∈ Fail(M̂‖). �



Concurrent software verification with states, events, and deadlocks

Algorithm Deadlock Detection (M1, . . . , Mn)
for i : =1 to n : let ≈i : = the coarsest partition, with all states in the same equivalence class;
repeat forever

find abstract deadlock in M1/≈1 ‖ . . . ‖ Mn/≈n;
if there is no abstract deadlock then

return “M1 ‖ . . . ‖ Mn is deadlock-free”
else suppose π ∈ FPath(M1/≈1 ‖ . . . ‖ Mn/≈n) leads to abstract deadlock;
find i such that Deadlock Validate/Refine(Mi, ≈i , π�Mi/≈i) reports “spurious”;
if no such i then

return “M1 ‖ . . . ‖ Mn has deadlock” along with counterexample derived from π
else refine ≈i to rule out spurious counterexample π�Mi/≈i ;

endrepeat

Fig. 8. The overall deadlock-detection algorithm for a concurrent system M1 ‖ . . . ‖ Mn

Note that M̂‖ has an abstract deadlock iff it has a finite path that reaches a state whose abstract refusal is
the whole of �(M̂‖). We call such a path a counterexample to abstract deadlock-freedom, or simply an abstract
counterexample. One must then determine whether this abstract counterexample is valid or not, i.e., whether it
gives rise to a genuine deadlock in the concrete system or not.

Suppose that our abstract counterexample is π=〈α1, a1, α2, a2, . . . , am, αm+1〉, where we write
αm+1=(α1

m+1, . . . , αn
m+1). Let θ=〈a1, a2, . . . , am〉 be the trace associated with π . Then for each i, we have that

(θ�Mi/≈i , AbsRef (αi
m+1)) is an abstract failure of Mi/≈i . If it turns out also to be a genuine failure of Mi , for

each Mi , then we say that the abstract counterexample is valid. Indeed we can conclude, thanks to Theorem 6(3),
that M‖ has a genuine deadlock, which moreover we can readily provide a witness for.

Efficient algorithms for checking whether an LTS has a given failure are well-known – see, e.g., (Ros97). Note
that the validation is performed compositionally, one component (Mi) at a time.

Unfortunately, we may instead discover some Mi for which (θ�Mi, AbsRef (αi
m+1)) is not a failure. In that case,

we must refine our partition ≈i , so as to rule out the spurious abstract failure, and start the search anew. Note
once again that termination will follow automatically provided that each partition refinement is strict.9

The refinement step proceeds as follows. We are assuming that either (1) the path πi=〈αi
1, a1, α

i
2, a2, . . . ,

am, αi
m+1〉 of Mi/≈i cannot be matched by Mi , or (2) that it can be matched but that none of the states s it leads to

has Ref (s)=AbsRef (αi
m+1). In case (i), we employ exactly the same technique as that of Sect. 6 to refine the parti-

tion ≈i by splitting one of the intermediate abstract states αi
1, . . . , αi

m in two. In case (2), we observe that the states
in αi

m+1 that are reachable in Mi along πi cannot all have identical refusals. Pick some event a for which at least two
states disagree, and split αm+1 into those states that refuse a and those that do not. This clearly gives rise to a strict
refinement of the partition ≈i , and moreover permanently rules out the spurious abstract counterexample π .

Let us refer to this procedure as Deadlock Validate/Refine(Mi, ≈i , πi). The full algorithm for checking whether
M1|| . . . ||Mn has a deadlock is given in Fig. 8. Note that the abstraction, counterexample-validation, and refine-
ment steps are all performed one component at a time.

10. Experimental results

We implemented our algorithms within the magic tool. magic extracts finite LKS models from C programs using
predicate abstraction. These LKSs are then analyzed to check for satisfaction of an SE-LTL specification or the
presence of deadlock using the techniques presented in this article. Once a real counterexample π is found at the
level of the LKSs magic analyses π and, if necessary, creates more refined models by inferring new predicates.10

Our actual implementation is therefore a two-level CEGAR scheme. We elide details of the outer predicate
abstraction-refinement loop as it is similar to some of our previous work (COYC03). All our experiments were
performed on an AMD Athlon XP 1600+ machine with 900 MB RAM running RedHat Linux 7.1.

9 In fact, it turns out that the abstract LTSs converge to the bisimulation quotients of their concrete counterparts; however in practice
deadlock-freedom is often established or disproved well before the bisimulation quotient is achieved.
10 This is akin to the splitting of abstract states described in the paper, carried out symbolically via the use of predicates on the state space
of the C program.
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Fig. 9. Experimental results with OpenSSL and Micro-C/OS. These experiments did not make use of abstraction/refinement and proceeded
in a single iteration. St(B) and Tr(B), respectively the number of states and transitions in the Büchi automaton; St(Mdl) = number of states in
the model; T(Mdl) = model construction time; T(BA) = Büchi construction time; T(Ver) = model checking time; T(Total) = total verification
time. All reported times are in milliseconds. Mem is the total memory requirement in MB. A * indicates that the model checking did not
terminate within 2 h and was aborted. In such cases, other measurements were made at the point of forced termination. A – indicates that
the corresponding measurement was not taken

10.1. SE-LTL experiments

In order to validate our approach for SE-LTL model checking we experimented with two broad sets of bench-
marks. The first set of these examples was based on OpenSSL-0.9.6c, an open-source implementation of the SSL
protocol. This is a popular protocol used for secure exchange of sensitive information over untrusted networks.
SSL involves an initial handshake between a client and a server that attempt to establish a secure channel between
themselves. The target of our verification process was the implementation of this handshake, comprising about
350 lines of ANSI C code each for the server and the client.

From the official SSL specification (SSL) we derived a set of nine properties that every correct SSL imple-
mentation should satisfy. The first five properties are relevant only to the server, the next two apply only to the
client, and the last two properties refer to both a server and a client executing concurrently. For instance, the first
property states that whenever the server asks the client to terminate the handshake, it eventually either gets a
correct response from the client or exits with an error code. The second property expresses the fact that whenever
the server receives a handshake request from a client, it eventually acknowledges the request or returns with an
error code. The third property states that a server never exchanges encryption keys with a client once the cipher
scheme has been changed.

Each of these properties was then expressed in SE-LTL, once using only states and again using both states
and events. The table in Fig. 9 summarizes the results of our experiments with these benchmarks. The SSL bench-
marks have names of the form x-y-z where x denotes the type of the property and can be either srvr, clnt, or
ssl, depending on whether the property refers, respectively, to only the server, only the client, or both server and
client. y denotes the property number while z denotes the specification style and can be either ss (only states)
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Name Plain IterDeadlock
�� �� I T M �� �� I T M

ABB ���� ��
� * * * 162 ���� ��

� 1973 861 1446 33.3
SSL 49405 25731 1 44 43.5 16 16 16 31.9 40.8

UCOSD-2 ���� ��
� 5851 5 24 14.5 374 261 77 14.5 12.9

UCOSD-3 ���� ��
� * * * 58.6 6144 4930 120 221.8 15

UCOSN-4 ���� ��
� 39262 1 18.1 14.1 8192 2125 30 8.1 10.5

UCOSN-5 ���� ��
�

���� ��
� 1 253 52.2 65536 12500 37 80 12.7

UCOSN-6 ���� ��
�� * * * 219.3 ���� ��

� 71875 44 813 30.8

RW-4 ���� ��
� 8369 4 6.48 10.8 5120 67 54 4.40 10.0

RW-5 ���� ��
�� 54369 4 35.1 15.9 24576 132 60 7.33 10.4

RW-6 ���� ��
��

���� ��
� 4 257 45.2 ���� ��

� 261 66 12.6 10.8
RW-7 ���� ��

�� * * * 178 ���� ��
� 518 72 25.3 11.8

RW-8 * * * * * ���� ��
� 1031 78 60.5 14.0

RW-9 * * * * * ���� ��
� 2056 84 132 14.5

DPN-3 ��	� ��
� 1401 2 .779 - 5832 182 27 .849 -

DPN-4 ���� ��
�� 16277 2 11.8 10.9 ���� ��

� 1274 34 7.86 9.5
DPN-5 ���� ��

��
���� ��

� 2 197 28.0 ���� ��
� 8918 41 84.6 11.4

DPN-6 ���� ��
�� * * * 203 ���� ��

� 62426 48 831 26.1
DPD-9 ���� ��

�� 11278 1 22.5 12.0 ���� ��
� 13069 46 191 12.2

DPD-10 ���� ��
�� 38268 1 87.6 17.3 	��� ��

�� 44493 51 755 18.4

Fig. 10. Experimental results. SM = maximum # of states; SR = # of reachable states; I = # of iterations; T = time in seconds; M = memory
in MB; time limit = 1500 s; – indicates negligible value; * indicates out of time; notable figures are highlighted

or se (both states and events). We note that in each case the numbers for state/event properties are considerably
better than those for the corresponding pure-state properties.

The second set of our benchmarks was obtained from the source code of version 2.0 of Micro-C/OS. This
is a popular, lightweight, real-time, multi-tasking operating system written in about 3000 lines of ANSI C. The
OS uses a lock to ensure mutual exclusion for critical section code. Using SE-LTL we expressed two properties
of the OS: (1) the lock is acquired and released alternately starting with an acquire and (2) every time the lock is
acquired it is eventually released. These properties were expressed using only events.

We found a bug in the OS that causes it to violate the first property. We informed the developers of the OS
about this bug and were told that it had been detected and fixed. The developers also kindly supplied us with
the latest source code for the OS, and we are currently attempting to find errors in it. The second property was
found to be valid. In Fig. 9 these experiments are named UCOS-BUG and UCOS-2, respectively. Next we fixed the
bug and verified that the first property holds for the corrected OS. This experiment is called UCOS-1 in Fig. 9.

Since our main goal in these experiments was to directly compare the state/event-based and pure-state-based
approaches, we did not make use of any abstraction and refinement at the level of the LKSs and the verification
therefore proceeded in a single iteration.

10.2. Deadlock experiments

Our approach for deadlock detection was validated against a broad set of benchmarks consisting of both indus-
trial and classical systems. Our results are summarized in Fig. 10. The ABB benchmark was provided to us by
our industrial partner, ABB Corporation (ABB). It implements part of an inter-process communication protocol
(IPC-1.6) used to mediate communication in a multi-threaded robotics control automation system developed
by ABB. The implementation is required to satisfy various safety-critical properties, and in particular deadlock-
freedom. The IPC protocol supports multiple modes of communication, including synchronous point-to-point,
broadcast, publish/subscribe, and asynchronous communication. Each of these modes is implemented in terms of
messages passed between queues owned by different threads. The protocol handles the creation and manipulation
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of message queues, synchronizing access to shared data using various operating system primitives (e.g., sema-
phores), and cleaning up internal states when a communication fails or times out.

We analyzed the portion of the IPC protocol that implements the primitives for synchronous communication
(approx. 1500 LOC) among multiple threads. With this type of communication, a sender sends a message to a
receiver and blocks until an answer is received or it times out. A receiver asks for its next message and blocks
until a message is available or it times out. Whenever the receiver gets a synchronous message, it is then expected
to send a response to the sender. magic successfully verified the absence of deadlock in this implementation.

The SSL benchmark represents a deadlock-free system (approx. 700 LOC) consisting of one OpenSSL server
and one OpenSSL client. The UCOSD-n benchmarks are derived from Micro-C/OS version 2.7, a real-time
operating system for embedded processors, and consist of n threads (approx. 6000 LOC) executing concurrently.
Access to shared data is protected via locks. This implementation suffers from deadlock. In contrast, the UCOSN-
n benchmarks are deadlock-free. The RW-n benchmarks implement a deadlock-free reader–writer system (194
LOC) with n readers, n writers, and a controller. The controller ensures that at most one writer has access to
the critical section. Finally, the DPN-n benchmarks represent a deadlock-free implementation of n dining phi-
losophers (251 LOC), while DPD-n implements n dining philosophers (163 LOC) that can deadlock. As Fig. 10
shows, even though the implementations are of moderate size, the total state space is often quite large due to
exponential blowup.

Values under IterDeadlock refer to measurements for our approach while those under Plain correspond to
a naive approach involving only predicate abstraction refinement. We note that IterDeadlock outperforms Plain
in almost all cases. In many cases IterDeadlock is able to establish deadlock or deadlock-freedom while Plain
runs out of time. Even when both approaches succeed, IterDeadlock can yield over 20 times speed-up in time
and require over 4 times less memory (RW-6). For the experiments involving dining philosophers with deadlock
however, Plain performs better than IterDeadlock. This is because in these cases Plain terminates as soon as it
discovers a deadlocking scenario, without having to explore the entire state space. In contrast, IterDeadlock has
to perform many iterations before finding a genuine deadlock.

Finally, we note that in various instances one observes a rather large number of abstraction/refinement iter-
ations over a relatively small state space. This occurs because our initial abstraction is very small (a single state)
and the successive refinement steps are designed to minimize the increase of the state space. We expect that differ-
ent choices of initial abstraction and a more aggressive refinement strategy would lead to fewer iterations. The
approach we followed is chiefly aimed at mitigating the state-space explosion problem.

11. Conclusion and future work

In this paper, we have presented an expressive framework for modeling and verifying linear-time temporal spec-
ifications on concurrent software systems. Our approach involves both states and events, and is predicated on a
compositional counterexample-guided abstraction refinement scheme. We have also shown how standard auto-
mata-theoretic techniques for verifying linear temporal logic formulas can be ported to our framework at no
extra cost, and have implemented these within our C model checker magic. We have also carried out a number of
experiments on industrial benchmarks, and have discovered bugs in the real-time operating system Micro-C/OS.
These experiments have led us to conclude that not only does a state/event formalism facilitate the formulation
of appropriate specifications (as compared to standard pure state-based or event-based frameworks), but also
yields substantial improvements in both verification time and memory usage.

We have also presented a new algorithm to detect deadlocks in concurrent blocking message-passing programs.
This algorithm not only complements our state/event verification framework, but is also highly useful in its own
right. Once again, the strength of our approach resides in the use of efficient abstractions as well as compositional
reasoning, despite the fact that deadlock is non-compositional and moreover is not preserved by classical abstrac-
tions. Our technique is automated and employs iterative abstraction refinement to scale to real-life examples.
Experimental results demonstrate the effectiveness of our approach on industrial benchmarks. We believe it can
be improved further by using assume-guarantee style reasoning, and we plan to investigate this issue in the future.

There remain many other avenues for further research. In our current framework, it may be possible to fur-
ther optimize the automata-theoretic part of the verification, by directly transforming SE-LTL formulas into
labeled Büchi automata. Doing so should yield more compact automata-based representations of specifications,
resulting in a smaller overall state space. Another direction is to investigate other, more aggressive (and perhaps
specification-dependent), notions of abstraction. magic is at present an explicit model checking tool – it could
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be worthwhile to incorporate symbolic and partial order techniques to improve its efficiency further. Finally, an
interesting area of research is to develop mechanisms to handle shared variables compositionally.
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