
IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING (ACCEPTED) 1

Signal Processing for Passive Radar Using OFDM
Waveforms

Christian R. Berger, Member, IEEE, Bruno Demissie, Member, IEEE, Jörg Heckenbach,
Peter Willett, Fellow, IEEE, and Shengli Zhou, Member, IEEE

Abstract—Passive radar is a concept where illuminators of
opportunity are used in a multi-static radar setup. New digital
signals, like Digital Audio/Video Broadcast (DAB/DVB), are
excellent candidates for this scheme, as they are widely available,
can be easily decoded to acquire the noise-free signal, and employ
orthogonal frequency division multiplex (OFDM). Multicarrier
transmission schemes like OFDM use block channel equalization
in the frequency domain, efficiently implemented as a fast Fourier
transform (FFT), and these channel estimates can directly be used
to identify targets based on Fourier analysis across subsequent
blocks. In this paper, we derive the exact matched filter formu-
lation for passive radar using OFDM waveforms. We then show
that the current approach using Fourier analysis across block
channel estimates is equivalent to the matched filter, based on
a piecewise constant assumption on the Doppler induced phase
rotation in the time domain. We next present high-resolution
algorithms based on the same assumption: first we implement
MUSIC as a two-dimensional spectral estimator using spatial
smoothing; second we use the new concept of compressed sensing
to identify targets. We compare the new algorithms and the
current approach using numerical simulation and experimental
data recorded from a DAB network in Germany.

Index Terms—Multi-static radar, radar processing, compressed
sensing, sparse estimation, MUSIC, subspace algorithms.

I. INTRODUCTION

A. Passive Radar: Motivation & Challenges

In passive radar, illuminators of opportunity are used to
detect and locate airborne targets. This is essentially the same
as a bi-static radar setup, as sender and receiver are not co-
located, and time difference of arrival (TDoA) measurements
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Fig. 1. In passive radar, illuminators of opportunity are used in a multi-static
setup; weak target signatures can be extracted from the dominating directly
received radio/television signal based on their Doppler frequency, rendering
bi-static range and range-rate information.

localize targets on ellipses around the sender-receiver axis,
c.f. Fig. 1 and [1]. It is the differences, though, that make
passive radar attractive; i) as the illuminators are not part of
the radar system, its presence is virtually undetectable; ii)
illuminators of opportunity are often radio and TV stations,
broadcasting in the VHF/UHF frequency bands otherwise not
available to radar applications. The first point, in conjunction
with the bi-static setup, makes it impossible for targets to know
if they have been detected, while the operation in the radio/TV
VHF/UHF frequency bands needs no frequency allocation,
gives frequency diversity, and can help to detect low-flying
targets beyond the horizon [2], [3].

Challenges connected to implementing a passive radar sys-
tem are mostly due to using broadcast signals, which are
not under control, for illumination. Therefore the transmitted
signals are not known a priori, which means that a regular
matched filter based receiver cannot be implemented easily.
Second, although broadcast antennas are sectorized at times,
since broadcast signals have to cover a broad area the transmit
antennas are approximately isotropic and there is no significant
transmitter gain. This can lead to constraints on the achievable
range of a passive radar, if the transmit signal does not belong
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to a high power regional broadcast station. Last, since the
illumination is continuous, there is no easy way to separate the
direct signal from reflections off targets in the time domain,
as is typically done in bi-static settings.

B. Current State-of-the-Art

First systems working with analog broadcast (TV/FM)
used the direct signal as a noisy template to implement an
approximate matched filter [4]–[8]. Newly available digital
broadcast systems give passive radar receivers the unique
opportunity to perfectly reconstruct the transmitted signal after
successful demodulation and forward error correction (FEC)
coding [9]–[14]. A big challenge is also to excise the direct
signal. Also, the received signal has a dynamic range of easily
100 dB between direct signal and targets, due to possibly
small target radar-cross-section (RCS) and large coverage area,
which cannot be handled by analog-to-digital converters. This
makes additional analog pre-compensation of the direct signal
necessary, e.g., in the form of null-steering or directional
antennas, see [7].

A current state-of-the-art system has the following structure,
see e.g. [10],

1) The digital broadcast signal is decoded and perfectly
reconstructed based on the direct signal.

2) Null steering attenuates the direct signal to the level of
clutter, reducing the required dynamic range to below
70 dB.

3) The signal is divided into segments.
4) Matched filtering is performed efficiently in the fre-

quency domain using the fast Fourrier transform (FFT).
5) A second Fourier transform is executed across segments

to separate low SNR targets from the dominant direct
signal and clutter based on Doppler information.

The last three steps are illustrated in Fig. 2; the outputs of such
a processing chain are bi-static range and range-rate, locating
targets on ellipses around the transmitter/receiver axis; see
Fig. 1. This implementation is especially applicable in digital
multi-carrier broadcast systems, such as digital audio/video
broadcast (DAB/DVB), as the transmit signal is specifically
designed for frequency domain equalization.

Further challenges include target localization and tracking;
as in the present system angle-of-arrival (AoA) information is
often unreliable, localization has to be accomplished by finding
the intersection of the ellipses from different transmitters. This
highlights another unique feature of DAB/DVB, the operation
in what is termed a “single frequency network” (SFN). This
means that the same signal is transmitted by a network of
broadcast stations in the same frequency band. For the purpose
of target localization and tracking this delivers multiple “free”
measurements per target within the same operating bandwidth.
This offers the opportunity to gain diversity with respect to
RCS fluctuations, but also poses an additional association
problem, as it can not be determined which target echo orig-
inated from which transmitter. Suggested approaches include
target tracking based on the probability hypotheses density
(PHD) filter [15] and multiple hypotheses tracker (MHT) [16].

delay
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Fig. 2. The plot shows (a) target echoes within dense clutter; (b) time-
domain channel estimates for subsequent OFDM packets; the targets can only
be detected due to their non-zero range-rate, leading to phase changes over
time that add constructively or destructively with stationary clutter.

C. Relationship to MIMO Radar

Although the prefix “MIMO” (multiple-input multiple-
output) only specifies that multiple, spatially distributed trans-
mitters and receivers are being used, MIMO radar is far from
identical to the well-known multi-static radar. Since the MIMO
principle was first successfully applied in wireless communi-
cations, MIMO radar has become a name for various advanced
communications/signal-processing approaches being applied
to radar signal processing and waveform design. One aspect of
MIMO radar waveform design is that various transmitters can
transmit independent waveforms – in sharp contrast to regular
phased-array radars [17]. This promises improved parameter
identifiability and more flexible beampattern design. Another
aspect is the inclusion of spatial diversity, for improved target
detection and higher target position resolution, see [18].

Passive radar based on the new multicarrier DAB/DVB sig-
nals shares several of these trademarks, first there are multiple
spatially distributed transmitters present operating on the same
bandwidth (SFN concept), the transmitted waveforms are not
traditional pulsed radar waveforms, and the receiver processing
includes advanced digital signal processing to achieve high
target resolution.

D. Our Work

We are interested in investigating passive radar using dig-
ital multicarrier modulated signals, as in the DAB scenario
considered in [10], [11], [13], [14]. The signal is modulated
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using orthogonal frequency division multiplex (OFDM), which
is especially amenable to the FFT based approach outlined
above. Our contributions are the following:

1) We derive the exact matched filter formulation for
OFDM waveforms, which was not available before.
We reveal that the practical approach, outlined in Sec-
tion I-B, is equivalent to the matched filter, based
on a piecewise constant approximation of the Doppler
induced phase rotation in the time domain.

2) We investigate two signal processing schemes for pas-
sive radar: we show a link to two-dimensional direction
finding and apply MUSIC; and we formulate the receiver
as a sparse estimation problem to leverage the new
compressed sensing framework to detect targets.

3) In addition to simulations, we test both the MUSIC and
the compressed sensing based receivers on experimental
data and point out practical implementation issues.

In a detailed simulation study we find that the piecewise
constant approximation decreases the receiver performance by
less than 3 dB for high Doppler targets. We also compare
both receiver architectures against the current state-of-the-art
approach, where we find that while more costly in complexity,
the new algorithms offer advantages in target resolution and
clutter suppression by removing sidelobes.

In the experimental data, we find that the biggest challenge
is in handling the dominant clutter and direct signal, which
can be easily 50 dB above the target signal strength. Both the
conventional FFT processing based approach and the approach
based on MUSIC need an additional step to remove the
dominant clutter and direct signal, before these algorithms
can work successfully. While in compressed sensing this is
not necessary, we find that the lower complexity algorithm
Orthogonal Matching Pursuit (OMP) [19], [20] cannot handle
direct arrivals in the experimental data, but had to be replaced
by the computationally more expensive Basis Pursuit (BP)
[21]–[23].

The rest of this paper is organized as follows, in Section II
we explain the signal model and derive the matched filter
receiver, in Section III we show which approximations change
the matched filter receiver into the FFT based receiver outlined
above. Then in Section IV we show how to apply subspace
algorithms, in Section V we leverage compressed sensing
for improved performance, in Section VI we use numerical
simulation, while in Section VII we take a look at experimental
data, and conclude in Section VIII.

II. SIGNAL MODEL

A. Transmitted Signal

The Digital Audio Broadcast (DAB) standard [24], uses
orthogonal frequency division multiplex (OFDM), which is
a multicarrier modulation scheme, using N frequencies that
are orthogonal given a rectangular window of length T at the
receiver,

xi(t) =
N/2−1∑

n=−N/2

si[n]ej2πnΔftq(t). (1)

Accordingly each block carries N data symbols s i[n]; the
frequencies are orthogonal because the frequency spacing is
Δf = 1/T , whereby the transmitted waveform is extended
periodically by Tcp to maintain a cyclic convolution with the
channel, i.e.,

q(t) =

{
1 t ∈ [−Tcp, T ],
0 otherwise.

(2)

We define a symbol duration as T ′ = T + Tcp. The broadcast
signal

x(t) =
∞∑

i=−∞
xi(t − iT ′) (3)

is continuous. The data symbols si[n] vary with each block,
but we assume they can always be decoded without error
for our purposes1. Some of the data symbols si[n] might be
deactivated for various reasons (protection of bandwidth edges,
Doppler estimation, etc.) and, also, a complete Null symbol is
inserted periodically for synchronization (all s i[n] are zero).
The baseband signal is upconverted to the carrier frequency,

x̃(t) = Re
{
ej2πfctx(t)

}
. (4)

B. Target/Channel Model

When a waveform is emitted by a transmitter, we expect
to receive a direct arrival as well as reflections off targets
that are characterized by a delay τ and a Doppler shift fd.
We adopt a narrow-band model here where a signal x(t) of
center frequency fc, will only experience a phase rotation
or Doppler shift fd = afc; time compression or dilation is
assumed negligible and a is the ratio of range-rate to speed of
light. Indexing the return of the pth arrival and its associated
Doppler shift and delay, the received signal is

y(t) =
∑

p

Ape
j2πapfctx(t − τp) + w(t), (5)

where w(t) is additive noise and Ap is the attenuation in-
cluding path loss, reflection, and any processing gains. The
delays τp and Doppler shifts apfc are assumed to be constant
during the integration time. In (5) we assume that down-
conversion has been performed at the receiver, such that
ỹ(t) = Re

{
ej2πfcty(t)

}
. We only refer to the baseband

signals in the following.

C. Matched Filter Receiver

The standard approach is to “search” for targets using a bank
of correlators tuned to the waveform given a certain Doppler
shift and delay, i.e., a matched filter. As an example, the kth
correlator will produce for every τ̂ and a fixed Doppler shift
âkfc,

zk(τ̂ ) =
∫ Ti

0

e−j2πâkfctx∗(t − τ̂ )y(t) dt. (6)

Due to limitations in signal processing complexity, the delay
dimension τ̂ is usually only evaluated at discrete points, as

1This is reasonable due to the application of error correcting codes in digital
broadcast signals.
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well. As waveforms with varying parameterizations are not
orthogonal, for a given target multiple non-zero correlator out-
puts are generated, which can be described by the ambiguity
function [25],

U(τ̂ , â) =
∫ ∞

−∞
e−j2πâfctx∗(t − τ̂)x(t) dt. (7)

The integration time in (6) can be chosen within bounds,
limited from below by the necessary integration gain to detect
targets and from above by the target coherence time (time
variability of Ap) and target motion (τp and ap).

As the transmission x(t) is divided into blocks of length T ′,
see (3), each consisting of a signal of length T and a cyclic
extension of length Tcp, assuming that the largest possible
delay is smaller than the cyclic extension τmax < Tcp, the
correlator in (6) can be implemented as2,

zk(τ̂ ) =
Ti/T ′∑
i=0

∫ iT ′+T

iT ′
e−j2πâkfctx∗(t − τ̂)y(t) dt (8)

=
Ti/T ′∑
i=0

e−j2πâkfciT ′
z
(i)
k (τ̂ ). (9)

The integration time Ti is chosen as an integer multiple of
T ′, which means we coherently combine a certain number of
OFDM blocks, and we define the correlator output of the ith
block as,

z
(i)
k (τ̂ ) =

∫ T

0

e−j2πâkfctx∗(t + iT ′ − τ̂)y(t + iT ′) dt. (10)

For OFDM signals the block correlation operation in (10)
can be efficiently implemented using the fast Fourier transform
(FFT). This is further simplified since due to the cyclic prefix,
the correlation operation is actually cyclic in an interval of
length T . We write this as,

z
(i)
k (τ̂ ) =

∫ T

0

x∗
i (t − τ̂ )e−j2πâkfcty(t + iT ′) dt (11)

=
∫ T

0

N/2−1∑
n=−N/2

s∗i [n]e−j2πnΔf(t−τ̂)

× e−j2πâkfcty(t + iT ′) dt (12)

=
N/2−1∑

n=−N/2

(
ej2πnΔfτ̂s∗i [n]

×
∫ T

0

e−j2πnΔft
[
e−j2πâkfcty(t + iT ′)

]
dt

)

(13)

In words, there are four steps, corresponding to the parenthe-
ses, from inside out:

1) compensation for the phase rotation in the time domain
caused by the Doppler shift;

2We point out that by not using the signal information in the cyclic
extension, the SNR is reduced by T/T′, but the processing is greatly
simplified by making the output a cyclic convolution with the channel impulse
response; this is the standard approach in OFDM receiver processing.

t

phase

T 2T 3T 4T

ap fc T

linear phase

approximation

Fig. 3. The phase rotation due to the Doppler shift is approximated
as constant over a block duration T′, but since the total integration time
encompasses many blocks, the slope can still be estimated through the
accumulated phase change using a Fourier transform.

2) integration over t - in practice an FFT operation of the
sampled signal - giving N outputs for each subcarrier;

3) compensation of the (assumed known) data symbols
s∗i [n]; and

4) inverse FFT operation across various delays.

The output will be correlation values for given delay τ̂ and
Doppler âkfc for the ith OFDM block, the outputs for all
blocks have to be combined as given in (9).

III. EFFICIENT MATCHED FILTER BASED ON SIGNAL

APPROXIMATION

A. Small Doppler Approximation

Often, the integration time is almost on the order of a
second, this means that a very large number of OFDM blocks
are included T ′ � Ti. When the product between T ′ and the
Doppler shifts is small compared to unity, we can approximate
the phase rotation within one OFDM block as constant,

e−j2πâkfct ≈ e−j2πâkfc(T/2)∀t ∈ [0, T ]. (14)

Then the Doppler shift has to be estimated based on
the increasing accumulated phase shift between consecutive
blocks (see Fig. 3), and only a single correlator is needed, as
(13) can be simplified to

z
(i)
k (τ̂) =

N/2−1∑
n=−N/2

(
ej2πnΔfτ̂s∗i [n]

×
∫ T

0

e−j2πnΔft

[
e−jπâkfcT y(t + iT ′)

]
dt

)

(15)

= e−jπâkfcT

N/2−1∑
n=−N/2

ej2πnΔfτ̂H(i)
n , (16)

where H
(i)
n corresponds to the channel estimate of the nth

frequency in the ith block ignoring inter-carrier-interference
(ICI), and the phase rotation out front is constant and can
usually be ignored. With this, the final matched filter output
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can be written as,

|zk(τ̂ )| =

∣∣∣∣∣∣
Ti/T ′∑
i=0

N/2−1∑
n=−N/2

e−j2π(iâkfcT ′−nΔfτ̂)H(i)
n

∣∣∣∣∣∣ , (17)

which is a two-dimensional discrete Fourier transform (DFT)
of the OFDM channel estimates that can be efficiently imple-
mented as an FFT.

B. Link to Uniform Rectangular Array

As the operation in (17) is identical to direction finding with
a uniform rectangular array (URA), we take a closer look at
the channel estimates. Assuming no noise and only a single
target present with amplitude A0, delay τ0 and Doppler a0fc,
we calculate

H(i)
n = s∗[n]

∫ T

0

e−j2πnΔfty(t + iT ′) dt (18)

= s∗[n]
∫ T

0

e−j2πnΔft

×
(
A0xi(t − τ0)ej2πa0fc(t+iT ′)

)
dt (19)

= A0

N/2−1∑
m=−N/2

s[m]s∗[n]e−j2πmΔfτ0

×
∫ T

0

e−j2π(n−m)Δftej2πa0fc(t+iT ′) dt (20)

Using the approximation in (14), all frequencies are orthogo-
nal, hence

H(i)
n ≈ A0T |s[n]|2 ej2π(ia0fcT ′−nΔfτ0), (21)

and the channel estimates have the same form as the receiver
elements of a URA, with equivalent element spacing of T ′ in
Doppler and Δf in delay, the total array aperture size is T i

and B = NΔf respectively.

C. Cancellation of Dominant Signal Leakage

Due to the fairly long integration time, corresponding to a
large URA, the ambiguity function will be relatively sharp.
So interference from other targets will not be an issue except
for very close targets. Of concern is the clutter – since the
ambiguity function has a “sinc” like shape – the attenuation is
relatively slow, leading to significant leakage into the non-zero
Doppler bins [7]. As the clutter stems from direct and almost
direct arrivals that are easily 50 dB stronger than the targets,
the leakage will affect even targets of significantly non-zero
Doppler.

One approach is to evaluate the matched filter only at what
corresponds to the zeros of the sinc shape, avoiding leakage,
but greatly reducing resolution. Another approach is to remove
the direct signals using adaptive signal processing on the
digital data. This can be done simply by least-squares fitting
the received data to a template assuming no time variation
(nulling only zero Doppler) or a very limited degree of change
(fitting can be easily achieved using a Fourier basis). After
the signal components corresponding to these Doppler values

have been approximated, we simply subtract them out of the
digitally available signal. This leads to a blind spot of variable
size (depending on the least-squares model), but significantly
limits the leakage of the dominant signal components.

We will see later that the combination of efficiently imple-
mented matched filter with adaptive signal processing works
reasonably well in practice, at low complexity. This will
therefore serve as our baseline comparison in regard to other
algorithms.

IV. 2D-FFT MUSIC

A. Subspace Construction via Spatial Smoothing

As outlined in Section III-B, we have a signal model
that is completely equivalent to the one of Np wavefronts
impinging on a grid of sensors, where the steering vectors
have amplitudes Ap.

H(i)
n =

Np∑
p=1

Ape
j2π(iâpfcT ′−n�fτ̂p) (22)

The azimuth and elevation direction angles are just displaced
by delay and Doppler. In order to use subspace methods
like “multiple signal classification” (MUSIC), see e.g. [26],
several snapshots of the wavefronts are required. We have
i = 1, . . . , L (L = Ti/T ′) OFDM symbols, each consisting of
n = 1, . . . , N channel estimates, corresponding to our virtual
URA. Since i corresponds to time, the time variations of the
multi-path amplitudes Ap could be exploited, to generate in-
dependent snapshots at a cost of a smaller equivalent aperture.
Typically the alteration in time is not significant enough on the
time scale we are considering, therefore we will apply spatial
smoothing instead (see e.g. [27] or [26]).

Spatial smoothing can be used to generate the necessary
snapshots, where the time variation of the amplitudes is
replaced by exploiting shift invariances between the steering
vectors corresponding to certain subarrays of the full URA. In
a nutshell, when considering two subarrays of a certain shift,
they will only vary in a phase shift, but which is different for
each signal component, allowing us to construct a full-rank set
of observation vectors, again at the cost of a smaller equivalent
aperture.

To define a steering vector, we denote the response of one
array element to a wave of (τ̂ , â) as

bn,i(τ̂ , â) = ej2π(iâfcT ′−n�fτ̂) (23)

and define a subarray matrix, indexed by n ′ and i′, of reduced
dimension N ′ × L′:

Bn′,i′(τ̂ , â) =

⎡
⎢⎣

bn′,i′ . . . bn′,i′+L′−1

...
...

bn′+N ′−1,i′ . . . bn′+N ′−1,i′+L′−1

⎤
⎥⎦ .

(24)
The total number of subarrays we generate this way, must be
larger than the number of multipath components, and is given
by

Nsub = (N − N ′ + 1)(L − L′ + 1) > Np. (25)
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Next, we use the vec{}-operation, which takes a matrix
column-wise in order to construct a vector from it, and define
a steering vector

bn′,i′(τ̂ , â) = vec {Bn′,i′(τ̂ , â)} . (26)

We have the shift invariances

bn′+1,i′(τ̂p, âp) = e−j2π�fτ̂pbn′,i′(τ̂p, âp) (27)

bn′,i′+1(τ̂p, âp) = ej2πâpfcT ′
bn′,i′(τ̂p, âp) , (28)

and, consequently, all vectors bn′,i′(τ̂p, âp) are linearly depen-
dent.

In the same way, we can group the channel estimates H
(i)
n

in subarrays and stack the columns of each matrix on top of
each other. We can write the signal model for these vectors as

hn′,i′ =
Np∑
p=1

Apbn′,i′(τ̂p, âp) . (29)

Due to the above shift-invariances we find

hn′+m,i′+l =
Np∑
p=1

Ape
j2π(lâpfcT ′−m�fτ̂p)bn′,i′(τ̂p, âp) ,

(30)
i.e. we have a new ’snapshot’, where the signals

Âp = Ape
j2π(lâpfcT ′−m�fτ̂p) (31)

passed the same subarray.
From these snapshots we can build an (N ′ · L′) × Nsub

observation matrix,

A =
[
h1,1 · · · hN−N ′+1,1 · · · hN−N ′+1,L−L′+1

]
.

(32)
The signal and noise subspace, U(s) and U(n), can be obtained
via a SVD,

A = UDV, (33)

with U and V being size (N ′ ·L′) and Nsub unitary matrices
respectively, and U = [U(s) U(n)] is split such that the vectors
in U(s) correspond to the Np largest singular values. The
MUSIC cost-function can be given either in terms of the noise
subspace or signal subspace respectively,

fMUSIC(τ̂ , â) =
(∣∣∣bH(τ̂ , â)U(n)

∣∣∣2)−1

(34)

=
(

N ′L′ −
∣∣∣bH(τ̂ , â)U(s)

∣∣∣2)−1

, (35)

where we have dropped the indices of the subarray steering
vector b, as due to the shift invariance any one of the subarrays
could be chosen.

B. Efficient Implementation as FFT

As a first step, there is an advantage of expressing the
MUSIC cost function in terms of the signal subspace, due
to the fact that the dimension N ′L′ ≈ 105, whereas the
number of signal eigenvectors Np is only on the order of a few
hundred, i.e., under these conditions it is much “cheaper” to
work with the signal subspace which is obtained via a “short”
SVD of the subarrays.

We further change the evaluation of the MUSIC cost-
function to use the FFT. Let the Np-dimensional signal sub-
space be partitioned into

U(s) =
[
u1 · · ·uNp

]
, (36)

then we have

fMUSIC(τ̂ , â) =

⎛
⎝N ′L′ −

Np∑
p=1

∣∣bH(τ̂ , â)up

∣∣2
⎞
⎠

−1

. (37)

As in the case of the matched filter, we will not practically
be able to evaluate the cost-function for any combination of τ̂
and â, but instead consider possible discrete values, commonly
arranged in a grid fashion. We next consider the individual
terms in the sum in (37) and show that when evaluating them
for τ̂ and â values on a grid, the computation can be put into
the format of a two-dimensional Fast Fourier Transform that
allows efficient evaluation.

In the following we make use of a formula involving the
Kronecker product and the vec-operation, which was derived
by Magnus and Neudecker [28]:

vec{ABC} = (CT ⊗ A)vec{B} . (38)

Defining the matrix Up by up = vec{Up} and using the
fact that the steering vector of the rectangular array can be
written as the Kronecker product of two steering vectors with
elements,

b(N ′)(τ̂ ) =
[
e−j2π�fτ̂ · · · e−j2πN ′�fτ̂

]T
(39)

b(L′)(â) =
[
ej2πâfcT ′ · · · ej2πL′âfcT ′]T

, (40)

we find that

bH(τ̂ , â)up = (b(L′)(â) ⊗ b(N ′)(τ̂ ))Hup (41)

= (b(L′)(â) ⊗ b(N ′)(τ̂ ))Hvec{Up} (42)

= (b(L′)H

(â) ⊗ b(N ′)H

(τ̂ ))vec{Up} (43)

= vec{b(N ′)H

(τ̂ )Upb(L′)∗(â)} (44)

= b(N ′)H

(τ̂ )Upb(L′)∗(â) . (45)

When inspecting the definition of b(N ′)(τ̂ ) and b(L′)(â), we
see that they are columns of a DFT matrix if we define

τ̂ = 0, T/N ′, . . . , (N ′ − 1)T/N ′, (46)

â = 0, 1/(fcT
′L′), . . . , (L′ − 1)/(fcT

′L′). (47)

Accordingly, the MUSIC cost-function can be evaluated using
Np two-dimensional FFTs, which are summed up in magni-
tude. The FFTs can be performed with additional zero-padding
to evaluate a denser grid of tentative values of τ̂ and â.

C. Pseudo-Code of the MUSIC Implementation

Define:
hm = vec(Hm)

1) Remove the direct-blast with Doppler high-pass filtering
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2) Project on the space orthogonal to the stationary com-
ponents: Perform an eigen-decomposition of the matrix
of all channel estimates

R = [h1, ...,hM ]

RHR = UΣUH

Ur = RU(:, 1 : Mr)Σ−1/2

hm =
(
I − UrUH

r

)
hm

3) 2D-FFT-MUSIC

Xm = reshape
(
ĥm, N, L

)
Select K shifted sub-arrays X(k)

s and ’vectorize’ them

x(k) = vec(X(k)
s )

Perform an eigen-decomposition of the matrix of all sub-
array-vectors

Rs = [x(1), ...,x(K)]

RH
s Rs = UsΣsUH

s

Bs = Us(:, 1 : Nev) ·Σ−1/2
s

F =
Nev∑
n=1

FFT2(reshape(Rs ·Bs(:, n), N ′, L′))2

V. COMPRESSED SENSING

A. Non-linear Estimation via Sparse Estimation

Similar to the subspace approach, we use the OFDM
channel estimates as measurements. This has no loss in infor-
mation, as the bandlimited signal can be exactly represented
by a sufficient number of frequency estimates. Using the same
simplifications from (21) and the definition of steering vectors
in (24) and (26), we write the measurement model as in (29),

h =
Np∑
p=1

Apb(τ̂p, âp) + w, (48)

but where we drop the indices connected to subarrays and
include noise explicitly. We can reasonably assume that the
noise is still circular-symmetric complex Gaussian of Power
N0 (the information symbols si[n] are unit amplitude). Defin-
ing the following notation,

BNp =
[
b(τ̂1, â1) . . . b(τ̂Np , âNp)

]
(49)

aNp =
[
A1 . . . ANp

]T
(50)

we can rewrite the model as

h = BNpaNp + w. (51)

We see that if we knew the Np pairs of (τ̂p, âp), we could
construct BNp and solve for aNp via a simple least-squares
solution.

âNp = argmin
aNp

∣∣h − BNpaNp

∣∣2 (52)

Of course if we had a set of (τ̂p, âp) we already knew where
the targets were and wouldn’t need the amplitude values Ap,

but estimating the amplitudes lets us confirm targets, e.g., if
we had a larger list of possible targets constituting a larger
matrix B. This is essentially what the matched filter does, we
look at the “energy” at potential target locations, whereby the
least-squares solutions is replaced by the correlation operation
as in,

âMF = BHh, (53)

since we generally have more tentative target tuples (τ̂p, âp) as
measurements, making the matrix B “fat”. One special case is
when we choose just as many tentative tuples (τ̂p, âp) as there
are observations on an evenly spaced grid. As pointed out in
the previous section on MUSIC, the columns of B are then
the coefficients of a two-dimensional Fourier transform and
therefore orthogonal, making the least-squares and correlation
solutions equal.

A different approach to solve (52) without explicit knowl-
edge of the (τ̂p, âp) is using sparse estimation. In a nutshell,
we solve the least-squares problem by additionally enforcing
that the solution should be based on the assumption that there
are only few targets, i.e., the solution âCS should be sparse
(few non-zero entries).

B. Orthogonal Matching Pursuit

In our earlier work [13], we employed a low complexity
algorithm, Orthogonal Matching Pursuit (OMP) [19], [20].
This greedy algorithm uses the matched filter outputs to detect
the strongest target and associated (τ̂p, âp), solves (52) and
subtracts the influence of this target from all correlator outputs,
similar to serial interference cancellation. This is repeated
until “enough” targets have been identified, usually determined
based on all adjusted correlator outputs being lower than a
threshold.

Although good results on simulation data were achieved,
[13], OMP proved to have problems on experimental data.
This seems to have been due to two reasons: i) there are a
large amount of clutter and direct signals, leading to high
complexity since the algorithm’s run time scales with the
number of targets (clutter count as stationary targets); ii)
more importantly, there is always some modeling inaccuracy,
e.g., due to only considering a grid of possible (τ̂p, âp). The
modeling inaccuracy is usually a minor concern, but since the
direct arrivals are more than 50 dB stronger than the targets,
when the correlator outputs are adjusted, these inaccuracies
lead to residuals on the same order or larger than the targets.
Furthermore these residuals do not decrease in value quickly
with each iteration of the algorithm as they do not match the
vectors in B well. Removing the clutter as in the conventional
FFT based processing did not lead to significant improvement
either, which lead us to employ Basis Pursuit instead.

C. Basis Pursuit

Instead of trying to contruct the matrix BNp by identifying
targets iteratively, Basis Pursuit (BP) uses the so-called l1-
norm regularization term [21]–[23],

|x|1 =
∑

i

|xi|. (54)



8 IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING (ACCEPTED)

carrier frequency fc 227.36 MHz
subcarrier spacing Δf 1 kHz
no. subcarriers N 1537
bandwidth B 1.537 MHz
symbols length T 1 ms
cyclic prefix Tcp 0.246 ms
block length T ′ 1.246 ms
blocks per frame L 76
Null symbol TNULL 1.297 ms
frame duration TF 96 ms

TABLE I
OFDM SIGNAL SPECIFICATIONS OF DAB ACCORDING TO ETSI 300 401

[24].

With this the problem is formulated as,

minimize |h− Ba|2 + λ|a|1, (55)

where λ determines the “sparsity” of the solution and a can
have significantly higher dimension than h without detrimental
effect on the solution.

The problem formulation in (55) is a convex optimization
problem. Various efficient implementations have been sug-
gested in the literature [29], [30]. Since baseband data is
generally complex valued, the definition in (54) becomes,

|x|1 =
∑

i

√
|Re{xi}|2 + |Im{xi}|2. (56)

We implemented the algorithm outlined in the appendix of
[29] as an extension to the real case. It is based on an interior
point method using approximate Newton search directions.

Both the OMP and BP can be implemented more efficiently
by noticing that the multiplication with B can be implemented
using FFT operations as long as the τ̂ and â are chosen
on an evenly spaced grid (see Sect. IV-B). This leads to an
almost linear complexity in the number of observations (N ·L)
and number of tentative target parameters (τ̂p, âp), whereby
due to zero-padding in the FFT operation the larger number
dominates (number of tentative target parameters).

VI. NUMERICAL SIMULATION

A. Simulation Setup

The signal is simulated as,

y(t) =
∑

p

Apx (t − τp(t)) + w(t) (57)

where τp(t) is the exact bi-static delay. The definition of bi-
static delay for a signal transmitted from xs, received at xr,
and reflected off a target at x(t) is:

τ(t) =
1
c

(|x(t) − xr| + |xs − x(t)| − |xr − xs|) . (58)

For simulation purposes we generate receiver data at a sam-
pling rate of 2.048 MHz, the bi-static delays are updated at
the same rate. The target is simulated as a point target, but
the auto-correlation of Ap(t) over time is modeled based on a
five-point extended target assumption, similar as in [18]. The
target size is assumed at a diameter of about 30 m (only for the
auto-correlation of Ap(t)). The RCS with respect to different

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

20

x−axis [km]

y−
ax

is
 [k

m
]

 

 

receiver
illuminators
target 1
target 2

Fig. 4. Simulation setup of one receiver and three DAB stations illuminating
two closing targets; the markers are at the target starting positions.

transmitters is assumed to be independent, as these are several
kilometers apart.

The DAB signal is specified in [24], for convenience
we reproduce most parameters in Tab. I, notation matching
ours in Section II. We see that due to the bandwidth of
B = 1.537 MHz, the spatial resolution is approximately
c/B ≈ 195 m (the speed of light is c = 3×108 m/s). Therefore
for assumed targets of 30 m diameter, the point target model
seems reasonable. This could be quite different when using a
DVB signal of larger bandwidth.

One of the main assumptions to test in the simulation is
the small Doppler approximation. Accordingly we simulate
targets at a relatively high speed that will lead to significant
Doppler shifts. The scenario is shown in Fig. 4, where three
radio towers illuminate two targets, the receiver is placed at
the origin. The targets are moving at constant velocity of about
180 m/s, approaching each other slowly with simulation time,
c.f. Fig. 4. We simulate 200 DAB frames, for a total time of
18.2 s, in which the targets cover about 3.5 km.

The SNR of the direct signal is about 20 dB, at which any
regular DAB receiver would operate virtually error free, this
makes our assumption of perfect signal reconstruction well
justified. We fix each target at -30 dB (per sample), leading
to a difference of 50 dB between direct arrival and target
signatures. We do not specifically consider any transmitter
or receiver gain, attenuation based on distance traveled or
signal frequency, as we directly generate digital samples at
the output. Knowing that the targets follow a Swerling I model
(due to the extended target model), we will need about 20 dB
SNR to detect the targets reliably. We therefore coherently
combine one OFDM frame, which leads to an integration gain
of TF ·B ≈ 50 dB, but doesn’t affect the ratio between targets
and direct blast (see [7] for a detailed discussion of integration
gain calculation).

To see the performance of the super-resolution methods,
we use two targets which move on trajectories bringing them
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(b) Zoom

Fig. 5. Simulation results using conventional FFT processing, due to three
illuminators and two targets we should discern six signatures; (a) in the full
view we see the gap left by the direct signal subtraction, the target speeds of
about 180 m/s lead to range-rates up to double that amount; (b) in the zoomed
view we notice that although the targets are easily detected at this SNR, the
target separation is weak using the matched filter.

closer during simulation time. This will let us evaluate the
target resolution.

B. Simulation Results

We first take a look at the results using conventional FFT
processing, see Fig. 5, the figure shows the superposition of the
algorithm outputs over all frames. After subtracting the direct
signal, the results look fairly “clean”. Some speckle indicates
the noise floor, making the subtracted region show up clearly.
We notice that even the target signatures appearing at high
range-rate are easily detected: a range-rate of ṙ = 400 m/s
corresponds to a phase rotation of about ṙ/c ·fcT ·2π ≈ 0.6π.
In further simulation studies we found that even for close to a
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(b) Basis Pursuit

Fig. 6. Both MUSIC and compressed sensing remove the sidelobes of the
targets; resolving the targets better than the conventional FFT processing
baseline comparison; while MUSIC still needs to subtract the direct signal
first, compressed sensing is not affected by the much stronger direct signal
(50 dB).

half phase rotation during one OFDM symbol, the target loses
only about 3 dB.

In the zoomed view of Fig. 5(b), we also notice that the
signal amplitude fades due to our extended target model. Using
conventional FFT processing the targets are not resolved, due
to the large sidelobes. On the contrary, the super-resolution
methods both fully remove the sidelobes, see Fig. 6. While
MUSIC needs to use the same direct signal subtraction as
the conventional FFT processing, our compressed sensing
implementation via Basis Pursuit can handle the direct blast
within its framework.

The run times are as follows (all on a regular desktop
PC using MATLAB), the beamforming algorithm needs about
0.2 s per frame of data, the MUSIC approach is in the tens
of seconds, while Basis Pursuit is in the hundreds of seconds.
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Fig. 7. Photo of the antenna used to record the experimental data.

Another comment on the compressed sensing algorithms is
that OMP runs on the same order as MUSIC (higher tens of
seconds) for this simulation data, with identical results, but
did not work at all on the experimental data.

VII. EXPERIMENTAL DATA

A. Experimental Equipment

The experimental data was acquired during a measurement
campaign conducted by the German Research Establishment
for Applied Science (FGAN). The Research Institute for High
Frequency Physics and Radar Techniques (FHR) build CORA
(Covert Radar), a passive radar receiver, for the purpose of
technology demonstration [10]. In CORA, a circular antenna
array with elements for the VHF- (150-350 MHz) and the
UHF-range (400-700 MHz) is used to exploit alternatively
DAB or DVB signals for target illumination. A fiber optic
link connects the elevated antenna and RF-front-end with the
processing back-end, consisting of a cluster of high power
64-bit processors. Thus, CORA is also a demonstration of the
so called “software-defined-radar” principle. Fig. 7 shows the
antenna and front-end of the CORA system during installation
at the military electronic warfare exercise ELITE 2006.

A circular array antenna with 16 element panels has been
realized to avoid mechanically rotating parts. The reflector
planes of the panels approximate a cylinder. Each panel holds
two element planes. In the current configuration, the lower
plane is equipped with crossed butterfly dipoles for horizontal
and vertical polarization, which cover the 150 to 350 MHz
frequency range and are thus suited for DAB reception. The
16 elements, feeding the 16 receiver channels of the front-end,
allow 360◦ beam forming.

The upper plane is equipped with 16 vertically polarized
UHF-broad band dipoles for DVB. Due to the higher fre-
quencies, each panel holds two of these dipoles, horizontally
spaced, to allow for beam forming within a field of 0◦ to 180◦ .
The back half of the upper plane is equipped with spare dipole
elements. Alternatively, both planes can be equipped with
crossed butterfly dipoles, which can be combined to sharpen
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Fig. 8. Overview of DAB stations and receiver in ELITE 2006 experiment.

lat. long. alt. baseline
Rx 48.14◦ 9.06◦ 9,200 m N/A

Tx 0 47.67◦ 9.18◦ 471 m 52.9 km
Tx 7 47.51◦ 9.24◦ 564 m 71.7 km

Tx 12 47.37◦ 8.94◦ 1164 m 86.0 km
Tx 39 49.54◦ 8.80◦ 737 m 157 km

TABLE II
MEASUREMENT SETUP OF ELITE 2006 EXPERIMENT

the beam in elevation. The individual dipole elements in front
of the reflector plane each have a cardioid element diagram,
providing for approximately 3 dB gain. All elements which
are not used in the measurement configuration are terminated
with 50 ohms resistors mounted inside the central tower of the
array.

The HF-front-end consists of 16 equal receiver channels.
Each of the receiver channels comprises of a low-noise am-
plifier (LNA), a tunable or fixed filter and an adaptive gain
control for optimum control of the Analog to Digital Converter
(ADC). The LNAs have a noise figure of 1.1 dB and a gain
of 40 dB. In the current configuration fixed DAB band-pass
filters are being used with a pass band of 220 to 234 MHz. A
chirp signal with a bandwidth of 1.536 MHz, centered around
227.36 MHz (226.592-228.128 MHz, channel 12C), generated
by a separate signal generator and transmitted to the front-end
by coaxial cable, is used for calibration. A bank of switches
provides for calibration of each receiver channel chain from
the LNA to the ADC, excluding only the antenna element.

The experimental data available was recorded during a
measurement campaign in the southern part of Germany, the
precise locations can be seen in Table II. There were four
active DAB transmitters in the area, the geometry of the setup
is depicted in Fig. 8, where we see that one station is to the
north (close to Mannheim, Germnay), and three more towards
the south (around the Swiss border). About six hundred DAB
frames, or roughly one minute of recorded data is available.
Currently no ground truth in form of radar or air traffic control
data is available at this point.
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(b) Adaptive Clutter Removal

Fig. 9. (a) The conventional FFT based processing suffers heavily from the direct signal leakage; (b) with adaptive clutter removal numerous tracks can be
observed.
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(b) Basis Pursuit

Fig. 10. The high resolution methods work well; while (a) MUSIC needs a similar adaptive clutter removal as the conventional FFT processing, (b) Basis
Pursuit can handle the clutter directly.
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B. Algorithm Performance

The DAB specifications and algorithm settings are identical
as in the simulation study, as it was designed to mirror this
scenario. The major difference is that received SNR is lower,
due to the quite far observation range. We try to compensate
the low SNR by increasing the integration time, instead of
combining one DAB frame, we will consider two or four
frames (about 200-400 ms).

We first examine the results using the conventional FFT
processing, see Fig. 9, where we again plot the superposition
over all processed frames. To show the effect of leakage due
to severe clutter, we also include a plot without the adaptive
clutter removal, see Fig. 9(a). After adaptive clutter removal,
a number of tracks can be observed. The axis in Fig. 9 and all
following figures are limited to 250 m/s, as all target detections
occur at lower range-rates.

In the case of MUSIC, the direct signal and clutter removal
can also be handled in beamspace. Since the stationary signal
components do not change across frames, we simply take a
large number of frames and choose the two-hundred largest
eigen-vectors. This also benefits from the fact that the targets
change across frames, diminishing their effect compared to
the stationary signal parts. Each frame is then projected
onto this space to remove direct signal and other clutter. In
Fig. 10(a), we see that this different approach gives as a softer
“gap” around the zero range-rate region compared to Fig. 9.
Unfortunately a different type of artifact surfaces as vertical
lines. Using compressed sensing in form of Basis Pursuit, the
experimental data was processed, see Fig. 10(b).

To point out the advantages of the super-resolution methods,
we enlarge a central area with several tracks, see Fig. 11. Com-
paring the results for conventional FFT processing, Fig. 11(a),
to MUSIC and Basis Pursuit, see Fig. 11(b) and (c), we
can clearly see that the super-resolution methods do not
suffer from the same sidelobes like the conventional FFT
processing. In addition, Basis Pursuit can detect targets with
significantly smaller Doppler values, due to not utilizing any
clutter removal.

VIII. CONCLUSION

In this paper, we illustrated the passive radar concept
and described the current state-of-the-art. We derived the
exact matched filter receiver, which was not available before.
We showed that a current efficient FFT based approach is
equivalent to matched filtering based on a piece-wise con-
stant approximation of the Doppler induced phase rotation
on the received waveforms. Using the same approximation
we developed efficient implementations of receiver algorithms
using subspace concepts, namely MUSIC, and compressed
sensing implemented as Basis Pursuit. We discussed the im-
plementation and various benefits of these algorithms, and
tested them using numerical simulation and experimental
data. We find that in complexity the subspace approach is
one order of magnitude higher than the current approach,
followed by the Basis Pursuit formulation that is again one
order of magnitude more costly in complexity. Nevertheless,
high-complexity algorithms achieved higher target resolution
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Fig. 11. We show an enlarged view to focus on the sidelobe suppresion of
the high resolution methods.
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by avoiding common sidelobes found in conventional FFT
based processing. Additionally Basis Pursuit does not require
adaptive removal of clutter and the direct signal, leading to
better detectability of small Doppler targets.
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