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Abstract— Target tracking from incomplete measurements of
distinct sensors in a sensor network is a task of data fusion,
present in a lot of applications. Difficulties in tracking using
Extended Kalman filters lead to unstable behavior, mainly caused
by difficult initialization. Instead of using numerical batch-
estimators, we offer an analytical approach to initialize the
filter from a minimum number of observations. Additionally, we
provide the possibility to estimate only sub-sets of parameters,
and to reliably model resulting added uncertainties by the
covariance matrix.

The approach will be studied in two practical examples:
3D track initialization using bearings-only measurements and
using slant-range and azimuth only. Numerical results will
include performance and consistency analysis via Monte-Carlo
simulations and comparison to the Cramer-Rao lower bound.

I. INTRODUCTION

Target tracking from incomplete measurements, like bear-
ings only or range only, is a topic which has been investigated
thoroughly, e.g., target motion analysis and related questions
of observability [1]. The results utilize derivatives of standard
Extended Kalman filters, typical of tracking targets using mea-
surements in polar or spherical coordinates, while modeling
their movement in Cartesian coordinates [2], [3].

Especially in the case of incomplete measurements, the
initialization of the extended Kalman filter with an initial state
estimate and corresponding covariance is crucial for its perfor-
mance, otherwise the filter can easily become unstable. In the
case of incomplete measurements this can not be accomplished
by direct inversion of the measurement function. Multiple
measurements will have to be combined for initialization,
which calls for a sensible data fusion.

Typically, numerical batch estimators are used to find a
Maximum Likelihood (ML) estimate [4]. Although these es-
timators offer close to optimal performance, in the sense of
achieving the Cramer-Rao lower bound (CRLB) in estimation
accuracy, they need a large number of measurements for
’benign’ numerical behavior. We offer instead an analytical
approach using a minimum number of measurements, to return
an initial estimate and a corresponding covariance.

By making statistical assumptions about some components
of the state vector, we can initialize these state elements with
their mean and covariance, and thereby find an initial estimate
even in cases when observability of the full state vector is
not given. When splitting the state vector into two parts, one

which is estimated and the second which is initialized through
statistical assumptions, the covariance of the latter is a design
choice, but we will still have to derive the cross-correlation
between the two. More importantly, the added uncertainty
in the covariance of the estimated parameters will also be
modeled. This is caused by the loss of information due to
not estimating part of the state vector and instead interpreting
them as additional perturbation.

After deriving a general approach, we will apply this to
different scenarios, mostly using incomplete spherical mea-
surements typical for radar/sonar applications. The focus will
be on position initialization from bearings-only measurements
(Sect. III), which was also used in [3], from which this
work was strongly inspired by. As an additional application
scenario we will also present: position initialization from two
slant-range and azimuth measurements. Then, both scenarios
are numerically evaluated via Monte-Carlo simulation. Focus
will be on absolute performance like estimation error and
comparisons to the corresponding CRLBs. Consistency of our
initialization will be scrutinized to check if our estimators
are unbiased and if the covariance precisely characterizes the
estimation error.

This work has the following structure: After this introduc-
tion, we will describe the system model and derive our initia-
lization scheme in Section II. As mentioned before Section III
will cover the bearings-only scenario, which is followed by the
scenario of range and azimuth (Sect. IV). We will discuss our
numerical simulations in Section V and Section VI concludes
this paper.

II. DESCRIPTION OF SYSTEM MODEL AND MAP
ESTIMATION
A. System Model

Let x be the state vector of the target with dimension 7y,
which is modeled in Cartesian coordinates using, e.g., a second
order motion model

x(n+1) = F(n)x(n) + v(n) 1)

(1) - ()

with x being the state vector, containing position vector r
and velocity vector 1; v is the process noise and F' the state



propagation matrix, all of dimension 7. The measurement
function h is generally non-linear, dependant on the observer
position x4 and not invertible,

z(n) = h(x(n) — x5(n)) + w(n). 2)

The zero mean, Gaussian measurement noise w with covari-
ance R and the observation z ¢ M (M is the space of the
measurements) are of dimension 7,. We partition the state
vector into two sub-vectors X, and X,, one which is initially
estimated by a function of the first measurements and the other
which is initialized by appropriate modeling assumptions.
W.Lo.g, we can choose to reorder the state vector to achieve,

x = [ o ] 3)
Then we formally express x as

x = Kx,+ K%, with K:{é],f(:{?} “4)
Using k different measurements we try to find a function ¢
with ¢ : M* — R" which fulfills the following condition:

if x,=FE[x,] then toh(x)=x,, 5)

i.e., if our assumptions on X, hold, then ¢ gives the correct
value xX,. In the case of linear functions, this would be
equivalent to an unbiased estimator in terms of the additional
perturbation X,. We have to combine at least £ measurements
so that kn, > nx,. To simplify notation, we will use the
notation ¢(z) also when referring to ¢(z*) and use h(x) even
for mapping to z*. Since the function ¢ is generally not readily
available, defining it in a sensible way will be one of the main
tasks of this work.

Generally if we have kn, > 7y, there is no solution to
z = h(Kx, + K X,) due to the measurement errors. Instead
of picking an x, which reproduces all measurements as close
as possible in the ML sense, we drop n arbitrary parts of the
measurement to achieve k7, — n = 1x_. Even though we are
faced with non-linear equations, this guarantees that there will
be either none or countable many solutions.

By systematically dropping different parts of the measure-
ments we produce several, (kZZ), estimates and pick one using
an optimality criterion, e.g., the trace of the estimated covari-
ance matrix. If one combination of measurements renders no
solution, it is excluded (a solution to the case of ambiguity will
be given in one example Sect. III-C). Afterwards each of the
n remaining datum is merged using Kalman filtering which,
if the problem would be purely linear/Gaussian, would return
the same final result for any combination of measurements.

Since our problem is inherently non-linear, this way we can
initialize from the measurements with the best geometry.

B. MAP Estimate using Extended Kalman Filter Linearization

Let the likelihood function p(z|x) be given by a normal
distribution N(z; h(x),R), with a known measurement co-
variance matrix R. The probability density of ¢(z) given x
can be approximated by linearizing ¢(z):

p<t<z>|x>=N(t<z>7t[h<x>1 8’fRa’f'). ®

"9z Oz
Looking at (5), we can easily see that by definition ¢ o h can

be linearized around E[X,] to

d(toh)
ox

toh(x) =x,+ K(x, — E[X,))
=X, + G(Xo — E[X,])

accordingly, we have

@)

p(t(z)|x) = N (t(z);xo + G(x%, — E[X,)), QRQ ) (8)

0z Oz
and due to linearization we can switch ¢(z) and x,,
_ _ o 0t ot
p(Xo|2,X0) = N (xo,t(z) — G(x, — E[x0)), ERE )

(C))
where conditioning on z is the same as conditioning on ¢(z).
If we now substitute x = Kx, + KX,

E[x|z,%,] =Kt(z) — KG(%, — E[%,]) + K%,

~ 10
=Kt(z) + KG E[x,| + (K — KG)x, (19)

_ ot_ot'
COV[X|Z7XO] —KERE K (11)

we can approximate x as Gaussian with the above parameters
as (12). To get rid of the conditioning on X, we go along the
lines of Bayes total probability theorem for continuous random
variables, averaging over X, we get,

p(x|z) = /p(x|z,)_c(,)p()_c(,) dx,.

Changing the conditioning and integrating the final pdf is
given in (14), which results in the MAP (maximum a priori)
estimator of x

(13)

p(x|z,%,) =N <x; Kt(z) + KGE[%,] + (K — KG)%,, K—R— K’

%X = E[x|z] = Kt(z) + KE[,] 15)
with covariance
P = Cov|x|z]
ot_ot' .,  _ _ ) (16)
= KgRZ K'+ (K- KG)P(K - KG)'.

ot__ ot’

R ) a2
ot__ ot’

e (14)

p(x|z) =N (X;Kt(z) + I_(E[io],KaR— K' + (K- KG)P(K — KG)')



C. MAP Estimate using the Unscented Transform

To calculate p(x|z) in (14) we can replace the use of lin-
earization typical for the Extended Kalman filter, by using the
Unscented Transform [5]. What we basically did to calculate
p(x|z) in the previous case, was to linearize the functional
relationships between z, X, and x, which we had in ¢(z) and
t o h(x).

Instead we can directly derive a functional relationship of
the measurements z, the parameters X, which are initialized
by modeling assumptions and x, the estimated parameters.
Using z = h(X,,%X,) + w we will solve for x,, i.e., X, =
9(z — w,X,), where the function g is in direct relationship to
t(z), since

9(z, E[X,]) = t(z). 17

Once we have this, usually non-linear, functional relation-
ship, we can use the Unscented Transform to derive p(x,|z)
from p(z — w,X,|z), using the functional relationship in
(17) to map the influence of the measurement noise and the
parameters modeled as random on the estimate of the other
parameters.

To find the probabilty density of p(z — w,X,|z) we can
use that p(z — w|z) has obviously mean z and covariance R
and p(X,|z,z — w) is by modelling assumption N (X,;0, P),
since these parameters are assumed to be independent of the
measurements. Due to conditional independency we get

p(z — w,X,|z) = p(z — w|z)p(X, |2,z — W)  (18)
which we can transform into p(x|z), using
x=Kg(z —w,%,) + K%,. (19)

D. Calculating the CRLB Using Prior Information

Since we consider non-linear measurements and additive
white Gaussian noise, the Cramer-Rao lower bound (CRLB)
can be derived in a standard way. The general calculation of
the Fisher information matrix Jg as in [2], can be replaced by
the more specialized formula,

Jo = E {[Vxlog A(x)] [Vxlog A(x)]'}

oh L on’
= &COV(W) & s

where A(x) = p(z|x) is the likelihood function. Poorly, for a
minimum number of measurements, the matrix Jy will usually
not be invertible. This reflects that we can not estimate the full
state vector x without additional assumptions. As information
is additive, these additional assumptions, in the form of a prior
distribution on X,, can be added to the Fisher information
matrix [6],

(20)

J=Jo+Jp 21)

where Jp is the Fisher information of the prior. Assuming a
Gaussian prior on X,, this will take the following form,

Jp—[g P(ll]. 22)

Fig. 1.

Bearings-only measurements scenario

III. TRACK INITIALIZATION FROM BEARINGS-ONLY
MEASUREMENTS

A. Scenario Description

In this scenario only the spherical coordinates azimuth
and elevation are measured, see Fig.(1). Initializing from k
measurements is possible, if the measurements are taken at
different positions x4 (n) [1], either from different sensors or
a moving observer. For brevity without explicit dependency on
n, x = [z, y, 2z, &, 9, 2 and z = [¢, 0]’, the measurement
equations are the following,

¢ = arctan <w>

(23)
T —
Z— 2

f = arctan 24
t (\/(x_xs)2+(y_ys)2> ey

To initialize the position only x, = [z, y, 2], it is sufficient
to have two measurements k = 2, which gives us

kng, =4 > nye, = 3. (25)

Those two measurements should be taken from two distinct
arbitrary points X ;, ¢ = 1,2 with distance

(26)
—d/2 and

|Xs71 - Xs72| =d.

W.lo.g., we can assume them to be on the z-axis at
d/2. Using

h(x(n+1) —=xs(n+1)) = h(F(n)x(n) —xs(n+ 1)) (27)

and defining T' = ¢,,41 — ¢, as the time difference between
the measurements, the equations can be expressed as,

_ Y
¢1 =arctan <7+ d/2>
(28)
f; = arctan
< x + d/2 + (y )2>
_ y+yT
¢o = arctan T d/2>
(29)

fo = arctan

(
( e

V(@ +iT —d/2)? + (y+yT)2>



depending only on x(n) and assuming constant velocity. In
the following we will refer to z—w = [¢1, 01, @2, 0] as the
stacked vector of the true measurements to simplify notation.

Since we will not estimate the velocity, accordingly x, =
[%, 9, 2]', we will have to make statistical assumptions about
it. The velocity will be assumed to be zero-mean Gaussian
distributed N (X,; 0, P), which is reasonable since there is no
preferred direction.

Since we have kn, = 4 > nx, = 3, we are left with one
degree of freedom (n = 1). Accordingly we can choose any
three elements of [¢1, 01, ¢2, O2]" which will give us four
different inverse functions. Now if we solve (2) for x,, we
get

Xo =1(z = W) + f(Xo,2 — W) (30)

where we choose f such that f(X,,z—w) = 0 for X, = E[X,).
This approach will be consequently applied to all four possible
combinations of three measurements.
B. Two Azimuths and One Elevation

Using {1, P2, 01} of (28)-(29) and solving for x, we first
solve for,

_ @Ttan ¢y — yT — d/2(tan @1 + tan ¢s)
tan ¢1 — tan ¢o

_sin¢y cos ¢ N d Tcosd & sin ¢y — Y cos po (3D
sin(gz — ¢1) 2 ' sin(g2 — 1)
and
(2T — d) tan ¢1 tan ¢ — (97" tan ¢y
y =
tan ¢1 — tan ¢o 32)
_,sin gy sin ¢o — Tsing Z sin o — 9 cos Pa
sin(¢z — 61) " sin(éa — é1)
From which we now calculate z as,
z = tan(6y)v/(z + d/2)? + y?
— tan(6y) | — dsin ¢ —TjjSir,l@ —gcosgy| (33)
sin(¢2 — ¢1) sin(¢2 — ¢1)
The first inverse function t1(z — w) is accordingly
sin ¢; cos ¢ d
d Sin('$2¢_¢'1)2¢+ 2
t1(z —w) = in(d2—1) (34)
tan(6n) |t

where we used ¢, 61 and @2 to estimate x,(n) and x as
Kti(z — w) + KE[x,).

To calculate the covariance matrix according to (16) we
need the linearization aftjw and %, which can be found
in App. L.

Alternatively we can use the Unscented Transform (UT) for
which we need to find a function g which maps from X, and
Z — W 10 X,. This function g; is already available in (31)-(33),
ie. x, = g1(z — W,X,). So we are directly able to use the
UT.

The estimation function o for {¢1, ¢2, 02} can be calculated
by changing ¢1 <> ¢2, 61 < 63 and d < —d due to
the symmetry of the scenario. For the covariance we also
substitute 7"« —T'.

C. One Azimuth and Two Elevations

As the second possibility to calculate x,(n), we can use
{¢1, 601,02} of (28)-(29). Substituting (see Fig. 1)

x =pjcosdy —d/2 (35)
y =p1sin ¢y (36)
z =p1 tan 6, (37

with the ground range from sensor one p;, we get

(p1tan@y + 2T)% =
tanZ 0y ((p1 cos¢r —d+ j:T)2 + (p1sing; + yT)Q) (38)

tan 6o

tan 6, for

This is a quadratic equation in p; and using ¢ =
simpler notation,

p2(1—q*)+2p1(cot 01 2T +¢*(cos ¢y (d—&T) —sin 1 yT))

+ cot® 01 2°T° — ¢* ((d — 2T)* + ¢°T%) = 0. (39)

Setting T = 0 (equivalent to X, = E[X,] = 0) we can
calculate the inverse function by solving first for p;

pi(1 = ¢%) + 2dp1q° cos ¢y — ¢*d* =0 (40)
For ¢ =1 we get
d
= 41
PL= 5 o (41)
and else
2
_ g~ cos ¢ q / i
p1d<— T :I:‘l_q2 1 —¢2sin d)1> (42)

To solve this ambiguity we use the second azimuth ¢». For
geometrical reasons, if ¢> < 1, there is only one positive
solution. Otherwise, if |¢2| < 7/2 we choose the positive
root and negative else.

Again, the linearizations needed to calculate the covariance
can be found in App. I

To calculate the covariance matrix for t3 using the Un-
scented Transform (UT), we have to solve (39) for p;, without
setting 7" = 0. This still means solving a quadratic equation,
but is notational more cumbersome

p3(1—q)+2p1(cot 01 2T +¢*(cos ¢y (d—&T) —sin ¢, 9T))
+ cot® 01 2°T° — ¢* ((d — 2T)* + §°T°) = 0. (43)

With Q = —<* 012T+q2(cos(f_151‘2)7iT)75in 9107) e calculate
cot? 012272 — ¢2 ((d — &T)2 + 32T72)
p1=0Q=%,/Q?— .
\/ (1-4¢?)
(44)

Inserting this into (35)-(37) yields go.

The last estimation functions ¢4 for {¢2, 61,602} can be
calculated through the function t3(z — w) by changing ¢; <
¢2, 61 — 02 and d <~ —d. And for the covariance we also
substituting T« —T.



IV. TRACK INITIALIZATION FROM RANGE AND AZIMUTH

A. Description

Traditional active radars give range measurements and
sometimes only partial bearings. This is usually not a problem
if the setup can be approximated by a 2-dimensional interpreta-
tion. Even so, the increased uncertainty should be incorporated
in the covariance, which is a good reasoning to apply our
approach.

Again we will use £ = 2 measurements to estimate the
position and make statistical assumptions about the velocity.
The measurement model for range and azimuth is as follows,

r=V@ -2+ -y +(—2)? 49
and ¢ defined as in (23). As in the section on bearings only
(Sect. III), the measurements are taken d apart with time
difference 7. Since we have kn, > 1x,, we will be able to
choose four different functions ¢;.

B. Two Azimuths and One Range

Using {r1, ¢1, ¢2} we get the same results for x, y as in the
previous section, see (31),(32). Solving for z we get

c=\frd = (ad/2)2 -y
_ 5 sin @9 T sin o — Y COS @g 2
\/” (dSill(¢2 —o0 1 sinda - o) ) o
and accordingly ¢1(z — w) varies from (34) only in the last
component.

The linearizations necessary to compute the covariance can
be found in App IL.

To use the Unscented Transform (UT) we need g. In this
case the function is readily available in (31), (32) and (46),
which leads to immediate applicability.

The function ¢5 can be generated from ¢1, by replacing r; <

ro, ¢1 < ¢ and d < —d as the setup is symmetric again. To
calculate the covariance also T <+ —T' has to be exchanged.

C. One Azimuth and Two Ranges

To calculate t2(z — w), we use {ry,r2,¢1}. First we use
r1, ro which is geometrically speaking the intersection of two
spheres. Solving for x and taking the expectation over z, ¢, 2,
we get,

r? —r3+ (202 4 0})T*
2d '

The solution for x is unambiguous since the intersection is
a circle normal to and centered on the line connecting the
centers of the spheres, which coincides with the z-axis. To
solve for y, we use the definition of ¢,

xr =

(47)

y = (x4 d/2)tan ¢y
B r?—r3+ (202 4+ 01)T? + d? ;
N 2d

(48)

an @i

and similarly the definition of r to solve for z,

c= =@+ d/2? -y

2 021 (202 4 g2)T2 4 g2\ 2
—\/@—(rl ry + 20y +03,)T" + )(1+tan2¢1),

2d
(49)

where we disregard the ambiguity towards £z, since we can
assume positive z. Finally the complete function is,

p1coso —d/2

t3(z —w) = p1sin ¢y (50)
Vri =i
with
2 2 2 2\ 2 2
ry —rs5+ (202 +0:)T* +d
p1 = 1 2 ( v h) . (51)

2d cos ¢

We can see that if the z component turns complex, there is
no solution. This usually happens if the radii don’t render an
intersection of the two spheres or the azimuth is off too far,
due to measurement errors or the unknown speeds.

The linearizations to calculate the covariance can be found
in App. II.

The function ¢4 can be generated from ¢35 again, by replacing
71 < T9, @1 < ¢o and d < —d due to the symmetric setup.
To calculate the covariance also ' <» —T has to be exchanged.

V. NUMERICAL RESULTS
A. Bearings-Only Measurements

As described in Section III, the sensors are located at +d /2,
where we choose d = 10km for our numerical example.
We plot results for an symmetric z/y half-plane of 40km
by 20km and pick a constant height for each simulation.
The two sets of measurements needed in this scenario are
taken with an arbitrary time difference 7" which is usually
in the range of a few seconds and the target is assumed
to move with constant speed within this time interval. The
speeds are random with &, ¢, 2 assumed independent and z, y
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Fig. 2. Root-mean-square position error (RMSPOS) for an medium target
height z = 4km and synchronous measurements 7" = Os.
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Fig. 3. Root-mean-square position error (RMSPOS) for target height z =
4km and asynchronous measurements 1" = 2.
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Fig. 4. Cramer-Rao lower bound (CRLB) for target height of z = 4km and
asynchronous measurements 7' = 2s.

with the same o, = 100m/s and 2 with o, = 10m/s. Other
parameters are the measurement noises, o4, 09, which are
both 2 x 10~ 3rad = 0.1° and the number of Monte-Carlo runs
N = 103. The covariance are generated using the Extended
Kalman filter linearization.

For T = 0 the measurements are not dependent on the
unknown speed. The root-mean-square position estimation
error (RMSPOS) derived by Monte-Carlo simulation for a
height of z = 4km is plotted in Fig. 2. The RMSPOS
is minimal in close proximity to the sensors; it increases
with distance to the sensors, considerably less so on the y-
axis, when the base spanned by sensors is orthogonal to the
bearings.

When plotting the RMSPOS for non-zero T' (see Fig. 3),
the average error is noticeably higher, due to the influence of
the unknown velocity. As a comparison we plot the CRLB for
these values in Fig. 4. It can be observed that the estimation
error meets the lower bound very well, so the increased
estimation error variance is inherent to the problem setup.

The consistency is evaluated using the normalized esti-

NEES
)

’ 3 i
0 bv[s QORI

20

-10
x—range in km

y—range in km 20 20

Fig. 5. Normalized estimation error squared (NEES) for target height z =
4km and asynchronous measurements 7' = 2s. The 95% acceptance region
is [5, 787; 6,216], the covariance is about 10% too pessimistic.

mation error squared (NEES), which is calculated using the
full estimation error vector. Even though X, is not actually
estimated, we include it in the NEES calculation to check the
consistency of the cross-correlation. Accordingly the NEES
should have the distribution of a chi-square distribution with
nxN = 6 x 103 degrees of freedom. The NEES is plotted
in Fig. 5; it is slightly below the 95% acceptance region,
which makes our estimated covariance pessimistic. On top of
the sensor positions the estimates are inconsistent, which is a
problem of calculating the covariance with zero ground range.
For larger heights, e.g., z = 8km the error is more even.
It is higher around the sensors, since the minimum distance
is limited by the increased height. Also it rises less on the
z-axis, since it has now higher elevation - which improves the
performance initializing from one azimuth and two elevation.
Decreasing the height to z = 1km, the errors increase;
especially on the x-axis, outside the sensors. This is a problem
inherent to the estimation geometry; on the x-axis in general
t1,t2 don’t work, since intersecting two glancing azimuth
angles makes the estimation accuracy tend towards zero. For
low heights, t3,t4 work badly on the z-axis outside the
sensors, since now the measured elevation angles glance.

B. Range and Azimuth Measuements

The setup for position initialization from two measurements
is basically the same as in Section V-A. The sensors are on
the x-axis with distance d = 10km, we simulate over a half-
plane, the assumed distribution of the velocity is the same,
noise variance is o, ~ 0.1° and o, = 65m. We used the
Unscented Transform (UT) to calculate the covariance.

We will look at a larger height of z = 8km and time offset
of T'= 2s. The RMSPOS is plotted in Fig. 6; for the chosen
range standard deviation of o, = 65m and same azimuth
precision, the estimation error is generally higher compared to
the bearings-only scenario. Especially for positions far from
the sensors the errors increase much stronger. As a comparison
we plot the CRLB in Fig. 7. We observe that the stronger
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Fig. 6. Root-mean-square position error (RMSPOS) for larger target height
z = 8km and asynchronoeous (7" = 2s) measurements of range and azimuth.
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Fig. 7. Cramer-Rao lower bound for target height z = 8km and asynchro-

neous (17" = 2s) measurements of range and azimuth.

increase is inherent to the setup as we can not go beneath the
bound, but in corners where the errors increase strongly, our
estimation errors do not achieve the CRLB.

Fig. 8 shows the consistency. It is less pessimistic, but there
are regions where the very large errors lead to inconsistencies,
coinciding with where the estimation error doesn’t achieve the
CRLB.

For lower heights, e.g., z = 4km, the errors increase, in
particular in the regions of high errors. Again this is inherent
to the probelm geometry can not be improved upon, which
we validify via CRLB analysis. Therefore in this scenario
our approach has only limited applicability. It works well for
short ranges and high elevations, while for large range and
low elevations a 2D approximations is justified.

C. Implementing the Covariance Matrix

Linearization and Unscented Transform are both methods
to handle non-linerarities. Sometimes none of these methods
is able to generate a suited covariance matrix. Generally
for big measurement errors and/or strong abberation of the
modeled parameter from the expected parameter, we notice

NEES

X—range in km

-20 0 y-range in km

Fig. 8. Normalized estimation error squared (NEES) for target height z =
8km and asynchroneous (7' = 2s) of range and azimuth.

enlarging regions which become inconsistent. The Unscented
Transform seems to work slightly better with this problems
than linearization, which can be observed in the case of
bearings only measurements with larger measurement errors
04 = 0 = 1° and in the case of range and azimuth
measurements.

VI. CONCLUSION

We provided a general approach for initialization, applicable
to a large range of estimation problems using incomplete
measurements. The approach allows modeling some param-
eters statistically to reduce the dimension of the estimation
problem. This way we can initialize also in scenarios where
observability would otherwise not be given. A covariance
matrix has been derived analytically to describe the estimation
errors. The covariance accounts explicitly for uncertainties
related to reducing the estimation problem which is our main
contribution. We included a detailed discussion and numerical
analysis of examples using Cramer-Rao lower bounds and
Monte Carlo Simulation. The examples included 3D position
initialization scenarios of bearings-only and slant-range and
azimuth.

APPENDIX I
LINEARIZATIONS FOR BEARINGS-ONLY SCENARIO

A. Two Azimuth, One Elevation
Linearizing (34) we get

oty
0z —w

sin ¢ cos ¢ sin ¢ cos ¢

dsin?(%(z—gd))f) 0 —d4sin?((}(2¢:(§ll) 0

sin o sin 1
702 —01) 0 _‘ésinzwzfm) 0 f 2
ansi tanf;  p1/cos? 6y ans; tan 61 0
where p1 = +/(x + g)Q + 2 and

%_ 1 (833
0d; P1

dy .
%(J&—Fd/Z)—F%y) ,1=1,2



Instead of taking the derivative of & towards x to apply the
chain rule, we can directly take the derivative of (31)-(33).
Since G = tOh) , we only need to take the derivative towards
X, which the equatlons are already linear in. It is easy to see
that

atl oh _ T
0%,  sin(¢a — ¢1)
cos @1
X sin ¢ ( singa, —cosgy 0 ) (53)
tan 64

which gives everything necessary to calculate the covariance
according to (16).

B. One Azimuth, Two Elevation

We calculate the linearization 8fi3w and 6%3—;’h. (35)-(37),

which all depend on p; from (40), have the linearization in
z — w given in (54), with the following partial derivatives

Op1 _ dq? sin ¢1p1 55)
9¢1  dg®cos¢r + (1 —¢%)p1

ap1 p? —2dcospipr +d> Oq .

= =12

90; ~ dgfcosr+ (1 — D oo, 2 B9
@ _ tanfs @ B 1 57)
001 sin%60,’ 00y tanfcos26y’

To linearize t3oh in X, we will linearize (39) around 7" = 0.
We find

9p1 _

oT

_ preot b2 — q?p1(cos ¢1 — d)i — ¢%p1 sin 19
p1(1 = ¢?) + (g% cos ¢ud)

(58)
which is linear in &,y and 2. For small 7" we can approximate
p1 by p1 = pijp_, + T%L. Defining

N=p(1- q2) + (q2 cos ¢1d)
and using (35)-(37), the result is

(59)

Btz 0 h c08 1
o =-T sin ¢
Xo tan 01

a*po(cos po—d) ¢%po sin ¢ po cot O )
X ( — N _ ON 1 0 = 1 (60)

where pg = py|,_, is the solution to (40).
APPENDIX II
LINEARIZATIONS FOR RANGE AND AZIMUTH SCENARIO

A. Two Azimuth, One Range

To calculate the covariance matrix, we already have most
derivatives from the previous section, but still need to linearize

(46). The result for ‘9“ is

ot1 _
Oz —w
d sin ¢o cos ¢2 0 __7sin @1 cos ¢
sin?(¢2—¢1) sin?(¢2—¢1)
d sin®(¢2) 0 —d sin®(¢1)
Sin2(¢2—¢1) sin? (g2 — 1)
_d? sin? (¢2) cos(¢pa—¢1) 11 d2 sing;sings
z Sln (¢2_¢1) z z Sin3(¢2_¢1)
(61)
where for z we have to use our estimate. For %
atl oh - T
8)_(0 Sin(¢2 — (bl)
Cos @1
X sin ¢1 (singy —cosga 0 ) (62)
_ d sin ¢o
zsin(p2—¢1)

B. One Azimutn, Two Range

For the {ri,r2,$1} case the derivatives to calculate the
covariance are,

oty
0z —w
0 o ("
C021¢1 = tan ¢ 0 —22tang; (63)
pitangs  ry (1 _ p1 ) 0 r2_p
z cos? 1 20 2d cos ¢ zo 2d cos ¢1
Otzoh T !
3 = tan ¢
0%, 2d

——x+j/2(1 + tan? ¢1)
X ( d—2x -2y -2z ) (64)

where for p and x, y, z the estimated values have to be used.
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