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Abstract

We use expander graphs to provide efficient new
constructions for two security applications: authen-
tication of long digital streams over lossy networks
and building scalable, robust overlay networks. Here
is a summary of our contributions: (1) To authen-
ticate long digital streams over lossy networks, we
provide a construction with a provable lower bound
on the ability to authenticate o packet — and that
lower bound is independent of the size of the graph.
To achieve this, we present an authentication ex-
pander graph with constant degree. (Previous work,
such as [MS01], used authentication graphs but re-
quired graphs with degree linear in the number of
vertices.) (2) To build efficient, robust, and scal-
able overlay networks, we provide a construction us-
ing undirected expander graphs with a provable lower
bound on the ability of a broadcast message to suc-
cessfully reach any receiver. This also gives us a
new, more efficient solution to the decentralized cer-
tificate revocation problem [WLMO0].
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1 Introduction

In this paper, we explore techniques for increas-
ing the security and reliability of digitally broad-
cast data over networks. We explore two problems:
proving the identity of a source of digitally broad-
cast data (authenticating the data stream) and con-
structing highly robust overlay networks.

1.1 Authenticating Digital Broadcast Data

On the Internet, digital broadcast and multicast
are arguably among the most exciting and impor-
tant mechanisms for communication. They allow
a broad variety of content to reach a mass audi-
ence, and we now expect that a variety of digital
content, including digital radio, digital television,
and digital news will be available as digital streams
at our office and home computers. In most set-
tings, a single sender broadcasts a stream of data
to a set of intended receivers. If we are concerned
about the security of the broadcast data, we will
want to ensure that the digitally broadcast streams
truly originate from the purported source. In some
ways, this problem is analogous to determining the
source of a single point-to-point message, and we
say we want to authenticate the data stream. The
challenge is compounded because the Internet (and
other networks) are not perfect: the networks often
lose packets, and because of the nature of broad-
cast applications, those lost packets are generally
not retransmitted. How can we efficiently authenti-
cate broadcast data streams over lossy networks? In
this paper, we present a powerful new construction
based on expander graphs. We show that using this
scheme we can prove a lower bound on the proba-
bility that a packet can be authenticated, and that
this lower bound is independent of the size of the
expander graph.



To understand the significance of this result, it
is useful to review some alternative approaches to
authenticating digital broadcast streams. A first
naive approach to this problem is to use a secret
shared between both the sender and all receivers.
The sender uses this shared key to compute, for
each packet, a message authentication code (MAC),
and appends that MAC to the packet. Each re-
ceiver uses the shared secret key to verify the MAC.
However, this approach has clear problems: since
all receivers know the shared secret, any of them
could forge or leak the shared secret. Anyone with
the shared secret could successfully forge streams of
broadcast data with correct MACs. A simple MAC
by itself can not provide source authentication un-
less all receivers are trusted.

A second naive approach to the problem of au-
thenticating digital broadcast streams is to have the
sender use asymmetric cryptography. The sender
could sign each packet with its private key, and each
receiver could verify the signature of each packet
with the corresponding public key. This does pro-
vide source authentication of each packet, but has
heavy overhead for both generation and verification
of packets. One might attempt to amortize this cost
by computing a single digital signature over a large
number of packets, but since the network is lossy,
this poses problems for verification: how can a re-
ceiver verify a digital signature over a message with
missing packets? Simple digital signatures can not
provide efficient source authentication when the net-
work is lossy.

In a sequence of important papers, several re-
searchers have proposed a powerful new approach,
graph-based authentication [GRI7, WL98, PCTS00,
GMO1, MS01]. In graph-based authentication we
amortize the cost of authentication over a stream.
We sign a small set of packets, called signature pack-
ets. We view the digital stream as a directed acyclic
graph, and each vertex represents a packet. If ver-
tex ¢ has an outgoing edge to vertex j, then packet
i should contain the hash value of packet j. (We
assume that our hash functions are collision resis-
tant.) If we can successfully authenticate the signa-
ture packets, and if we can find a path in the graph
from a signature packet vertex to a vertex k, then
packet k is authenticated. The research questions
include: (1) how to yield low communication over-
head when the authentication graphs are converted
to streams; (2) how to make the probability high of
being able to authenticate a packet (i.e., find a path
going from a signature packet vertex to a particular
vertex) in the face of packet loss.

In this paper, we use expander graphs to con-

struct an authentication protocol. Unlike previous
work, our graphs have constant degree (previous
work [MSO01] required the graphs have degree lin-
ear in the number of vertices in the graph). Since
the degree of the graph corresponds to the number
of hashes that must be included in packets — this
says something about the efficiency of our protocol:
we only require a constant number of hashes to be
included in each packet. Moreover, we also prove a
lower bound on the probability that a packet can be
authenticated upon arrival and our lower bound is
independent of the size of the graph.

1.2 Robust Overlay Networks

Overlay networks, such as the MBone [Eri94],
ABone [ABo], 6Bone [6Bo], and Gnutella [Gnu], al-
low system designers to build new distributed ap-
plications and protocols on top of the Internet. An
overlay network is formed from a subset of nodes in
the underlying network. Participating nodes com-
municate via wirtual links between two nodes that
may not be directly connected in the underlying
network. A single virtual link may correspond to
a network path that consists of a single hop, multi-
ple hops, or even a dynamically changing underlying
routing. These virtual links form the topology of the
overlay network. By considering the problem in vir-
tual links, we can abstract away from the Internet’s
basic structure, allowing us to rapidly build a vari-
ety of innovative applications. Overlay networks are
particularly appropriate for highly decentralized ap-
plications, such as peer-to-peer file sharing. Because
the applications are decentralized, overlay networks
often change rapidly. In this paper, we model over-
lay networks by assuming that virtual links are re-
liable and do not fail, but that nodes may join or
leave the network dynamically.

Consider the broadcast in an overlay network.
For example, Gnutella, a popular file sharing ser-
vice, broadcasts queries for particular files to neigh-
boring nodes in the overlay network. These queries
continue to propagate to other nodes. How can we
provide efficient, robust broadcast in this model?
Again, the problem can be viewed as a graph theo-
retic question: nodes in the network correspond to
vertices in a graph, and virtual links in the network
correspond to (undirected) edges in a graph. We
construct an overlay network with efficient and ro-
bust broadcast using undirected expander graphs.
This overlay network has constant degree, and we
can prove a lower bound on the reachability of any
node in the network. Furthermore, the maximum
length from a given node to reach any node in the



network is O(logn) virtual links. Since each node
in the overlay network has a small virtual degree,
and since between any two nodes in the overlay net-
work there is a short virtual path, our construction
allows particularly efficient realizations of overlay
networks.

Our construction of efficient, robust overlay net-
works has an additional consequence: it gives us a
new, decentralized way to distribute revocation lists
(such as public key certificate revocation lists). The
previous best approach was due to Wright, Lincoln,
and Millen [WLMOO]: In their model, each certifi-
cate has alist of dependers, i.e. hosts who are poten-
tially interested in the revocation of the certificate.
These dependers form a graph rooted at the owner
of the certificate. When a certificate needs to be re-
voked, the owner of the certificate will broadcast a
revocation request to all nodes that propagates via
edges (links) in the graph. (This model is partic-
ularly valuable when the certificates are issued by
individuals such as in PGP [Zim95].) Any node in
the overlay network may be up or down, and the
goal is to distribute revocations quickly to all up
nodes. Wright et al. proposed a depender graph
construction where the degree is a constant k& and
can tolerate at most k£ —1 node failures. If the prob-
ability of individual node failure remains constant,
as the number of nodes in a network grows, k must
grow linearly, so the Wright et al. approach does not
scale to large networks. However, if we use our over-
lay networks as depender graphs, we get a scheme
where: (1) we can prove a lower bound on the prob-
ability of each node receiving a revocation list; (2)
the degree of each vertex (node in the network) is
constant regardless of the size of the network; and
(3) the maximum number of links from any node to
any other node is O(logn).

1.3 Organization of This Paper

The rest of the paper is organized as follows.
We review graph-based authentication of digital
streams and expander graphs in Section 2. We
describe our new construction of expander-based
authentication for digital streams and provide the
analysis in Section 3. In Section 4, we show how
to apply our analysis technique to undirected ex-
pander graphs and construct new overlay networks
using undirected expander graphs. We also show
how to use our construction of overlay networks to
provide a more efficient solution to the decentralized
certification revocation problem. We review related
work and discuss other issues in Section 5, and con-
clude in Section 6.

2 Preliminaries
2.1 Graph Based Authentication

Consider a sender transmitting consecutive pack-
ets {P,...,Pn—1} in a broadcast data stream. We
construct an aeuthentication graph to authenticate
received packets. In particular, we construct a di-
rected acyclic graph of n vertices where a vertex
corresponds to the packet P;. Let (i,5) denote a di-
rected edge starting from ¢ and ending at j. An
edge (i,7) in the graph indicates the authentica-
tion relationship between packet P; and P;: upon
receiving packet P; and Pj, if a receiver can au-
thenticate both the contents and the source of P;,
then it can authenticate the contents and the source
of P;. We achieve this relationship by embedding
the hash value of packet P; into packet P;. We as-
sume the hash function is collision resistant, i.e., it
is computationally infeasible to find two different
values that hash to the same value. In practice, we
can use standard cryptographic hash functions such
as SHA1 [Lab95] and MD5 [Riv92]. To authenti-
cate packet P;, the receiver simply computes the
hash of P; and checks whether it equals the cor-
responding hash value carried in packet P;. Since
the cryptographic hash function in use is collision
resistant, it is computationally infeasible to find a
different packet P’ that hashes to the same authen-
ticated value. Therefore, the authentication of P;
enables the authentication of P;. We call the di-
rected acyclic graph formed by the n nodes and the
edges corresponding to the authentication relation-
ship an authentication graph.

Due to packet loss, each receiver may only receive
a subset of the packets and hence only a subset of
the vertices in the graph. We say a vertex is up if
the corresponding packet is received, and we say a
path is an up path if all the vertices on the path are
up.

One of the packets, denoted as R, will be
signed with the sender’s public key using a public-
key signature algorithm such as RSA [RSAT78] or
DSA [DSS92, Nat00]. Receivers authenticate R
on arrival by verifying the digital signature in the
packet. Receivers authenticate other packets by fol-
lowing the edges starting from R in the authenti-
cation graph. Receivers can authenticate packet
P; if and only if there is an up path from the
signature packet R to P; in the authentication
graph. We denote the probability of an up path
from R to P; given that P; is received as Pr[R —
P;|P; is received]. Note that we assume that all re-
ceivers receive the signature packet R. (We can in-



crease the probability that R is received through a
variety of means, including sending multiple copies
of R.) We only make this assumption for the signa-
ture packet and not for any other data packets.

We want to design authentication graphs that
are efficient and which allow receivers to authen-
ticate packets with high probability. For most ap-
plications, we assume the sender and the receiver
are capable of buffering a large amount of data;
hence, the most important efficiency metrics are
overhead per packet and authentication probabil-
ity (Pr[R — P;|P; is received]). Because each edge
starting from vertex ¢ in the authentication graph
induces a hash value appended to packet P;, typ-
ically at least 10 or 20 bytes overhead per packet,
we would like the graph to have low constant degree
independent of graph size. Also, even when pack-
ets have a high loss rate, a receiver should still be
able authenticate a received packet with high prob-
ability. We would like to prove a lower bound of
the authentication probability for all packets and
we want this lower bound to be independent of the
graph size.

It is often desirable to have low receiver authen-
tication delay. When a receiver receives packet F;,
we do not want to wait for a large number of sub-
sequent packets to be sent (and maybe received)
before the receiver can authenticate P;. Therefore,
we sign the first packet in the stream in most of our
constructions. (In section 5, we mention scenarios
where we sign the last packet in a stream.)

We assume a probabilistic model for packet
loss where each packet in the stream can be re-
ceived with probability p independent of other pack-
ets. Perrig et al. proposed some general solutions
for the authentication graph for this probabilis-
tic model [PCTS00]. But they do not provide a
proven lower bound for the authentication probabil-
ity. Miner and Staddon proposed to use a p-random
graph as the authentication graph for this proba-
bilistic model [MS01]. In their solution, each edge
between two vertices exist with probability p. Un-
fortunately this results in high degrees in the graph
— many vertices in the graph have degree linear to
the number of nodes in the graph. In this paper, we
propose a new construction of authentication graph
based on expander graphs that has constant degree
and high authentication probability independent of
the graph size.

2.2 Expander Graphs

An expander graph has the property that ev-
ery subset of the vertices has many neighbors. Ex-

pander graphs enjoy wide use in computer science; a
very incomplete list of applications includes network
constructions [FFP88], sorting [AKS83, Pip87],
complexity theory [Val76], cryptography [GIL*90],
and pseudorandomness [AKS87]. We consider two
type of expanders: bipartite expanders and ordinary
expander graphs. We use bipartite expanders in our
construction of authentication graphs and ordinary
expander graphs in our construction of overlay net-
works.

Definition 2.1 (bipartite graph). A bipartite
graph G = (V1,Va, E) is an undirected graph con-
sisting of two non-overlapping sets of wvertices Vi
and Va and edges connecting the two sets of vertices,
i.e. if an edge (u,v) € E, then either u € Vi,v € V3
oru € Va,v € Vi. G is called a (ny,n2)-bipartite
graph with degree (di,ds) if |Vi| = na,|V2| = na,
and every node in Vi has degree at most dy, every
node in Vo has degree at most dz. If dy = ds we say
the degree is d; .

In bipartite expanders, V; and V5 may have dif-
ferent sizes, so we expect different expansion factors
on the two sides.

Definition 2.2 (bipartite expander). A bipar-
tite graph G = (V1,Va, E) is (c1, c2)-expanding if for
i =1,2, for every S C V; where |S| < |V3_i|/(2¢i),
|T(S)| > ¢i|S|, where T'(S) is the set of neighbors
of S in Vs_;. If 1 = co we say the graph is c;-
expanding.

Definition 2.3 (ordinary expander graph). An
undirected graph G = (V, E) is c-expanding if for
every S C V where |S| < |V]/(2¢), |T(S)| > (¢ —
1)|S|, where T'(S) is the set of neighbors of S (not
including S ).

Note that there are several slightly different def-
initions of expanders used in the literature. Also
in our exposition below, we sometimes assume that
some quantities are integers. This can be achieved
by calculating ceilings and floors, and does not sub-
stantially change our analysis.

It is not hard to show that random graphs are
almost always excellent expanders (as illustrated in
Appendix A), but we can also explicitly construct
constant degree expander graphs [Mar73, GG81].
While random graphs give better parameters than
these deterministic constructions, there is no known
way to verify such strong parameters, and pseu-
dorandom generators used in practice may fail
to give such parameters. We therefore recom-
mend using a deterministic construction. Lubotzky,
Phillips, and Sarnak [LPS88], and independently



Margulis [Mar82], describe one efficient explicit con-
struction of expanders. Lubotzky et al. give, for ev-
ery d = p+ 1 where p is a prime congruent to 1
modulo 4, n = ¢ + 1 where ¢ is a prime congruent
to 1 modulo 4, an explicit construction of a graph
with n vertices and degree d, called a Ramanujan
graph. The Ramanujan graph construction can be
used to construct both bipartite expander graphs
and non-directed expander graphs. Using a result
by Tanner [Tan84], we have the following theorem:

Theorem 2.1. [LPS88] The Ramanugan graph con-
struction give a (n,n)-bipartite expander graph of
degree d for everyn =q+1, d=p+ 1 where p and
q are two primes congruent to 1 modulo 4. These
graphs are d/8-expanding. The same construction
can be used to construct ordinary erpander graphs
with n vertices and degree d and d/8-expanding.

In our analysis we will also use the Chernoff
bound:

Theorem 2.2. [Che52] Let X1, X, ..., X, be inde-
pendent random variables such that, for 1 <i <mn,
Pr[X; = 1] = p;, Pr[X; = 0] = 1—p;, where 0 < p; <
1. Define X = Y7 X;, and define p = E[X]. Then
for 0 <8 <1, Pr[X < (1 —6)u] < exp(—pd?/2).

From the Chernoff bound, we can easily obtain
the following corollary:

Corollary 2.3. Given a set of s nodes where each
node is up independently with probability p, the prob-
ability that at least ps/2 nodes are up is at least

(1 —exp(—ps/8)).

3 Expander-Based Authentication:
Construction and Analysis

3.1 Construction and Analysis of DAG Ex-
panders

We use the expansion property of expanders to
construct an authentication graph allowing a re-
ceiver to authenticate a received packet with high
probability. Because an authentication graph is a
directed acyclic graph (DAG) rooted at the sig-
nature packet, we cannot directly use existing bi-
partite or ordinary expander constructions. In this
section, we propose a new construction to build a
directed acyclic expander graph, a DAG expander.
Our DAG expander is a DAG rooted at the signa-
ture packet with several levels. We put edges be-
tween two neighboring levels in the tree using the
bipartite expander graph we construct below.

We first use a (n,n)-bipartite expander graph
with degree d and expansion factor ¢ to construct a
(n/a,n)-bipartite expander:

Lemma 3.1. Given a (n,n)-bipartite expander
graph with degree d and expansion factor c, we can
explicitly construct a (% ,n)-bipartite expander of de-
gree (da,d) and is (ac, £)-expanding.

Proof. Suppose we are given a (n,n) bipartite graph
G' = (V],Va, E") of degree d and expansion factor
c. Label the vertices in V{ as vy, v},...,v),_;. We
form a new graph G = (V;, Vs, E) by contracting V{
a vertices at a time. In other words, we merge the
vertices vy, ;,...,V; 4,1 into one vertex v;. Thus,
Vi = {vi}o<i<n/a» Where the neighbors of v; in G
are all the neighbors of v} ;,..., v} ;,, , in G'.

To see the expansion properties, consider any
X C Vi where |[X| < 5i-. The neighbors of X
are the neighbors of the corresponding set X' in
Vi, where |X'| = a|X|. Thus, T'(X)| = |T(X")| >
¢|X'l = ac|X|. Now consider any Y C V. Let
I'"(Y") denote the set of neighbors of Y in V{. When

Yy <2 I (V)] > ¢. Now I'"(Y) is mapped to at

2¢’ Y]
least |I'(Y")|/a distinct vertices in V4. Therefore for
anyYCVzwhere|Y|§2ﬂc,%ZE. O

We only use the expansion from V5 to Vi in our
construction.

Construction 3.2 (DAG Expander). We con-
struct a layered DAG expander using the (%,n)-
bipartite expanders found by applying Lemma 3.1
to any (n,n)-bipartite expander graph. The zeroth
layer contains the root R, and for all i the ith layer
contains a* vertices. Layers i — 1 and i are con-
nected using a copy of an (a’~!,a’)-bipartite ex-
pander graph from Lemma 3.1. The edges point
from layer i — 1 to layer i. Let ¢ denote the ex-
pansion factor from the ith layer to i — 1th layer.
Figure 1 shows an example of the layer construc-
tion.

Recall that we say a node is up if the correspond-
ing packet is received by the receiver, we call a path
an up path if all the vertices on the path are up. We
first show that our construction ensures that an up
node can be reached from the root R via an up path
with high probability.

Theorem 3.3. Assume each vertex except the root
R in our DAG expander is up independently with
probability p, where c is the expansion factor from
ith layer to i — 1th layer, ¢ > 4/p and a > 4/p. If
a vertexr v is up, then there exists an up path from
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Figure 1. An example of our layer construc-
tion of the DAG expander

exp(—cp/8)

R to v with probability at least 1 — Toexp(=cp/8)

exp(—ap/16)
1—exp(—ap/16) *
Proof. Assume vertex v is in layer ¢. Let S; denote
the set of vertices in layer ¢ that are up and can
reach v via up paths. The theorem follows from the
following three claims.

Claim 1: Suppose (cp/2)="! < a?/(2c). Then
the probability that |S;| > (cp/2)!~¢ is at least
exp(=cp/8)

2 T T—exp(—cp/8)

Proof of Claim 1: We prove this by induction
from ¢ = t — 1 down to 0. It is trivially true
for i = t — 1 due to the Chernoff bound. Sup-
pose it is true for ¢ + 1, so with high probability
|Sit1] > s = (ep/2)!7L, and s < a?/(2¢). From
the expanding property, these vertices are adjacent
to at least c - s vertices in layer i. The probability
that at least £-c-s = (2)"% of these vertices are
up is at least 1—exp(—1-(2)~%) from the Chernoff
bound (Corollary 2.3).

Therefore, if (cp/2)!~*"! < a?/(2c), then for all j
such that i < j < t, (cp/2)!7 < a?~'/(2c), and the
probability that |S;| > (cp/2)t~¢ is at least

- (e (B > 1 (Cen-D))
=1 =1

exp(—cp/8)
1 — exp(—cp/8)

v

1-—

Claim 2: With probability at least
1 - %, there is an m for which
|Sm| > a™1/(2¢).

Proof of Claim 2:
teger such that (cp/2)=™ > a™71/(2c).

Let m be the largest in-
Then

(ep/2)™m 1 < a™/(2¢). From Claim 1,
|Sm| > (ecp/2)t™™ with probability at least 1 —
712’:((;(25)8) From (cp/2)t"™ > a™ 1/(2c), we get
|Sm| > @™~ 1/(2¢) with probability at least 1 —
exp(—cp/8)

1—exp(—cp/8) "

Claim 3: If |S,,| > a™ !/(2c), then |S;| > pa’/4
for all ¢ < m, with probability at least

=y ; exp(—ap/16)
1- ; (exp(-a'p/8) 21— ;= -

Proof of Claim 3: We proceed by induction from
i=m—1down toi=0.

When i = m — 1, we have |S,,| > a™1/(2¢).
By the expanding property, the number of ver-
tices in layer m — 1 that are adjacent to the ver-
tices in S, is at least ¢ - (@™ 1/(2¢)) = a™ 1/2.
By the Chernoff bound, with probability at least
1 — exp(—a™~1p/16), the fraction of vertices that
are up will be at least p/2.

Suppose claim holds for ¢ + 1, that is, with high
probability |S;11] > s = pa’*'/4 > a’/(2¢). By the
expanding property, the number of vertices adjacent
to these up vertices is at least c(a’/(2c)) = a’/2.
Again we apply the Chernoff bound to find that
with probability at least 1 —exp(—aip/16), the frac-
tion of adjacent vertices that are up is at least
p/2 (in layer i, pai/4 vertices). If we are given
|Sit1| > pattl/4, then we have |S;| > pa’/4 with
probability at least 1 — exp(—a‘p/16).

So given |S,,,| > a™™1/(2c), we have |S;| > pat/4
for all i < m, with probability at least

m—1
1= Y (expl(-a'p/10) 2 1 - 22D

Now that we have shown the three claims, we can
see the proof of Theorem 3.3. Recall that by hy-
pothesis pa/4 > 1. So, combining the three claims,
we have |S1| > pa/4 > 1 with probability at least

exp(—cp/8) exp(—ap/16)

1= 1 —exp(—cp/8) 1—exp(—ap/16)°

3.2 Expander-based Authentication Graph

We use our DAG expander construction to form
the authentication graph. In particular, let the root
R be the first packet Py. Py is digitally signed and,
by assumption, will reach all receivers. We num-
ber the vertices from 0 to m — 1 layer by layer.



Any vertex on layer ¢ has a lower number than
any vertex on layer i + 1. Let vertex i corre-
spond to packet P;. In this authentication graph,
each packet except for packets corresponding to
leaves on the DAG expander has a constant num-
ber da embedded hash values. Note that not only
is da constant, it is independent of the size of the

graph. The authentication probability is at least
1_ exp(—cp/8)  exp(—ap/16)
1—exp(—cp/8) 1—exp(—ap/16) °
Take a degree d Ramanujan expander (Theo-

rem 2.1). This Ramanujan expander will have an
expansion factor of at least d/8. Applying Con-
struction 3.2 we get a DAG ezpander. We immedi-
ately have:

Corollary 3.4. Assume we have a DAG expander.
Assume each vertez in the DAG expander except the
root R is up independently with probability p, and
d > 32a/p and a > 4/p. If a vertex v is up, then
there exists an up path from R to v with probability
exp(—dp/(64a)) exp(—ap/16)

at least 1 — T—exp(—dp/(64a)) ~ T—exp(—ap/16) "

Therefore, given a threshold of accepted authen-
tication probability €, the estimated packet arrival
probability p, we can select parameter a and the
lowest value d to ensure that the authentication
probability is above e.

4 Expander-based Overlay Net-
works: Construction and Analysis

Recall from Section 1.2 that an overlay network
is formed from a subset of nodes drawn from an
underlying network. Participating nodes communi-
cate via virtual links between two nodes that may
not be directly connected in the underlying network.
These virtual links form the topology of the overlay
network. We assume that virtual links are reliable
but that nodes may join and leave the network dy-
namically. We say a node is wup if it is currently
operating in the overlay network, otherwise, we say
the node is down. And we say a path is an up path
if all the nodes on the path are up.

Using undirected expander graphs, we construct
an overlay network with each node having constant
degree independent of the size of the graph. As-
sume each node in the overlay is up independently
with probability p. We find a lower bound on the
probability that between two nodes there is a short
up path of length O(logn). This lower bound is in-
dependent of the number of nodes in the overlay.
Because we have constant degree of the nodes and
short up paths, our construction yields particularly
efficient overlay networks.

It is particularly interesting to consider broad-
casts in overlay networks. Because of the properties
described above, broadcast in these networks has
low overhead compared to networks with high de-
gree or large diameter. We apply broadcast in our
overlay networks to a computer security problem.
In Section 1.2, we discuss an efficient protocol for
decentralized certificate revocation. Our protocol
can be used to distribute public key revocation lists.
Our protocol improves on previous results [WLMO0O]
by being highly scalable.

4.1 Construction and Analysis of Overlay Net-
works

Given n nodes, we construct the overlay network
using an explicit expander graph construction. For
simplicity, we show the analysis of our construction
using the Ramanujan expander. The results can be
easily generalized to other expander constructions.

Given n nodes, we form the overlay network as
the Ramanujan expander graph with n nodes and
degree d. Each node in the graph corresponds to
a host in the overlay network, and each edge in
the graph indicates the virtual link between the
two connected hosts in the overlay network. When
a node wants to broadcast a message to all other
nodes in the overlay, it sends the message to all its
neighbors. When a node receives the message from
aneighbor, it forwards the message to all of its other
neighbors unless it has already seen the message
before.!. Assuming transmission time over each vir-
tual link is bounded, the latency of the transmission
over the path of virtual links is bounded by a con-
stant factor of the length of the shortest up path
between the receiving and the sending node. We
prove that a path exists with high probability and
that the path is short.

Theorem 4.1. Let G be an undirected Ramanu-
jan expander graph on n nodes with degree d. As-
sume each node in the graph is up independently
with probability p. For any two up nodes v and
w, the probability that there is an up path of length

O(logn) from v tow is 1 — %, given that

d > (8/p)?. Similarly, a broadcast message by v

IDiscarding duplicate messages reduces the number of
broadcasts and prevents cycles of message forwarding. Re-
ceivers can detect duplicate messages in several ways. For
example, each node can store the hash values of messages
it recently forwarded and each message could contain a ex-
piration time. The node can check whether the packet is a
duplicate by comparing it against the table of its recently
forwarded hash values. If the message is expired, the node
simply drops it.



will reach a particular node in an up path of length
O(logn) with probability at least 1 — %.

The theorem follows from the following two lem-
mas.

With probability at least 1 —
any up node v can reach more than

Lemma 4.2.
exp(—dp/64)

1—exp(—dp/64)’

pn /4 up nodes within distance O(logn) via up paths.

Proof. Let S; denote the number of up nodes that
v can reach via up paths of at most length i. The
lemma follows from the following two claims.

Claim 1: Suppose (dp/16):~! < 4n/d. Then the
probability that |S;| > (dp/16)! is at least

U 1 dp exp(—dp/64)
1-— (ZZZI eXp(_Z ) (]._6)12)) >1- 1_ exp(—dp/64)'

Proof of Claim 1: The proof here is similar to
the proof in Claim 1 for Theorem 3.3. We prove
this by induction from ¢ = 0. It is trivially true for
i = 0. Suppose it is true for ¢, so with high proba-
bility |S;] > s = (dp/16)? and s < 4n/d. From the
expanding property, these vertices are adjacent to at
least % - s vertices (including the vertices already in

Si). The probability that at least £-4.s = (%2)i+1 of

these vertices are up is at least 1 —exp(—1 - (42)i+1)
from the Chernoff bound. So |S;y1 > (dp/16)**!

with probability at least

i+1

1 (Y ep(—y - (Byey) 5 - L ORU DY
=1

1 —exp(—dp/64)

Claim 2: With probability at least
1 - %, there is an m for which

|Sm| > 4n/d and m = O(logn).

Proof of Claim 2: Let m be the smallest integer
such that (dp/16)™ > 4n/d. Then (dp/16)™~! <
4n/d. From Claim 1, it immediately follows that
|Sm| > (dp/16)™ > 4n/d with probability at least

xp(—dp/64
1- 122&;(7%/6)4)' .

Lemma 4.3. Any two sets of size at least 2n/\/3
in a Ramanujan erpander with n nodes and degree
d have at least one edge between the two sets.

Proof. This follows from Lemma 2.4 in Chapter 9
of [ASE92]. O

Because d > (8/p)?, we have pn/4 > 2n/Vd.
From Lemma 4.2 and 4.3, we conclude that any two
up nodes can be reached from each other via up

path of length O(logn) with probability at least 1 —
2 exp(—dp/64)
1—exp(—dp/64) "

4.2 Application to Decentralized Certificate
Revocation

In Section 1.2, we discussed the Wright, Lincoln,
and Millen decentralized model for distributing cer-
tificate revocations [WLMO00]. By propagating mes-
sages in their depender graph, they hoped to dis-
tribute revocation lists to all (or most) nodes. Their
construction uses a graph of degree k£ and can tol-
erate k — 1 node failures. However, if each node has
an independent failure probability p, as the num-
ber of nodes in the network increases, the number
of expected failures will increase, and the degree of
the graph will increase. In fact, the degree of the
Wright et al. depender graph increases linearly with
the number of nodes in the network. This means
that each node will need to send out more mes-
sages. As the size of the network becomes large,
this will introduce substantial delays in distributing
revocation lists. Further examination of their pro-
tocol shows that the number of revocation messages
received by each node will also grow linearly.

If we use the overlay network constructed in the
previous section, we can have an effective graph for
distributing certificate revocation messages. The
graph will have constant degree, and the number of
revocation messages sent (or received) is at most the
degree of the graph. Furthermore, with high proba-
bility, each node is reachable by an up path of length
O(logn). So even if a high fraction of nodes fails,
each up node will receive the revocation message in

O(logn) steps with probability 1 — %.

4.3 Survivable networks

This result may bear on an important open ques-
tion in computer security: how can we make net-
works survivable against directed attacks. We con-
sider an adversary who can attack individual nodes
in our network. The question of survivable networks
is important at many levels. For example, it has
clear implications for protecting national infrastruc-
ture in the face of hostile attacks. It also has impli-
cations for applications that may be unpopular with
some Internet users. For example, it appears that
much of the material being exchanged over some
peer-to-peer file sharing systems (such as Gnutella)



is protected by copyright. In this case, copyright
holders have an interest in seeing the Gnutella over-
lay network disrupted. In contrast, the users of
Gnutella want to prevent disruption of the Gnutella
overlay network.

Depending on the application and nature of the
adversary, we may be interested in using our ex-
pander graph constructions to build a survivable
overlay network (for example, to prevent disruptions
to an overlay network such as Gnutella) or a sur-
vivable underlying network (for example, to build a
highly survivable Internet) or some combination.

How many nodes can an adversary successfully
attack? If the adversary can only successfully attack
a small number of nodes, then it is easy to consider
a variety of techniques that can protect those nodes.
If the adversary can successfully attack all nodes in
the network, we clearly have a lost cause and com-
munication will be completely disrupted. Perhaps
the most interesting case to consider is an adversary
who can attack a constant proportion of nodes in
our network. If an adversary can take out nodes in
the network with independent probability, then the
results described above immediately apply and pro-
vide an outline of how network designers can build
highly survivable.

What about an adversary who can take out spe-
cific nodes in the network? If such an attacker
knows the topology of our overlay network, he could
try to isolate certain nodes. It is an open problem
to determine how many nodes an adversary could
isolate. (If it is possible to disguise the topology
of a network from an attacker, it may be possible
to keep an adversary from knowing which nodes to
attack.)

5 Related Work
5.1 Expander Graphs

We have shown how to use expanders to con-
struct authentication graphs and overlay networks.
Our analysis is based on the expansion property
of explicit expander constructions. Explicit ex-
pander construction is still an active area of re-
search in graph theory. More efficient expander
constructions, such as [CRVWO02], may improve the
efficiency of our construction. Our analysis still
allows some room for improvements. For exam-
ple, we can improve our probability bound and
reduce d by using Kahale’s result showing that
small sets in Ramanujan graphs have expansion
close to d/2 [Kah95]. Researchers have studied
applying expander graphs to certain networking

problems. For example, Broder et al. investigate
the problem of virtual circuit switching using ex-
pander graphs [BFU97], Peleg and Upfal studied the
problem of constructing disjoint paths on expander
graphs [PU89).

5.2 Stream Authentication

Many researchers have studied the problem of ef-
ficient authentication of digital streams. Gennaro
and Rohatgi [GR97] propose a model in which the
sender signs the first packet and inserts the hash of
each block into the preceeding block. Their solution
does not tolerate packet loss. Rohatgi later proposes
to use k-time signatures for stream authentication
but the scheme still requires that each receiver re-
ceives at least one out of every k packets [Roh99].

Wong and Lam propose a tree-based authenti-
cation scheme which amortizes one digital signa-
ture over n packets. Their scheme adds one dig-
ital signature and O(logn) hash values to each
packet [WL98].

Canetti et al. construct a solution using k dif-
ferent keys to authenticate every message with k
different MAC’s [CGIt99]. Their solution is only
secure when the number of colluding members is
less than k.

Anderson et al. propose a scheme which pro-
vides stream authentication between two parties
and does not tolerate packet loss [ABC*98]. Other
researchers extend the approach of Anderson et al.

Perrig et al. propose the TESLA protocol which
can tolerate packet loss but requires loose time syn-
chronization [PCTS00, PCSTO01].

Perrig et al. also propose the first general form
of graph-based authentication with constant degree,
EMSS [PCTS00]. In EMSS, the hash value of a
packet P; will be embedded into a constant number
of other packets, where the pattern of hash embed-
ding is chosen either in priori or randomly. They
mainly give simulation results and do not prove
a lower bound on the probability that a received
packet can be authenticated.

Golle and Modadugu propose a hash-based
scheme that can only tolerate a single burst of
loss [GMO1].

Miner and Staddon generalize the approach by
Perrig et al.[PCTS00] and propose p-random graphs
for graph authentication [MS01]. They gave a the-
oretical bound on the authentication probability
which relies on p. In their scheme, a large fraction
of the packets carry ©(pn) hash values, where n is
the number of packets in the stream, making their
approach unscalable. They also propose to differen-



tiate packets according to their level of importance
and provide a higher probability of authentication
to more important packets to reduce overhead. Sim-
ilar techniques can be applied in our construction as
well.

A number of previously cited researchers note
that if the sender does not want to buffer data,
we can reverse all the links in our authentication
graph and put the signature packet at the end. In
this way, the sender does not need to buffer pack-
ets but the receiver has to buffer packets until it
gets the signature packet before it can authenticate
packets. This is possible with our approach also.
But we do not think it is a good idea for our sys-
tem or other systems. As several researchers have
noted, reversing links makes protocols susceptible
to denial-of-service attack and is in general not rec-
ommended. Note that our solution also provides
non-repudiation.

5.3 Overlay Networks

Many overlay networks have been pro-
posed [CRZ00, CMBO00, Fra, JGJ*00]. Some
are only for small groups. Most previous work is
simulation based and does not provide any proven
lower bound on the probability of reachability.

5.4 Certificate Revocation

Many researchers have discussed issues on certifi-
cate revocation and proposed various techniques for
improving efficiency of revocation (an incomplete
list of recent work including [Riv98, NN98, Mye98,
MRO00, MJ00, Koc98, KAN99, F1.98, C0099]). Most
previous work in certificate revocation focused on a
centralized model where a key server is responsible
for maintaining and distributing the certificate revo-
cation lists (CRLs). Wright, Lincoln and Millen re-
cently proposed a decentralized model for certificate
revocation [WLMOO] that we discuss in Section 1.2.

6 Conclusion

We propose a new construction based on ex-
pander graphs to authenticate long digital streams
over lossy networks. Our construction is efficient
in the sense that the authentication graph has con-
stant degree, a major improvement over the pre-
vious work that uses ©(n) degree, where n is the
number of nodes in the graph. Our construction
also enables a high probability of authentication.
In particular, we provide a proven lower bound of
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the probability that a packet can be authenticated
upon arrival; our lower bound is independent of the
size of the graph. We apply our analysis techniques
to undirected expander graphs, and our results can
be used to construct efficient, robust, and scalable
overlay networks. We use our overlay network con-
struction to provide a more efficient solution to the
decentralized certification revocation problem.

Expander graphs are a powerful yet relatively
new tool. We hope that our analysis and appli-
cation of expander graphs can provide new insight
in solving related problems.
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A Probability of Random Graphs
Being Expanders

As usual [n] denotes the set {1,2,...,n}.
Here’s a modified definition of bipartite expander
for ease of explaination.

Definition A.1 (expander). A bipartite graph
G = (V,W, E) is (k, c)-expanding if for every S CV
of cardinality at most k, |[L'(S)| > ¢|S|, where T'(S)
is the set of neighbors of S.

Proposition A.1. Create a random bipartite graph
G on [n] U [m] by choosing, for each vertezx in [n],
d random neighbors in [m] (without replacement).
Assume that ce® (%)dil% <1/2. Then the prob-
ability that G is not (k, c)-expanding is less than

d—1—c\ 2
2 (et ™ (2
m \m
Proof. Consider sets of size s < k. The probability
that a fixed set of size s has all its neighbors in a

particular set of size cs is at most (cs/m)?. Taking
the union over all subsets of [n] of size s and all



subsets of [m] of size cs, the probability that any
set of size s fails to expand is at most

() G = (O E ()"
s)\cs/) \m s cs m
eprcn fesyd=1-c\?
(G
Denoting this last expression by ps, we see that

_ C+1£ (i)d—l—c S
Ps/Ps—1 e’ — (7(5 )

d n CcS d—1—c
< (2)
m \m

i d—c—1
)

Therefore, using ce?2 (ﬂ)d_l_c < 1/2, the

m \m

probability of G not expanding is at most

k k
S pe<p) 277 < 2p,,
s=2 s=1

as required.
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