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Abstract—To achieve reliable packet transmission over a
wireless link without feedback, we propose a layered coding
approach that uses error-correction coding within each packet
and erasure-correction coding across the packets. This layered
approach is also applicable to an end-to-end data transportover a
network where a wireless link is the performance bottleneck. We
investigate how to optimally combine the strengths of error- and
erasure-correction coding to optimize the system performance
with a given resource constraint, or to maximize the resource
utilization efficiency subject to a prescribed performance. Our
results determine the optimum tradeoff in splitting redundancy
between error-correction coding and erasure-correction codes,
which depends on the fading statistics and the average signal to
noise ratio (SNR) of the wireless channel. For severe fadingchan-
nels, such as Rayleigh fading channels, the tradeoff leans towards
more redundancy on erasure-correction coding across packets,
and less so on error-correction coding within each packet. For
channels with better fading conditions, more redundancy can be
spent on error-correction coding. The analysis has been extended
to a limiting case with a large number of packets, and a scenario
where only discrete rates are available via a finite number of
transmission modes.

I. I NTRODUCTION

W IRELESS access to the Internet is by now very popular
thanks to the success of wireless local area networks

(WLANs). Also, in wireless sensor networks, sensor data is
transmitted first via wireless links and then via wired linksto
the data fusion center. Wireless links are usually the bottleneck
in such systems, due to the multipath fading effects and
interference-rich environments.

In this paper, we analyze a wireless link in terms of both
throughput and error rate. The considered system setup has
the following characteristics:

• The channel of the wireless link is slowly fading. Due to
channel fading, there is a non-zero outage probability of
the channel not being able to support any prescribed rate.
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• The feedback delay is very large; this prevents instant
channel state feedback and the usage of any automatic
repeat-request (ARQ) based solutions, e.g., [1], [2], [3].

While the fading channel assumption applies to most wireless
scenarios, the assumption of large feedback delays is typ-
ical for satellite channels and also for acoustic underwater
communication channels (see [4] and references therein). For
such a system setup, we propose the following layered coding
strategy:

1) Error-correction coding on a per packet basis, where the
data stream is partitioned into packets with each packet
encoded separately. Any packet with decoding errors
will be discarded.

2) Erasure-correction coding (such as digital fountain codes
[5], [6], [7]) across the data packets, viewing the under-
lying wireless channel as an erasure channel.

For this setup, we term the error-correction coding as intra-
packet coding, or inner layer coding, and the erasure-
correction coding as inter-packet coding, or outer layer coding.
The inter-packet code treats the decoding errors of intra-packet
coding as erasures, and can facilitate data recovery without
requesting retransmission of lost data packets.

We would like to point out that our results can be applicable
to a network scenario. Consider an end-to-end connection
that consists of both wired and wireless links, and assume
that the wireless link is the performance bottleneck. Error-
correction coding is used to improve the error performance on
the wireless link, while erasure-correction coding can be used
to handle lost packets on the end-to-end connection level. The
layered coding is well motivated because: i) When transmitting
over a series of links, the inner layer coding is applied on
a single link (our attention here is focused on the wireless
link), while the outer layer coding is applied on the end-to-end
connection. From the viewpoint of a single link, each packetis
a separate transmission and is therefore processed separately.
This reduces necessary buffer space at each link and avoids
additional delays as decoding across packets is only done atthe
final destination. ii) The assumption of a large feedback delay
could also be motivated in view of an end-to-end connection
in a large network across many links.

We are mostly concerned with the problem of judiciously
combining the strengths of intra-packet and inter-packet cod-
ing in this layered coding setup. In particular, we would like
to know: given an overall efficiency (resource constraint),how
should we split it into inter-packet coding and intra-packet
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coding for best system performance? Alternately, to meet a
prescribed performance, how should we optimally combine
inter-packet coding and intra-packet coding to minimize the
total resources needed? We study three different scenarios.
In the first, we consider capacity-achieving error-correcting
coding with continuously variable coding rate; we investigate
the optimal solutions in terms of the efficiency and transmis-
sion outage probability. In the second scenario, we investigate
the limiting case of the first scenario where the number of
data packets approaches infinity. We characterize the optimal
solution in analytical form for some special cases. Interest-
ingly, this scenario has an equivalent formulation as the case
of maximizing throughput over an instant feedback channel.
In the third scenario, we consider practical modulation and
coding schemes where only discrete transmission rates are
available.

In the presence of erasure-correction coding across pack-
ets, it is beneficial to maximize the number of successfully
received packets across the wireless link, and it is irrel-
evant which packets are received as the message can be
reconstructed from any combination of received packets1. For
adverse channel conditions such as Rayleigh fading, heavier
redundancy should be placed on the outer erasure-correction
coding, transmitting many redundant packets. Instead of tra-
ditional schemes targeting packet error rates (PER) around
or below 10−2, the layered approach leads to a PER at
the wireless link of above10−1. In Nakagami-m channels
with improved fading conditions, more redundancy can be
placed on the inner error-correction coding, with PER of
above10−2 for the practical ranges of signal to noise ratio
(SNR). For practical modulation schemes with a limited set
of transmission rates available, the results are approximations
of the findings based on continuous rates, and there is only a
small penalty on the achieved throughput.

Note that erasure-correction codes can be also used in
noisy channels directly, see e.g., [8]. However, this requires
maximum-likelihood decoding, e.g., belief propagation algo-
rithms, which are highly complex and require processing
all the noisy packets received. Given our context, it is also
not desirable to forward quantized noisy packets when the
wireless transmission could be just one hop in an end-to-end
communication.

The rest of the paper is organized as follows. In Section II
we introduce the general problem setup, in Section III we
investigate the optimal tradeoff, then in Section IV we study
the limiting case with infinite number of packets, and in
Section V we work on systems with practical modulation and
coding schemes. Lastly we conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the transmission of a finite-size data block
over a wireless link. For simplicity, we consider a flat-fading
wireless link with channel input-output relationship as

y = hs + w (1)

1This is different from the ARQ principle, where lost packetshave to be
re-transmitted until correct reception.

wheres is the transmitted signal,y is the received signal,w is
additive white Gaussian noise (AWGN) with varianceN0 and
h is a channel gain which is constant over each packet, but
drawn independently between packets, as will be formalized
soon. We assume that the feedback delay is large and hence
any feedback mechanism such as ARQ cannot be used, nor is
instant channel state information available at the sender.

For reliable transfer, we consider a layered coding ap-
proach, where an erasure-correction-code is applied across
data packets (inter-packet coding) and an error-correction
code is applied within each data packet (intra-packet coding).
Our objective is to study how to complement the strengths
of erasure-correction coding and error-correction codingfor
optimal performance given some fixed resource, or for max-
imal resource utilization efficiency subject to a prescribed
performance.

We now specify the details of the system model and the
problem formulation. The data block ofNd bits is partitioned
into k packets withNb bits per packet:

Nd = kNb. (2)

An erasure-correction code (e.g., digital fountain code [5], [6],
[7]) is used to code across thesek packets to generate a stream
of K encoded packets.

Intra-packet error-correction coding is applied to improve
the error performance. Suppose that each packet consists of
Ns information symbols after error-correction coding and
modulation. The physical data rate is accordingly

Rp =
Nb

Ns
[bits/symbol] . (3)

In this paper, we assume that

Assumption 1 The channel is constant for the duration of one
packet and independent across packets (a.k.a. block fading),
and the channel amplitude|h| has a Nakagami-m distribution
with a probability density function (pdf) ofλ = |h|2 as

f(λ) =
mm

Γ(m)
λm−1e−mλ.

Let γ = E
[

|s|2
]

/N0 denote the average signal to noise
ratio (SNR). Due to the block fading assumption, packets will
experience packet errors no matter what error-correction codes
are used inside each packet. Assuming capacity-achieving
Gaussian codebooks2 with flexible encoding rate (the second
assumption will be relaxed later), correct inner layer decoding
is achieved iff the mutual informationI = log2(1 + γ|h|2)
is above the transmission rate. Hence, the packet error rate
(PER) can be well approximated by

PER= Pr(I < Rp) = Pr
(

|h|2 < α
)

(4)

whereα =
(

2Rp − 1
)

/γ. So the PER is simply the probability
distribution function of|h|2; for Nakagami-m fading channels

2This assumption is not very limiting, as capacity achievingcodes have
been reported, i.e., Turbo and low density parity check (LDPC) codes, see
e.g., [9].
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this is [10]

PER=

∫ α

0

mm

Γ(m)
λm−1e−mλ dλ (5a)

= 1 −
m−1
∑

k=0

1

k!
(mα)k e−mα. (5b)

The probability of correct transmission of a packet across the
wireless channel is

q = 1 − PER=

m−1
∑

k=0

1

k!
(mα)k e−mα. (6)

The ergodic capacity of a Nakagami fading channel is
defined as the average mutual information [11, Eq. (20)]:

C(γ, m) = E
[

log2(1 + γ|h|2)
]

(7a)

=

∫ ∞

0

log2 (1 + γλ)
mm

Γ(m)
λm−1e−mλ dλ (7b)

= log2(e) em/γ
m−1
∑

k=0

(

m

γ

)k

Γ

(

−k,
m

γ

)

(7c)

where Γ(a, x) =
∫∞

x
ta−1e−t dt is the “upper tail” of the

incomplete Gamma function. Whenm = 1, the Nakagami
channel reduces to a Rayleigh fading channel.

Since we are dealing with a fading wireless channel, we
define the coding rate of the intra-packet code, the inner rate,
as a non-vanishing fraction of the channel ergodic capacity,
similar to the approach used in [12],

ri =
Rp

C
, (8)

where we dropped the parameterization ofC on γ andm in
(7a) to shorten notation. By the definition of ergodic capacity,
error free transmission is possible forri < 1 if channel
coding is done across infinitely many packets to experience all
channel realizations. On the contrary, for coding done inside
one packet, there is always a non-zero probability of decoding
error for anyri > 0. The ergodic capacity is used in (8), as a
means of normalization on the physical data rate, as in [12],
sinceC varies depending on the operating SNR andRp shall
change accordingly.

We further assume that

Assumption 2 Error detection based cyclic redundancy
checking (CRC) is perfect, with a sufficiently reliable CRC
code on each packet. The packets with CRC errors are
discarded.

With digital fountain codes, the original data ofNd bits
can be reconstructed with high probability ifρk packets are
received correctly, whereρ ≥ 1 reflects the decoding overhead
incurred by the erasure coding scheme. For reasonableNd, it
is assumed that the overhead is about five percent, i.e.,ρ ≈
1.05 [9, Chapter 50]. With this we define the code rate of the
erasure-correction code as the outer rate:

ro =
ρk

K
, (9)

which is a quantity between zero and one, since we will
obviously need to send at least as many packets as we will

need to decode. An outage (or failure) happens when fewer
thanρk correct packets are received. The probability of outage
is then

Poutage =

ρk−1
∑

i=0

(

K

i

)

qi · (1 − q)K−i. (10)

In summary, since the data block ofNd bits travels through
the wireless link viaKNs symbols and each symbol could
carry a maximum ofC bits on average, the overall efficiency
for the data transfer is

η =
Nd

KNsC
=

k

K
·

Nb

NsC
=

1

ρ
ro · ri, (11)

while the data transfer has an outage (or failure) probability
specified in (10).

The definition of efficiency in (11) suggests two basic
approaches to improving the overall efficiency. On the one
hand, one can spend a small amount of redundancy coding
each packet, (ri ≈ 1) and rely heavily on generating a lot of
redundant data packets. In this case, the PER will be high and
many packets will get lost when passing through the wireless
channel. On the other hand, one can rely on strong FEC
(ri ≪ 1) to improve the packet error rate, but that translates
into a smaller number of data packets generated in total; hence
the data transfer becomes more vulnerable to packet loss. It
is unclear which strategy is better, and clearly there exists a
tradeoff between these two different coding techniques.

We are motivated to investigate the following two dual
problems:

1) Given a specified overall efficiency (resource constraint),
how should we split it into inter-packet coding (ro) and
intra-packet coding (ri) for the lowest outage probabil-
ity?

2) To meet a prescribed outage probability (performance
constraint), how should we optimally combine the
strengths of inter-packet coding (ro) and intra-packet
coding (ri) to maximize the resource utilization effi-
ciency? (Maximal efficiency means minimal resources
needed for a finite-size data transfer.)

III. O PTIMAL COMBINING OF INTER- AND INTRA-
PACKET CODING

Whenρk andK are large, it becomes difficult to evaluate
the outage probability in (10). According to the DeMoivre-
Laplace Theorem [10], one can approximate the binomial
distribution used in (10) as a Gaussian distribution with mean
Kq and varianceKq(1− q). The outage probability in (10) is
then approximated as

Poutage ≈

∫ ρk

−∞

1
√

2πKq(1 − q)
exp

(

−
(x − Kq)2

2Kq(1 − q)

)

dx

= Q

(

Kq − ρk
√

Kq(1 − q)

)

. (12)

According to [10, pg. 105-109], this approximation is accu-
rate if i) K ≫ 1, ii) Kq ≫ 1, andiii) |Kq−ρk| is on the order
of a few standard deviations,

√

Kq(1 − q). For a reasonable
coding scenario we can assumek ≫ 1 and with (9) we have
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K > k ≫ 1, since ro ≤ 1 and ρ ≥ 1. Also we are only
interested in smallPoutage, e.g.,10−1 . . . 10−3, which means
that Kq − ρk is between two to four standard deviations, and
Kq > k ≫ 1.

After a few substitutions, we simplify (12) as

Poutage = Q

(

√

ρN

NsC

q − ro
√

roriq(1 − q)

)

. (13)

Note thatq depends onri via (8) and (6).

A. Optimizing Performance under Resource Constraint

We will first look into the problem of performance opti-
mization subject to a resource constraint, as formulated as

minimize Poutage,

subject toη ≥ η0,
(14)

whereη0 is prescribed. SinceQ(·) is a monotonically decreas-
ing function of its argument, the problem in (14) is equivalent
to

maximizeJ(ri, ro) :=
q − ro

√

riro(1 − q)q
,

subject toriro ≥ ρη0.

(15)

Using the standard Lagrangian method, we formulate the
objective function as:

L(ri, ro, λ) = J(ri, ro) − λ (riro − ρη0) , (16)

where λ is the Lagrangian multiplier. Setting∂L/∂ri =
∂L/∂ro = 0 leads to

λ =
1

ro

∂J

∂ri
=

1

ri

∂J

∂ro
. (17)

The requisite partial derivatives are

∂J

∂ri
= ro

riq(1 − q)q̇ − 1
2 (q − ro) (q(1 − q) + ri[q̇ − 2q̇q])

[riroq(1 − q)]
3

2

(18)

∂J

∂ro
= ri

roq(1 − q)(−1) − 1
2 (q − ro)q(1 − q)

[riroq(1 − q)]
3

2

, (19)

whereq̇ is the derivative ofq with respect tori. Based on (6),
we have

q̇ =
∂q

∂α

∂α

∂ri
= −

mm

Γ(m)
αm−1e−mα ln(2)C

γ
2Cri. (20)

Substituting (18) and (19) into (17), we obtain

ro =
−riqq̇

2q(1 − q) − ri(2q − 1)q̇
(21)

The value forri can be solved numerically from the constraint

riro =
−r2

i qq̇

ri(2q − 1)q̇ − 2q(1 − q)
= ρη0. (22)

In short, we find the optimal(ri, ro) based on (21) and (22).

Remark 1 Multiplying (17) by riro leads to

ri
∂J

∂ri
= ro

∂J

∂ro
, (23)

which is equivalent to

∂J

∂ ln ri
=

∂J

∂ ln ro
. (24)

Hence, the optimal(ri, ro) operates at the point where the
increments ofln ri and ln ro lead to the same growth in the
objective function.

B. Maximizing Efficiency under Performance Constraint

We now look into the problem of maximizing the resource
utilization efficiency subject to a prescribed performance:

max
{ri,ro}

riro subject toPoutage ≤ constant (25)

The problem in (25) is the dual problem of (14). Since
adding the coding redundancy can only improve the system
performance,Poutage shall be monotonically decreasing when
riro decreases. As such, we can solve (25) based on a bi-
sectional search onriro, where for each tentative pointriro

we obtain(ri, ro) via the solution of (14). The final solution
of (ri, ro) is found when the performance constraint is met.

C. Numerical Examples

1) Resource Constrained Optimization:To give some nu-
merical insight, we elaborate on an example. For the purpose
of simulation we define

K0 :=
ρNd

CNs
= 28 (26)

which is the number of packets needed when transmitting at
capacity. Keeping this ratio constant, the data size scaleswith
the channel capacity and we do not need to explicitly consider
the coding overheadρ. Further, we define the numbers of
symbol per packet and the prescribed efficiency:

Ns = 28 (27)

ρη0 = 0.5 (28)

The fading channel experiences Rayleigh fading(m = 1)
which is constant for the duration of one packet as describedin
Section II, where the capacityC for a given SNR is calculated
via (7c). In the simulation, for each level of SNR, we iterate
throughri and calculate the following parameters:

Nb = ⌊riC⌋ (29a)

ρk =

⌈

ρNd

Nb

⌉

(29b)

K =

⌊

ρk

ρη0
ri

⌋

(29c)

If the number of transmitted packetsK is smaller than the
number of correctly received packets necessary to decodeρk,
the outage probability is naturally set to one.

The PER and outage probability are evaluated via (5b),(10)
and we plot the outage probability in Fig. 1. First we notice
that for ri below 0.5 there is no possiblero, sincero can’t
be larger than unity andρη0 = rori = 0.5, leading to an
outage probability of one. Otherwise, the tradeoff between
the redundancy of error-correction coding and the redundant
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Fig. 1. For a prescribed efficiencyρη0 = 0.5, the outage probability can
be determined for each SNR and pair of(ri, ro); values below10−10 are
displayed as10−10, there are 256 symbols per packet and the data size scales
with the capacity as in (26).
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Fig. 2. Minimizing Poutage over ri gives the following pairs of(ri, ro)
for each value of SNR.

packets for erasure coding leads to a clear global maximum
for each fixed SNR.

We pick the ri which returns the smallestPoutage for
each SNR, and show the result in Fig. 2, together with the
correspondingro. Fig. 2 also shows the results derived via
(21) based on the Gaussian approximation in (12). The curves
based on the Gaussian approximation are smooth, since no
quantization inK, k andρk is taken into account. The values
obtained via Gaussian approximation agree very well with the
optimal values obtained via brute-force search.

2) Performance Constrained Optimization:We look at a
similar numerical example, but fix

Poutage = 10−2. (30)

The other parameters stay unchanged as defined in (26),(27).
We start with Rayleigh fading(m = 1), but will extend to
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Fig. 3. The maximum achievable efficiency for a given outage probability
of 10−2 shows a clear maximum for each SNR; there are 256 symbols per
packet and the data size scales with the capacity as in (26).
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Fig. 4. Comparison of the optimum efficiency with the efficiency of sub-
optimum schemes, configuring the inner layer coding to either achieve a
constant PER or to transmit at a fixed fraction of capacity.

Nakagami fading. We evaluateNb, ρk, K as in (29a)-(29c)
and the PER from (5b).

a) Optimal Efficiency: To determine the achievableη
while satisfying the given outage probability, we use numerical
search. We evaluatePoutage via (10) for increasingK; then
the efficiency can be calculated as, c.f. (26),

η = K0/K. (31)

The results are shown in Fig. 3, where the plot appears concave
and shows a clear global maximum. We compare this to some
sub-optimum schemes in Fig. 4, where the physical link is
fixed to either having a certain packet error rate, e.g., PER=
10−1 or to transmit at a certain fraction of capacity, e.g.,ri =
1 or ri = 0.9. We see that keeping the PER fixed is not
reasonable for low SNR, as on a Rayleigh channel this leads to
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Fig. 5. Displayed are theri andro which lead to the highest efficiency for a
given SNR, to achieve an outage probability of10−2, for Rayleigh (m = 1)
and Nakagami-4 fading channels.

a very low physical throughput. On the other hand transmitting
at a fixed fraction of capacity does better than fixing the PER;
and the question is then to decide what fraction to use.

Next we plot the optimal coding ratesri and ro as the
“m = 1” plots in Fig. 5. The brute-force search results
match very well with results based on (21) from Gaussian
approximation. The plots confirm that the optimalri for
Rayleigh fading channels is rather constant for medium to high
SNR. Generally, we see that the outer ratero starts very low,
then increases, while the inner rateri is slowly decreasing.

b) Rayleigh vs. Nakagami Fading Channels:Next, we
simulate the same setup using a Nakagami-m fading channel
with m = 4, which implies less severe channel fading
conditions. Comparison of the optimal and numerical rates
to those of the Rayleigh case are plotted in Fig. 5. We see
that the Nakagami fading channel leads to a much higher
outer rate, as fewer packets are lost. The inner rate varies
only slightly across the considered SNR range, but compared
to the Rayleigh case starts with a lower value and shows a
monotonically increasing behavior. This reveals that for aless
severe fading environment it pays to go with a lower rate at
the inner layer to achieve a reliable transmission, especially
for low SNR.

Further, we evaluate the PERs corresponding to the optimal
ri (see Fig. 6). While for Rayleigh fading (m = 1) the PER
decreases very slowly, reaching barely10−1 at 30 dB, for
Nakagami-m fading (m = 4) the PER is smaller. In general,
the “raw” PER at the wireless link is quite high, demonstrating
the utilization of a second level of redundancy across the
packets.

IV. RATE OPTIMIZATION IN A SPECIAL CASE

We now consider a special case where the data size ap-
proaches infinity:Nd → ∞. We shall find an explicit solution
for this special case, and show that the optimal solution in
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m = 1 numerical
m = 1 optimal
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Fig. 6. Comparison of packet error rates corresponding to the optimalri for
Rayleigh (m = 1) and Nakagami-4 fading channels.

Section III of finiteNd has the same trend as that of infinite
Nd.

For a given SNR and a finite packet sizeNs, the outage
probability will go to zero as long asro < q, since

lim
Nd→∞

Q

(

√

ρNd

NsC

q − ro
√

roriq(1 − q)

)

= 0. (32)

Intuitively, as Nd goes to infinity, we will haveK → ∞
packets transmitted through the wireless channel. By the law
of large numbers, the receiver will haveKq correct packets
almost surely. As long asKq ≥ ρk, the receiver decodes the
whole message back. In this case, the maximum network rate
shall be equal to the transmission success probability, i.e.,

ro = q. (33)

The optimization problem (34) becomes

max
ri

riq. (34)

Remark 2 Let us consider a different setup where an imme-
diate ARQ is available on top of error-correction coding for
each packet. LetCri denote the transmission rate for each
packet after coding, and1 − q denotes the packet error rate.
The system throughput is thenCriq, which can be maximized
by adjusting the rate of the error-correcting code. This is
mathematically equivalent to the problem in (34). Our results
in this section are hence applicable to such an system with
combined ARQ and error-correcting coding.

We have the following analytical solution to the optimiza-
tion problem in (34).

Result 1 On a Rayleigh fading channel, the inner layer rate
maximizing(34) is given by:

ri =
W (γ)

ln(2)C
, (35)
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m = 1 m = 2 m = 3 m = 4 m = 6 m = 8 m = 12 m = 16

ri 1 1+
√

5
4

≈ 0.809 ≈ 0.757 ≈ 0.736 ≈ 0.725 ≈ 0.726 ≈ 0.735 ≈ 0.746

ro e−1 ≈ 0.368 ≈ 0.519 ≈ 0.604 ≈ 0.660 ≈ 0.729 ≈ 0.771 ≈ 0.820 ≈ 0.849

TABLE I
OPTIMAL RATES FOR VANISHINGSNR.

whereW (γ) is the Lambert-W function [13]. This leads to the
network rate as:

ro = exp

[

−
1

W (γ)
+

1

γ

]

. (36)

At high SNR, we have

lim
γ→∞

ri = 1, lim
γ→∞

ro = 1. (37)

Proof: Setting the derivative ofriq = 0 leads to

q + riq̇ = 0. (38)

Substituting (6) and (20) into (38), we obtain

exp

(

−
2riC − 1

γ

)[

1 − ri ln(2)C
2riC

γ

]

= 0. (39)

Since the exponential function is not equal to zero, the optimal
ri satisfies

γ = ln(2)Cri eln(2)Cri. (40)

Using the Lambert-W functionW (y) to denote the solution
to y = xex, we obtain (35). Using (5b), we obtainro in (36).

When γ → ∞, the capacity isC ≈ log2(γ). Hence, we
have

lim
γ→∞

ri = lim
γ→∞

W (γ)

ln(γ)
. (41)

Since both numerator and denominator diverge, we use
l’Hôpital’s rule,

lim
γ→∞

ri = lim
γ→∞

W (γ)

γ [W (γ) + 1]

/ 1

γ
= 1, (42)

where the derivative of the Lambert-W function is given in
[13]. The limit of ro for high SNR can be directly found from
(36), asW (γ) → ∞ for γ → ∞.

Result 2 For general Nakagami-m fading channels, the opti-
mal rates of the problem in(34) at a vanishing SNR are given
in Table I.

Proof: For vanishing SNR, we use the approximation
ln(1 + x) ≈ x to calculate the capacity:

C =

∫ ∞

0

ln(1 + γλ)

ln(2)
fm(λ) dλ ≈

γ

ln(2)

∫ ∞

0

λfm(λ) dλ =
γ

ln(2)
(43)

since the mean of a Nakagami-m variable is one. We then have

lim
γ→0

α = lim
γ→0

eriγ − 1

γ
= lim

γ→0

rie
riγ

1
= ri (44)

via l’Hôpital’s rule. Substituting (6) and (20) into (38),we
obtain

e−mri

[

m−1
∑

k=0

1

k!
(mri)

k −
1

(m − 1)!
(mri)

m

]

= 0. (45)
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Fig. 7. Optimalri as a function of SNR for different Nakagami-m channel
models, in the case of infinite data block lengthNd → ∞.

For differentm, we solve (45) numerically to getri as shown
in Table I. We then obtainro = q using (6).

The inner layer rates maximizing (34) for general
Nakagami-m fading can be seen in Fig. 7, where we used
numerical maximization except for the analytic results in the
Rayleigh case. It is interesting to observe that the generalshape
of the curves changes form > 2, similar to what we observed
in Fig. 5 (finite data case). For high SNR all curves seem to
rise monotonically, while for vanishing SNR they approach a
constant value as predicted by Result 2.

Numerically solving (45), the values are given in the Table
of Result 2.

the values are given in the Table of Result 2. We find the
optimal inner rateri is decreasing form < 8 and slowly
increases again afterwards, reaching a theoretic limit ofri =
1 for m → ∞; the optimal outer ratero is monotonically
increasing. Therefore for severely fading channels, i.e.,m ≈
1, it is better to invest less redundancy on the inner layer
coding (or transmit close to capacity) for vanishing SNR. As
the gain on these channels in terms of packet error rate per
redundancy increase in error-correction is rather low, more
redundant packets in the outer layer, erasure-correction,are
preferable.

Fig. 8 compares the optimal rates of finite data lengths to
those of infinite data length. In general, bothri and ro are
smaller in the finite data length case, sincero = q is equivalent
to an outage probability of0.5, c.f., (13) – accordingly we need
to increase redundancy to lower the outage probability. The
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Fig. 8. Comparison of optimalri, ro for different data lengths, for Rayleigh
(gray) and Nakagami-4 (black) fading channels.

curves with finiteK0 approach the limiting case of infiniteK0

uniformly across the SNR range, showing similar behaviors.

V. OPTIMIZATION WITH DISCRETETRANSMISSION RATES

In Sections III and IV we have assumed continuously
available inner layer coding rates. In practice, however, only
discrete rates are available depending on the chosen mod-
ulation and coding pairs. In this section, we consider how
the performance is affected when only a finite number of
transmission modes are available.

The rate in a practical transmission mode is determined
by the modulation scheme, i.e., the number of bits per sym-
bol, and the coding rate which makes some fraction of the
transmitted bits redundant to protect against errors. We will
consider square quadrature amplitude modulation (QAM) with
capacity-achieving channel coding (e.g., Turbo codes or LDPC
codes [9]). Each symbol carries an even integer number (say
b) of bits. For example, QPSK, 16-QAM,..., and 256-QAM
have 2, 4,..., and 8 bits per symbol, respectively. With a code
of rateRc, the actual inner rate isri = b ·Rc/C. We consider
the following rates listed in Table II.

When using discrete transmission modes, we cannot opti-
mize over the continuous variableri. In fact, discrete trans-
mission modes lead to a constant number of bits per symbol,
Rp = riC, which defines curves on the(SNR, ri)-plane
among which we can choose. SinceC is an increasing function
of SNR and Rp is constant, theri on these curves are
proportional to1/C going from infinity to zero with increasing
SNR.

Fig. 9 shows the efficiencyη for all transmission modes
evaluated as in (31). The outage probability isPoutage= 10−2

as previously; other parameters stay also unchanged as in
(26), (27) and evaluated further via (29a)-(29c), (5b). As
comparison we included the optimalη for continuous inner
coding rates from Fig. 4. We notice that each transmission
mode achieves a local maximum for a certain SNR and is

0 5 10 15 20 25 30
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0.4
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0.7

SNR [dB]

η

TM 1

TM 2

TM 3

TM 4

TM 5

continuous r
i

Fig. 9. For each discrete transmission mode (TM), the optimum performance
is achieved for a limited SNR region (Poutage= 10−2); modulation mode and
coding rate of each TM are defined in Table II.
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Fig. 10. Optimal inner coding rateri with discrete transmission modes,
Rayleigh fading (m = 1) andPoutage= 10−2.

suboptimum otherwise, since ultimately eachri connected to
a certain transmission mode will go to zero, since it is a
decreasing function of SNR as explained before. The optimal
efficiency from Fig. 4 is the convex hull of the discrete curves,
as it stems from the maximization over allri.

Optimizing over the discrete set of transmission modes,
the resulting inner rates is shown in Fig. 10; also included
are the lines corresponding to constantRp for each available
transmission mode (dashed lines) and the optimal curves from
Fig. 5. As the optimal inner coding rate is relatively constant,
we observe that the actual inner rate jumps between the
discrete available values to stay close for increasing SNR.

Although the actual inner coding rate is “oscillating” around
the optimal rate due to the discrete rate constraint, the effective
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TABLE II
DISCRETETRANSMISSIONMODES WITH CODING

TM 1 TM 2 TM 3 TM 4 TM 5
Modulation QPSK 16-QAM 16-QAM 64-QAM 256-QAM

Code RateRc 1/2 1/2 3/4 3/4 3/4
Rp [bits/sym] 1.0 2.0 3.0 4.5 6.0
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Fig. 11. Achieved throughput with discrete transmission modes, Rayleigh
fading (m = 1) andPoutage= 10−2 .

system throughputCriro stays fairly smooth (see Fig. 11).
This, because the changes in the inner rate are compensated
by the changes of the outer rate. Due to the finite number
of transmission rates, the optimal throughput is not always
achieved. However, with practical transmission modes the
throughput is strictly increasing, and not far away from the
optimal throughput for continuous rates.

VI. CONCLUSION

We investigated the tradeoff between erasure- and error-
correction coding for packet transmissions over a wirelesslink.
We presented solutions to optimally splitting the redundancy
between these two codes. Our results show that on very
unreliable channels, e.g., Rayleigh fading, the tradeoff leans
towards more redundancy at the outer layer coding across
packets, and less so on the inner layer coding within each
packet. For channels with better fading conditions, more
redundancy can be spent on the inner layer coding. Thanks
to erasure-correction coding, less reliable transmissiondue to
error-correction coding are needed to maximize the throughput
over the wireless link. We have also extended our analysis to
practical modulation and coding schemes with discrete rates.
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