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Abstract

Privilege separation partitions a single program into two
parts: a privileged program called the monitor and an
unprivileged program called the slave. All trust and
privileges are relegated to the monitor, which results in
a smaller and more easily secured trust base. Previ-
ously the privilege separation procedure, i.e., partition-
ing one program into the monitor and slave, was done
by hand [18, 28]. We design techniques and develop a
tool called Privtrans that allows us to automatically in-
tegrate privilege separation into source code, provided
a few programmer annotations. For instance, our ap-
proach can automatically integrate the privilege separa-
tion previously done by hand in OpenSSH, while enjoy-
ing similar security benefits. Additionally, we propose
optimization techniques that augment static analysis with
dynamic information. Our optimization techniques re-
duce the number of expensive calls made by the slave to
the monitor. We show Privtrans is effective by integrat-
ing privilege separation into several open-source appli-
cations.

1 Introduction

Software security provides the first line of defense
against malicious attacks. Unfortunately, most software
is written in unsafe languages such as C. Unsafe opera-
tions may lead to buffer overflows, format string vulnera-
bilities, off-by-one errors, and other common vulnerabil-
ities. Exploiting a vulnerability can subvert a programs’
logic, resulting in unintended execution paths such as in-
appropriately running a shell.

∗This research was supported in part by NSF and the Center for
Computer and Communications Security at Carnegie Mellon under
grant DAAD19-02-1-0389 from the Army Research Office. The views
and conclusions contained her are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of ARO, NSF, Carnegie Mel-
lon University, or the U.S. Government or any of its agencies.

Privileged programs — programs that run with elevated
privileges — are the most common attack targets. A suc-
cessful exploit may allow the attacker to execute arbi-
trary instructions with the elevated privileges. Even if
attackers cannot execute arbitrary instructions, they may
be able to change the semantics of the code by disabling
a policy of the program. For example, an exploit may
disable or alter an “if” statement that checks for success-
ful authentication.

The number of programs that execute with privileges on
a system is typically high, including setuid/setgid pro-
grams (e.g., ping), common network daemons (e.g., web-
servers), and system maintenance programs (e.g., cron).
In order to prevent a compromise, every privileged pro-
gram on a system must be secured.

Privilege separationis one promising approach to im-
proving the safety of programs. Privilege separation par-
titions a single program into two programs: a privileged
monitor program that handles all privileged operations,
and an unprivilegedslaveprogram that is responsible for
everything else. The monitor and slave run as separate
processes, but communicate and cooperate to perform
the same function as the original program. When neces-
sary, a program can be separated into more than 2 pieces.

In this paper we show how to automatically add privi-
lege separation to a program. The overall procedure for
adding privilege separation to a program is depicted in
Figure 1. The programmer supplies the source code and a
small number of annotations to indicate privileged oper-
ations. Our tool, Privtrans, then automatically performs
inter-procedural static analysis and C-to-C translation to
partition the input source code into two programs: the
monitor and slave.

Safety between the slave and monitor is primarily pro-
vided by process isolation in the operating system. Thus,
a compromise of the slave does not compromise the mon-
itor. The slave and monitor communicate via either inter-
process or inter-network sockets.



Figure 1: We automatically incorporate privilege sepa-
ration into source code by partitioning it into two pro-
grams: the monitor which handles privileged operations
and the slave which executes everything else. The pro-
grammer supplies a few annotations to help Privtrans de-
cide how to properly partition the input source code.

The monitor exports only a limited interface to the slave.
As a result, a compromised slave can execute only a lim-
ited number of privileged operations. Without privilege
separation, a compromised slave may be able to run ar-
bitrary instructions with the elevated privileges.

The monitor can further limit allowed privileged oper-
ations by employing policies. Since the slave asks the
monitor to perform privileged operations on its behalf,
the monitor can be viewed as interposing between priv-
ileged operations and the main execution in the slave.
Policies can be fine-grained and express what privileged
operations (or sequence of operations) are allowed, and
are enforced during interposition.

1.1 Related approaches

In this section we discuss closely related approaches for
the purpose of comparison. A thorough treatment of re-
lated work can be found in section 6.

System call interposition [1, 5, 14, 16, 27] monitors sys-
tem calls and decides whether to allow or deny a call
based upon a user-specified policy. Privilege separation
is different from system call interposition because it stat-
ically changes the source code of a program. As a result,
privilege separation can interpose on any function call,

not just system calls.

Static analysis can be used to find bugs in programs [9,
12, 11, 19, 32, 37, 42]. However, it is difficult to perform
precise static analysis on C programs. Our approach is
to use static analysis as a tool to help partition the input
source code, not find bugs. We rely upon process isola-
tion for safety. We also use dynamic information to aug-
ment static analysis to reduce the number of expensive
calls made by the slave to the monitor.

Provos et al. demonstrated the value of privilege separa-
tion in OpenSSH [28]. However, they manually edited
OpenSSH to incorporate privilege separation. When
privilege separation is enabled, OpenSSH resists several
attacks [8, 23, 24]. Our techniques enable automatic
privilege separation for programs, including OpenSSH.

Privman [18], a library for partitioning applications, pro-
vides an API a programmer can use when adding privi-
lege separation to a program. However, the library can
only make authorization decisions and does not provide
complete mediation. Further, the programmer must man-
ually edit the source at every call point to use the corre-
sponding Privman equivalent. Our method uses data flow
techniques to automatically find the proper place to insert
calls to the monitor, and allows for finer-grained policies
than access control. Policies are discussed in section 2.3.

1.2 Our contributions

In this paper, we describe our techniques that allow our
tool Privtrans to automatically add privilege separation to
programs. The programmer provides a few simple anno-
tations to variables or functions that could be privileged.
Privtrans then statically propagates the attributes by per-
forming inter-procedural analysis on the source code to
find privileged call sites. Privtrans then performs C-to-
C translation to partition the input source code into the
source code for the monitor and slave. Privtrans also au-
tomatically inserts dynamic checks which reduce over-
head by limiting the number of expensive calls from the
slave to the monitor.

Our contributions include:

• We design new techniques that allow us to de-
velop the first tool for automatic privilege separa-
tion. Our automatic approach makes it easy to add
privilege separation to many programs. We use a
strong model for privilege separation (section 2).



Our approach allows for fine-grained policies (sec-
tion 2). With only a few annotations provided by the
programmer, our tool automatically performs inter-
procedural static analysis and C-to-C translation
to partition a program into the privilege-separated
monitor and slave programs (section 3).

Our results show that our approach is able to limit
the interface exported by the monitor to the slave
automatically. Furthermore, our experiments (sec-
tion 4) demonstrate that the interface exported be-
tween the monitor and slave using our automatic
privilege separation is comparable to manually in-
tegrating privilege separation. This fact shows that
our automatic privilege separation can enjoy similar
security as manual privilege separation.

As an additional benefit, automatic program transla-
tion, as opposed to manually changing code, allows
us to track and re-incorporate privilege separation
as the source code evolves.

• We design and develop techniques to augment static
analysis with dynamic information to improve effi-
ciency. Since static analysis of C programs is con-
servative, we insert dynamic checks to reduce the
number of expensive calls made by the slave to the
monitor.

• We allow for privilege separation in a distributed
setting. Previous work only considered the mon-
itor and slave running on the same host [18, 28].
Running the monitor and slave on different hosts
is important in many scenarios (section 2), such as
privilege separation in OpenSSL (section 4).

1.3 Organization

Section 2 introduces the model we use for privilege sep-
aration, the components needed for automatic privilege
separation, and the requirements for programmers using
privilege separation. Section 3 details our techniques and
implementation of Privtrans. Section 4 shows Privtrans
works on several different open-source programs. We
then discuss when our techniques are applicable in sec-
tion 5. We discuss related work in section 6, followed
by the conclusion.

2 The general approach to automatic priv-
ilege separation

In this section we begin by describing the model we use
for privilege separation. We then discuss the compo-
nents needed for automatic privilege separation. Last,
we discuss components that need to be supplied by the
programmer.

2.1 Our model for privilege separation

In our model the monitor must mediate access to all priv-
ileged resources,including the data derived from such a
resource. Specifically, it is not sufficient for the mon-
itor to only perform access control. The monitor, and
hence privileged data, functions, and resources, must be
in an address space that is inaccessible from the slave.
Our model is the same used by Provos et al. [28], but
is stronger than that of Privman [18], since it encom-
passes both access control and protecting data derived
from privileged resources.

It is often insufficient to only perform access control on
privileged resources – it is also important to protect the
data derived from the privileged resource. For example,
if a program requires access to a private key, we may
wish to regulate how that key is used, e.g., the key should
not be leaked to a third party. Access control only allows
us to decide whether to allow or deny a program access
to the private key. A subsequent exploit may reveal that
key to a third party. With privilege separation, the mon-
itor controls the private key at all times. As a result, the
monitor can ensure the key is not leaked. In our model
policies can be expressed for both access control and pro-
tecting data data derived from privileged resources.

We assume that the original program accesses privileged
resources through a function call. This assumption is
naturally met by most programs, as privileges are only
needed for a system call (such as opening a file and sub-
sequently reading it) or library call (such as reading in a
private key and subsequently using it to decrypt).

2.2 Components needed for automatic privi-
lege separation

In order to create the monitor and slave from the given
source code, automatic privilege separation requires:



1. int sndsize = 128*1024;
2. int s = socket(AF INET,

SOCKRAW, IPPPROTOICMP);
3. setsockopt(s, SOL SOCKET,

SOSNDBUF, & sndsize,
&(sizeof(sndsize)));

Figure 2: The monitor must track the socket created
on line 2, and relate it to a subsequent call such as
setsockopt on line 3.

1. A mechanism for identifying privileged resources,
i.e., functions that require privileges or data ac-
quired from calling a function that requires privi-
leges.

2. An RPC mechanism for communication between
the monitor and slave. The RPC mechanism in-
cludes support for marshaling/demarshaling arbi-
trary data types that the slave and monitor may ex-
change.

3. A storage mechanism inside the monitor for stor-
ing the result of a privileged operation in case it is
needed in a later call to the monitor.

The third mechanism, storage, is needed when multiple
calls to the monitor may use the same privileged data.
Consider the sequence of calls given in Figure 2. On line
2 a socket is created. Since the socket is a raw socket, its
creation is a privileged operation and must be executed in
the monitor. At this point the monitor creates the socket,
saves the resulting file descriptorsock , and returns an
opaque index to the file descriptor to the slave. On line
3 the slave callssetsockopt on the privileged socket.
To accomplish this the slave asks the monitor to perform
the call and provides it with the opaque index from line 2.
The monitor uses the index to get the file descriptor for
sock , performssetsockopt , and returns the result.
Note that if the monitor passed the file descriptor to the
slave, we could not enforce any policies on how the file
descriptor may be used.

Our tool, Privtrans, provides all three mechanisms. The
programmer supplies a few annotations to mark privi-
leged resources. Privtrans then automatically propagates
attributes to locate all privileged functions and data. We
supply a base RPC library, drop-in replacement wrap-
pers for common privileged calls, and the monitor itself
including the state store. Thus, the programmer is re-
sponsible only for adding a few annotations and defining
appropriate policies.

2.3 Annotations and policies supplied by the
user

Annotations Privtrans defines two C type qualifier [2]
annotations for variables and functions: the “priv” and
“unpriv” annotations1. The programmer uses the “priv”
annotation to mark when a variable is initialized by ac-
cessing a privileged resource, or when a function is priv-
ileged and should be executed in the monitor. The “un-
priv” attribute is only used when downgrading a privi-
leged variable.

After the programmer supplies the initial annotations,
propagation infers the dependencies between privileged
operations and adds the privileged attribute as necessary.
Propagation is discussed further in section 3.

The “priv” and “unpriv” attributes are used to partition
the source code into the monitor source and the slave
source. If a variable has the privileged attribute, it should
only be accessed in the monitor. Similarly, if a function
has the privileged attribute, it should only be executed
in the monitor. All other statements and operations are
executed in the slave.

The programmer decides where to place annotations
based upon two criteria: what resources are privileged in
the OS, and what is the overall security goal. A resource
is privileged if it requires privileges to access, e.g., open-
ing a protected file.

Annotations can also be placed so that the resulting slave
and monitor meet a site-specific security goal. For exam-
ple, a site-specific goal may state all private key opera-
tions happen on a secured server. With properly placed
annotations the source will be partitioned such that only
the monitor has access to the private keys. The monitor
can then be run on the secured server, while the slave
(say using the corresponding public keys) can be run on
any server.

Policies A monitor policy specifies what operations the
slave can ask the monitor to perform. The monitor pol-
icy is written into the monitor itself as C code. Therefore,
our model does not limit the complexity or detail of poli-
cies. Our approach guarantees the enforcement of poli-
cies on privileged resources or data since all privileged
calls must go through the monitor.

Many policies are application specific, and thus need to

1Note our annotations are similar to, but not the same as, subtypes.



be supplied by the programmer. However, there are sev-
eral policies that can be automatically generated. For ex-
ample, many compilers create control flow graphs during
optimization. The control flow graph (CFG) can be used
to build a finite state machine (FSM) model of possible
privileged calls.

The FSM of privileged calls is produced by the CFG by
first removing edges in the CFG that do not lead to a priv-
ileged call. The resulting FSM is collapsed by removing
unprivileged calls. The result is a directed graph of valid
privileged call sequences. The modified FSM is saved to
a file, and read in by the monitor at run time during ini-
tialization. Requests from the slave are checked against
the FSM by the monitor: a call is allowed only if there is
an edge from the proceeding call to the current call in the
FSM. As a base case, the monitor initialization routine
(privwrap init ) is always allowed.

One potential problem with FSM’s is the call policy may
still be too coarse-grained. For example, if a privileged
call f is made during a loop, the policy will allow an
infinite sequence of calls tof . One approach to further
limit FSM’s is to create a PDA based upon the source.
The PDA may further limit the number of allowable call
sequences.

Others have shown how to automatically create FSM’s,
PDA’s, and similar structures which can be used to limit
the call sequences which can be used by the monitor to
limit call sequences [9, 15, 22, 30, 35, 40]. We do not
duplicate previous work here, as our framework supports
ready integration of fine-grained policies. The policies
are written into the monitor after partitioning. Policies
can be as expressive as needed, since they can be written
directly into the monitor source code.

Note that because our approach enables the monitor to
export a limited interface, policies need only be written
for privileged operations. This fact may make it easier to
write a more precise policy than the system call interpo-
sition approach. In system call interposition, a model
is needed for both privileged and unprivileged system
calls. The policy in system call interposition is usually
more complex as the number of system calls increases.
Privilege separation limits the number of privileged op-
erations to only the interface exported by the monitor,
which may reduce the complexity of the resulting policy.

Downgrading data Since the monitor mediates all ac-
cess to privileged data, it is sometimes useful todown-
gradedata (i.e., make previously privileged data unprivi-

1. int attribute ((priv)) a;
2. attribute ((priv)) void

myfunction();
3. int b = f(a);

Figure 3: Line 1 marks a variablea as privileged. The
annotation is added because the programmer expectsa
to be initialized by a privileged function call,f in this
example.a is transmitted to the monitor which executes
f on behalf of the slave. Further,b will also be marked
privileged, and any subsequent use ofb will be executed
in the monitor. On line 2, we mark themyfunction
function privileged. Any call to this function will be ex-
ecuted in the monitor.

leged). The purpose of a downgrade is to allow otherwise
privileged data to flow from the monitor to the slave.

Consider a program that reads a file containing a pub-
lic/private key pair. Accessing the file is privileged, since
it contains the private key. However, the public key is not
privileged. With privilege separation, the monitor has
access to the file, while the slave does not. Program-
mers are free to definecleansingfunctions that down-
grade data. In the scenario above, the programmer writes
an extension to the monitor that returned only the pub-
lic key to the slave, while maintaining the private key in
the monitor. Cleansing functions are application specific,
and should be provided by the user.

3 The design and implementation of Priv-
trans

We first discuss at a high level the process of running
Privtrans on existing source code to produce the moni-
tor and slave source code. We then discuss how Priv-
trans implements each step in the process, and how we
reduce the number of calls from the slave to the moni-
tor. We also show how the programmer can easily extend
Privtrans for new programs using our base RPC library.
We conclude this section by describing the monitor state
store.

3.1 High-level overview

We begin by describing the process of adding privilege
separation at a high level. Privtrans takes as input source
code that we wish to have rewritten as two separate pro-



grams: the monitor source code and the slave source
code.

Annotations First, the programmer adds a few annota-
tions to the source code indicating privileged operations.
Annotations are in the form of C attributes. An annota-
tion may appear on a function definition or declaration,
or on a variable declaration, such as in Figure 3.

Attribute propagation Privtrans propagates the pro-
grammer’s initial annotations automatically. After prop-
agation, a call site may either have a privileged argument,
or the result may be assigned to a privileged variable.
Additionally, a function callee itself may be marked priv-
ileged. We wish to have the slave ask the monitor to ex-
ecute any such call on its behalf.

Call to the monitor Privtrans automatically changes
a call site that is identified privileged to call a corre-
sponding wrapper function, called aprivwrap function.
A privwrap function asks the monitor to call the correct
function on the slave’s behalf by: 1) marshaling the ar-
guments at the call site, 2) sending those arguments to
the monitor, along with a vector describing the run-time
privileged status of each variable, 3) waiting for the mon-
itor to respond, 4) demarshaling any results, and 5) ar-
range for the proper results to be returned to the slave.

Execution and return in monitor Upon receiving a
message from the slave, the monitor calls the correspond-
ing privunwrapfunction. The privunwrap function 1) de-
marshals the arguments sent to the monitor, 2) checks the
policy to see if the call is allowed, 3) looks up any priv-
ileged actuals described as privileged in its state store,
4) performs the function requested, 5) if the results are
marked privileged, hashes the results to its state store and
sets the return value of the function to be the hash index,
and 6) marshals the return values and sends them back to
the slave.

Starting the monitor Privtrans inserts a call to
priv init as the first executable line inmain .
priv init can optionally fork off the monitor process
and drop the privileges of the slave, or else it contacts an
already running monitor. The slave then waits for notifi-
cation from the monitor that any initialization is success-
ful. Initialization of the monitor consists of initializing

Figure 4: The output of translation partitions the input
source code to create two programs: the monitor and
the slave. RPC between the monitor and slave is ac-
complished via the privwrap/privunwrap functions. The
monitor may consult a policy engine when asked to per-
form a privileged function. Finally, the monitor may save
results from a function call request in case later refer-
enced by the slave.

the state store, along with any policy-dependent initial-
ization. Afterpriv init returns, the slave can begin
main execution.

This process is depicted in Figure 4. We detail each stage
in the following subsections.

3.2 Locating privileged data

Privtrans uses CIL [22] to read in and transform the
source code. Privtrans performs inter-procedural static
analysis to locate all potentially privileged call sites. To
reduce overhead, Privtrans also inserts run-time checks
to limit the number of calls from the slave to the monitor.

3.2.1 Static analysis and rewriting privileged calls

The programmer annotates a few variables or functions
using C attributes. Privtrans uses two attributes,priv and
unpriv, used to respectively mark privileged and unprivi-
leged variables or functions. The programmer need only
use the unpriv attribute when casting a privileged vari-
able to unprivileged. Privtrans performs propagation of
the initial annotations by adding the priv to any variable



that may become privileged.

Annotations are required since a program may rely upon
configuration files, environment variables, etc., which
determine whether a call will be privileged. For example,
web-server’s typically read a configuration file which de-
termine whether to bind to a privileged port (e.g., port
80) or not. Understanding application-specific configu-
rations is beyond the scope of static analysis.

Recall that the original program accesses privileged re-
sources through a function call. The slave should ask
the monitor to execute any call where the arguments, re-
turn value, or callee function is marked privileged. Priv-
trans rewrites a call tof that may be privileged to the
corresponding wrapper functionprivwrap f . Wrap-
per functions such asprivwrap f use the underlying
RPC mechanism to ask the monitor to call a function (f
in this case), wait for the reply, and arrange for the proper
return values.

Privtrans static analysis is standard meet-over-all-paths
data-flow analysis: the priv attribute is added to a vari-
able if it can be assigned to by another privileged vari-
able over any path in the program. Privtrans performs
inter-procedural analysis by iteratively adding the privi-
leged attribute across defined functions. Since we do not
have the function body for procedures declared but not
defined, we assume that the privileged attribute could be
added to any pointer argument, i.e., a pointer value could
be a return value.

The priv attribute can be added incrementally to the
source code. Without any privileged annotations, the en-
tire input program will be rewritten as the slave. After
adding apriv attribute, the resulting slave and monitor
can be run to see if they work. If an attribute is missing
the slave will attempt a call without appropriate privi-
leges, and the call will fail. Regression test suites can be
used to insure that the slave and monitor cooperate at all
necessary privileged call sites.

The result of the propagation phase is a set of calls that
potentially should be executed by the monitor. Our anal-
ysis is conservative2, so any call site that may be privi-
leged is considered privileged. In 3.2.3 we explain how
we augment our static analysis with run-time information
to reduce unnecessary calls to the monitor.

2We do not handle function pointers. The programmer can add the
priv attribute to the pointed-to function if necessary.

1. int attribute ((priv)) a;
2. int b = 0;
3. f2(a); f2(b);
4. if ( some expression) b = a;
5. b = f(arg1, arg2);

Figure 5: The call tof should be executed in the moni-
tor when theif statement on line 4 is true, else the call
can be executed by the slave directly. We cannot know
statically which case will happen. Also, on line 3 we en-
counter the polymorphic functionf2 . The first call to f2
is privileged, the second is not.

3.2.2 Polymorphic functions

During static analysis, we may determine a function
callee is polymorphic, i.e., some calls to the function
are privileged and some are not. Privtrans uses variable
annotations with the priv attribute to support polymor-
phism. If the priv attribute appears on a variable used
as an argument to a function, or assigned to the result
of a function, then the call is considered privileged and
the caller should ask the monitor to perform the called
function.

Consider Figure 5. On line 3 there are two calls to func-
tion f2 . The first call passesa, a privileged variable,
while the second call passesb, an unprivileged variable.
The attribute distinguishes between the privileged and
unprivileged call. In this example, the first call would be
rewritten asprivwrap f2 , while the second call would
remain unchanged.

3.2.3 Improving static analysis with dynamic infor-
mation

Since static analysis is conservative, not all potential
calls to the monitor are really privileged during run-time.
An example of such a call is given in Figure 5. After
static analysis, we determine thatf may be a privileged
call, thus we should invokeprivwrap f which calls
the monitor to callf .

However, every time the slave asks the monitor to per-
form a call, the slave suffers the overhead of 1) marshal-
ing all arguments on the slave and demarshaling them in
the monitor, 2) calling the monitor, which can result in a
context switch if the monitor and slave are on the same
host, and 3) marshaling the results in the monitor and de-
marshaling them on the slave. Thus, we want to make the
slave only ask the monitor to perform a call if absolutely



1. int attribute ((priv)) a;
2. int b = 0;
3. int privvec f[3] =
{E UNPRIV,E UNPRIV,E UNPRIV};

4. int privvec f2[1] = {E PRIV};
5. privwrap f2(a, privvec f2);

f2(b);
6. if ( some expression)
{ privvec f[0] = E PRIV; b = a; }

7. b = privwrap f(arg1, arg2,
privvec f);

Figure 6: We add a vector describing the run-time priv-
ilege status of the return value and each argument to
privwrap f . Initially, the vector indicates that none
of the arguments are privileged. If theif statement on
line 4 is true, we markb as privileged and thusf will be
executed in the monitor

necessary.

Normally expensive context or path sensitive analysis is
used to improve the accuracy of simple dataflow anal-
ysis. A key insight is that during the process of trans-
lating the input code into the monitor and slave, we can
insert dynamic checks to limit the number of calls from
the slave to the monitor. The dynamic checks allow for
the same or better accuracy in determining privileged call
sites than full context and path sensitive analysis.

In order to limit the number of calls to the monitor, we
add an extra vector to the slave for every privileged callee
(as determined by static analysis). The vector contains
the current run-time privilege status of variables used at a
possibly privileged call site we found with static analysis.
Each position in the vector contains one of two values:
E PRIV for privileged or EUNPRIV for unprivileged.

An example is given in Figure 6. The vector “privvecf”
describes the run-time privilege status of the return value
and arguments of the call to “f”, read left to right.
When the vector contains only EUNPRIV, the wrapper
“privwrap f” can decide to make the call locally instead
of calling the monitor.

It is safe to use the dynamic information even if the slave
is compromised. Consider the two cases of a compro-
mise: a privileged call is made unprivileged or an other-
wise unprivileged call is considered privileged. The for-
mer case is always safe, since it does not give an attacker
any privileges.

In the latter case, the monitor receives a spurious call that
the slave should be able to make itself. Such spurious

calls are also safe. First, since the slave could have made
the call by itself, the slave is gaining no additional in-
formation or privileges by asking the monitor to perform
the call on its behalf. Second, if the call conflicts with
the monitor’s policy it could refuse the call (and possi-
bly exit if a brute force attack is suspected). The second
approach, refusing the call, is the recommended solution.

3.3 RPC and the wrapper functions

Privtrans supplies a library of common
privwrap/privunwrap functions such as opening a
file or creating a socket. The wrappers are reused for
each program on which we perform privilege separation.
The wrappers are implementations of functions created
using the “rpcgen” protocol compiler.

We provide wrappers for common privileged calls in-
stead of automatically generating them from the source
because we may not know statically how to wrap a
pointer argument to a call. Wrapping pointers requires
knowing the pointer’s size. Generally functions that take
a pointer argument also take an argument indicating the
pointer’s size. Finding this out is easily done by a hu-
man, say by consulting the appropriate man page, but is
difficult to do with static analysis alone. The wrapper
functions are created only once, and then can be reused.

Using a shared memory region between the monitor and
slave for passing pointers may seem like an attractive so-
lution, but this approach violates the abstraction bound-
ary between monitor and slave3 The monitor must main-
tain a separate copy of any pointers it uses similar to the
user/kernel space distinction.

Although we supply wrappers for many common func-
tions, a programmer may occasionally need to define
their own. Creating additional privwrap/privunwrap
function is not difficult since Privtrans provide a base
RPC library. The typical privwrap/privunwrap function
is less than 20 lines of code. The wrapper functions are
simple implementations of the declarations generated by
rpcgen.

3A shared memory region that is read-only for the slave could be
used to pass messages from the monitor to slave.



name src lines # user anno-
tations

# calls au-
tomatically
changed

chfn 745 1 12
chsh 640 1 13
ping 2299 1 31
thttpd 21925 4 13
OpenSSH 98590 2 42
OpenSSL 211675 2 7

Table 1: Results for each program with privilege sepa-
ration. The second column is the number of annotations
the programmer supplied. The third column is the num-
ber of call sites automatically changed by Privtrans

3.4 Execution in the monitor and the monitor
state store

The slave uses a privwrap function to request the monitor
to execute a function. Upon receiving a request, the mon-
itor demarshals all arguments. If an argument is marked
privileged in the monitor’s corresponding privunwrap
function, then the argument supplied by the slave is an
index to a previously defined privileged value. This fact
follows from the observation that the slave alone could
not have derived a valid index to data on the monitor.

We use a hash table to lookup each privileged argument,
and return the appropriate reference. If the index is not
valid, the monitor aborts the operation. Assuming a valid
index, the monitor executes the correct call. If the return
values (recall pointer arguments are also considered re-
turn values) are cast (statically through user annotations)
to unprivileged, then the monitor returns the values di-
rectly. If the return values are privileged, then the moni-
tor stores the results and returns the index to the slave.

The state store itself is implemented as a collection of
hash tables, one for each base C type4. The opaque in-
dex returned to the slave is an index into the hash table.
The opaque indexes are secure since the client cannot
generate a valid index on its own. While there are many
methods to create opaque indexes, we simply associate a
random number to each indexed value.

4 Experimental results

To demonstrate Privtrans, we use it to automatically
integrate privilege separation into several open-source
programs and one open-source library: thttpd [26], the
Linux “ping” program, OpenSSL[34], OpenSSH [33],
chfn and chsh [20]. Table 1 summarizes our results.

4.1 OpenSSH

Provos et al. has previously manually added privilege
separation to OpenSSH version 3.1p1 [28]. The privilege
separated code is available as OpenSSH version 3.2.2p1.
Automatically adding privilege separation to OpenSSH
3.1p1 serves as a benchmark for our automatic approach.

Our results produce a slave and monitor that are similar
to the manual OpenSSH separation by Provos et al.. The
OpenSSH server runs as root and monitors for incom-
ing connections. Upon receiving a connection, OpenSSH
forks off a slave and monitor process. The slave asks the
monitor to perform authentication and perform private
key operations5.

After authentication, the monitor changes the uid and gid
of the slave to be that of the authenticated user. This
is accomplished through a new system call that allows
a monitor to change the uid of the corresponding slave.
Provos et al. [28] have a complex, though portable solu-
tion where the slave exports any accumulated state to the
monitor, which is exported back to the user’s login shell.
Our method is less portable but more simple.

To use Privtrans on OpenSSH, 2 annotations are needed:
one for the private keys and one for the authentication
mechanism. The interface exported by the monitor is
thus limited to pam calls and the RSA private key op-
erations. The result is a version comparable to Provos et
al..

4.2 chfn and chsh

chfn changes the “finger” information for a user. chsh
changes the login shell for a user. Both are normally

4Using multiple hash tables reduces the number of type casts done
to eventually get the correct type.

5We did not add privilege separation for all authentication mecha-
nisms, as with Provos et al.. Instead, we focused on PAM authentica-
tion for demonstration purposes.



setuid in order to write to the password file and authen-
ticate users, and both retain their privileges during pro-
gram execution. chfn and chsh have historically had se-
curity vulnerabilities [31, 6]. Only 1 annotation needs to
be specified for the PAM authentication handle. 12 and
13 call sites were automatically changed in chfn and chsh
respectively.

4.3 thttpd

thttpd is a HTTP server written with performance in
mind. thttpd requires privileges tobind andaccept
on port 80. Integrating privilege separation required the
user to provide 4 annotations. It took approximately 2
hours from downloading the source to place the correct
annotations. 13 call sites are automatically changed to
use calls to the monitor: 1socket , 1 bind , 3 fcntl ,
1 setsockopt , 4 close , 1 listen , 1 accept , and
1 poll . Privtrans comes with wrappers for all functions.

Integrating privilege separation is valuable for thttpd. Al-
though thttpd eventually drops privileges, privileges are
retained for significant initialization. thttpd parses user
input, sets up signal handlers, then creates and binds sev-
eral sockets before dropping privileges. Thus, if an at-
tacker can raise a signal before the program calls setuid,
the signal handlers will be executed with elevated privi-
leges. One such signal handler, SIGALRM, could cause
the program to core dump in /tmp. With knowledge of
the PID, an attacker may be able to overwrite any file in
/tmp.

4.4 ping

The ping source is available as part of the iputils pack-
age in many Linux distributions. ping is normally setuid
to root in order to create a raw socket. Although ping
drops privileges after socket creation, an exploit could
still break policies we may wish to enforce. For exam-
ple, one may wish to allow ping to only send a certain
number or limit the size of packets sent to a destination.
Note access control is insufficient for such policies. Even
after privileges are dropped such a policy may not be en-
forced if there is a buffer overflow or other type-safety
violation.

Privilege separated ping is also useful for securing a site
that wishes to limit internal ICMP messages. ICMP mes-
sages are commonly used for covert communication in
hacker tools [10]. The normal solution is to use a firewall

that disallows ping requests. However, this approach
does not let legitimate internal ping clients ping outside
hosts.

Using privilege separation we divide ping into the mon-
itor and slave. The slave is ran on each internal host,
while a single monitor can run from a trusted “ping host”.
While there are other ways to accomplish the same ob-
jective, privilege separation gives a new alternative. Cir-
cumstances may make such alternatives attractive.

The privilege separated version of ping is created by
the user adding 1 annotation to the original source.
It took approximately 1.5 hours from downloading
the ping source to place the proper annotation. 31
call site are automatically changed to use the moni-
tor: 1 socket , 21 setsockopt , 1 getsockopt , 2
ioctl , 1 sendmsg , 2 recvmsg , 1 poll , 1 getuid ,
and 1bind . Privtrans comes with all 14 wrapper func-
tions.

4.5 OpenSSL

Integrating privilege separation into OpenSSL adds new
avenues for securing a site. Many sites may wish to reuse
certificates for multiple services since certificates are of-
ten expensive and are unique to a host, not a service. For
example, a small business may want to use the same SSL
certificate for both a web-server and an IMAP server.
The main drawback for using one certificate for multiple
services is that a compromise in any service will reveal
the private keys for all services.

In this experiment we add privilege separation into
OpenSSL, so that many SSL services (i.e. slave’s) will
all use the same monitor to perform privileged RSA pri-
vate key operations. Thus, trust is only given to one
server, the monitor, while multiple services can use the
certificate.

We added 2 annotations for the RSA op-
erations that required the private key: one
for RSAprivate encrypt and one for
RSAprivate decrypt . It took approximately
20 minutes to find the correct place to add annotations.
Privtrans then rewrites the library so these two functions
will be executed in a monitor, while everything else will
be in the slave. 7 call sites were automatically changed
within the library. We then compiled and linked stun-
nel [17] against our OpenSSL library. stunnel encrypts
arbitrary TCP connections inside an SSL session. We
gave the monitor the private RSA key, and provided



stunnel with only the RSA public key. As a result, all
RSA decryptions needed during an SSL session were
done by the monitor instead of in stunnel.

4.6 Performance overhead

We ran experiments on an Intel P4 2.4 GhZ processor
with 1 GB of RAM running Linux 2.4.24. The base
overhead for a cross domain call (i.e. between a client
and server) vs. a local call is about 84% on our test ma-
chines. We could use techniques such as software-based
isolation [38], which can reduce the cost of a cross do-
main call by up to three orders of magnitude.

We performed several micro-benchmarks. In each micro-
benchmark we timed a system call done locally vs. the
same call via the appropriate privwrap wrapper. Our re-
sults show a performance penalty factor of 8.83 for a
socket call, 7.67 for anopen call, 9.76 for abind
call, and 2.17 for alisten call. The average time
difference between a local call and wrapper call is 19
µs vs. 88µs. Our results compare favorably to Priv-
man [18], the only other implementation with compara-
ble wrapper functions. For instance, in Privman the cost
of an open call done via their library is about 19.6 times
slower, while our implementation only has a 7.67 perfor-
mance penalty. Other measurements are similarly about
the same or better than Privman.

We also performed macro-benchmarks for several appli-
cation tested. thttpd was tested by measuring the av-
erage web-server response time over 1000 iterations to
download index.html. For ping, we tested the time dif-
ference between the unmodified program and the privi-
lege separation version when pinging localhost 15 times.
For OpenSSL, we asked the OpenSSL library to de-
crypt 1000 randomly generated (but constant through-
out the experiment) messages. The privileged separated
OpenSSL library has an additional 15% overhead, ping
has an additional 46%, and thttpd only suffered an addi-
tional 6% overhead.

The main cause of additional overhead in ping and
OpenSSL is transferring data between the slave and mon-
itor. With ping, for example, a 4K block of data is trans-
ferred twice each time a ping reply is received: once
when calling privwraprecvmsg from the slave to mon-
itor, and once on the return from the monitor to slave.
Such overhead is unfortunately unavoidable unless the
ping source is rewritten. Alternatively, we could special-
ize the wrapper functions for ping to eliminate about half
of the overhead.

The overhead from privilege separation is often not a lim-
iting factor since cycles are cheap but secure software is
not.

5 Discussion

In this section we discuss how our techniques work in
practice.

Automatic vs. Manual. Our approach leverages sound
dataflow analysis to rewrite generic applications. Al-
though possible, it is unlikely the automatic approach
will result in code with optimal performance. The rea-
son is in the manual approach the programmer is free to
use application-specific knowledge to fine-tune (or even
rewrite!) the program for better performance.

However, our approach is much easier. Finding the an-
notation locations is very simple: the set of privileged
operations on a system is generally well known and easy
to spot. In addition, the result of missing an annotation
is the slave attempting to perform a privileged operation
without appropriate privileges. Thus, the programmer is
free to incrementally add annotations until the slave and
monitor perform correctly.

Our approach outputs human-readable C code, which al-
lows the programmer to inspect and debug the monitor
and slave easily. In our experience, it takes at most a few
hours to find the proper places to add annotations.

Portability. Any platform that supports inter-process
communication will likely be amenable to running
privilege-separated programs. Since we rewrite C source
code, the crux of our approach does not suffer portabil-
ity problems. Also, since we separate out privileged re-
sources and data derived from those resources, our ap-
proach typically does not require OS-dependent mecha-
nisms such as file-descriptor passing. For example, our
techniques and results should apply equally well to Mi-
crosoft Windows. In the future, we plan on applying our
approach to other operating systems, including Microsoft
Windows.

However, the implementation of the wrappers may have
to be customized depending upon the interfaces sup-
ported by the OS. Last, our new system call that allows
a process to change the privilege of it’s children is not



portable. Previous research has addressed this issue, as
detailed below, and we do not duplicate their work.

Potential issues and solutions. There are several is-
sues for privilege separation. Note many of these issues
are not specific to our approach, and apply to any privi-
lege separation approach.

The setuid and getuid-style routines may not behave as
expected in the original program. For example, since the
privilege-separated version drops all privileges immedi-
ately, a call to getuid will return the uid of the unprivi-
leged user. This may break programs that expect to be
setuid and checks for certain privileges through the ge-
tuid call. In our approach we changed getuid-style calls
to return the uid of the monitor. setuid calls should simi-
larly change the uid of the monitor, not the slave.

File descriptor numbering will also be different due to
the socket between the slave and monitor. For example,
with theselect call the first argument is an integer in-
dicating the highest number file descriptor to check for
a change in status. If the slave asks the the monitor to
perform aselect call, the highest file descriptor ar-
gument supplied by the slave may not coincide with the
correct file descriptor in the monitor. To solve this prob-
lem select calls should be rewritten aspoll , since
the poll call contains the list of actual file descriptors
to check for a change in status.

Previous work has also reported issues around
fork [18]. For example, consider a file descriptor
opened by the monitor for a slave. Suppose the slave
forks off a new child process, which asks the monitor to
close the file descriptor. In the slave the parent process
expects the file descriptor open, while the child expects
to have the file descriptor closed. Thus, with privilege
separation, we must distinguish in the monitor between
the file descriptors owned by the child process in the
slave from the parent process in the slave. Our solution
is to fork off a new monitor when a new slave is forked.

Another important issue is resolving which elements of
a collection data structure contain privileged and unpriv-
ileged data, such as an array that contains both types.
The opaque identifier returned during privileged data cre-
ation can help identification, even though this may not
work in all cases. For example, in thttpd poll() is called
with file descriptors owned by the monitor and the slave,
which must be distinguished. Our opaque identifiers start
at 100, so we can distinguish between a file descriptor
owned by the slave, which will be less than 100, and one

owned by the monitor, which will be over 100.

We do not perform any pointer alias analysis. This leads
to two potential problems. First, there may be a pointer
in the slave to an opaque index, which is later used in an
operation. We cannot know of such an operation without
full pointer analysis. Second, since we don’t know the
liveliness of pointers we do not know when it is safe to
free a variable in the monitor. Thus the monitor never
frees memory for a privileged value. In our experience,
neither has been a problem, i.e. the slave never tried to
use a opaque identifier and the monitor’s memory usage
was modest.

Last, there is no simple way for a program that accu-
mulates state as the unprivileged user to become another
user. To solve this problem, we created a system call that
allows a superuser process to change the uid of any run-
ning process, and a non-superuser process to change the
uid of any of it’s slaves. This system call makes sense:
a superuser process could always run a program itself,
granting the necessary privileges. The disadvantage of
this approach is our system call is system-specific. Other
portable but more complex techniques are explored by
Kilpatrick [18] and Provos et al [28].

6 Related work

While privilege separation can drastically reduce the
number of operations executed with privileges, it is even
more important to write applications securely from cre-
ation. Programs should be developed with the principle
of least privilege, which states every operation should be
executed with the minimum number of privileges [29].

VSFTPD [13] and Postfix [36] use separate processes to
limit the damage from a programming error. Both pro-
grams were created from the ground up following the
principle of least privilege.

Provos et al. demonstrated the value of privilege separa-
tion in OpenSSH [28]. However, they manually edited
OpenSSH to incorporate privilege separation. When
privilege separation is enabled, OpenSSH resists several
attacks [8, 23, 24]. Our technique entails automatic priv-
ilege separation.

Privman [18], a library for partitioning applications, pro-
vides an API a programmer can use to integrate privilege
separation. However, the library can only make autho-



rization decisions, and cannot be used for fine-grained
policies. Further, the programmer must manually edit the
source at every call point to use the corresponding Priv-
man equivalent. Our method uses data flow techniques
to find the proper place to insert calls to the monitor, and
allows for fine-grained policies.

Several different mechanisms exist for dynami-
cally checking system calls such as Systrace [27],
GSWTK [14], Tron [5], Janus [16], and MAPbox [1].
Dynamically checking system calls does not allow for
fine-grained policies on regular function calls, although
this technique does not require program source code.
Another drawback is that dynamic techniques cannot
optimize the number of checks. Our approach works for
arbitrary function calls, allows for fine-grained policies,
and optimizes the number of expensive calls to the
monitor.

Type qualifier propagation has been used to find bugs in
C programs [32, 42] . We use attributes as type qual-
ifiers, and use them to guide rewriting the code. Type
qualifiers are used to identify potentially sensitive data
in Scrash [7]. CIL is used in this work to rewrite the ap-
plication so that sensitive data may be removed from a
core file.

JFlow/JIF [21, 41, 43] and Balfanz [4] show how to par-
tition applications by trust level in Java. Since Java is
type-safe it is less vulnerable to malicious attacks. In-
stead, JFlow/JIF and Balfanz focus on preventing unin-
tentionally leaking information in a program.

Operating system mechanisms [3, 25, 39] can provide
ways to reduce the privileges of applications. However,
these mechanisms do not have access to the internals of
a program, and thus cannot be used for arbitrary function
calls as with privilege separation.

Static analysis can be used to find bugs in programs [9,
12, 11, 19, 32, 37, 42]. Our goals are different: we wish
to limit the damage from an unknown bug. However, we
use static analysis as a tool to automatically find privi-
leged operations.

7 Conclusion

We have shown how to automatically integrate privi-
lege separation into source code. We consider a strong
model of privilege separation where accessing privileged

resources is relegated to the monitor. The monitor can
enforce policies on data derived from a privileged re-
source in addition to access control. Our tool Privtrans
uses static techniques to rewrite the C code, and inserts
dynamic checks to reduce overhead. Privtrans requires
only a few annotations from the programmer, typically
fewer than 5.

We ran Privtrans on several open-source programs suc-
cessfully. Privilege separation has unique benefits for
each program. The overhead due to privilege separation
was reasonable. Thus, Privtrans is applicable to a wide
variety of applications.
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