
Illumination invariant face recognition and impostor rejection 
using different MINACE filter algorithms 

Rohit Patnaik and David Casasent 

Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 

ABSTRACT 
A face recognition system that functions in the presence of illumination variations is presented.  It is based on the 
minimum noise and correlation energy (MINACE) filter.  A separate MINACE filter is synthesized for each person 
using an automated filter-synthesis algorithm that uses a training set of illumination differences of that person and a 
validation set of a few faces of other persons to select the MINACE filter parameter c.  The MINACE filter for each 
person is a combination of training images of only that person; no false-class training is done.  Different formulations of 
the MINACE filter and the use of two different correlation plane metrics: correlation peak value and peak-to-correlation 
plane energy ratio (PCER), are examined.  Performance results for face verification and identification are presented 
using images from the CMU Pose, Illumination, and Expression (PIE) database.  All training and test set images are 
registered to remove tilt bias and scale variations.  To evaluate the face verification and identification systems, a set of 
impostor images (non-database faces) is used to obtain false alarm scores (PFA).  

Keywords:  Distortion-invariant filter (DIF), face identification, face recognition, face verification, minimum noise and 
correlation energy (MINACE) filter 

1. INTRODUCTION 
Face recognition is the automatic identification of a person based on one or more images of the person’s face.  A face 
recognition system performs either verification or identification.  In face verification, the system must accept or reject 
the identity claim made by a user based on a comparison of the user’s face to only the reference for the claimed face.  If 
the match-score (similarity measure) is above some threshold, the user’s identity is verified.  In face identification, the 
references for all faces in the database are examined and the one with the best match-score denotes the class of the input.  
To enable rejection of impostor faces (faces of persons not in the database and not used in training or validation), the 
best match-score is required to be above some threshold, otherwise the input is rejected.  In face verification, if the 
reference for the claimed face produces an output below a threshold, the input is rejected.  The rejection of unseen 
impostor faces which may be similar to the faces in the database is a challenging problem in face recognition. 

In prior work1, we presented a face verification system that functioned in the presence of illumination variations.  It 
was based on the minimum noise and correlation energy (MINACE) distortion-invariant filter (DIF)2.  A separate 
MINACE filter was synthesized for each person using an automated filter-synthesis algorithm that used a training set of 
images of that person and a set of false-class validation images (a few faces of other persons) to select the MINACE 
filter parameter c.  In this work, we use different formulations of the MINACE filter and also examine the use of the 
peak-to-correlation plane energy ratio (PCER) as the correlation match-score metric.  The automated filter-synthesis 
algorithm is modified as we describe in Sect. 4.2.  We use fewer training set images for each filter (four vs. six) than in 
our earlier work1.  Performance results are presented for both face verification and face identification using images from 
the CMU Pose, Illumination, and Expression (PIE) database3. 

We now discuss prior work in face recognition.  Our concern in this paper is face recognition in the presence of 
illumination variations (specifically those in the PIE database).  We have interest only in face recognition methods that 
can handle both illumination and pose variations.  Prior DIF work using the minimum average correlation energy 
(MACE) filter4 considered face verification5 (and addressed rejection but only addressed expression differences), and 
face identification6 using the illumination differences in the PIE database (but did not address rejection).  Both works 
used the peak-to-sidelobe-ratio (PSR) as the correlation plane metric rather than the correlation peak value.  Fisherfaces7 
have been noted to be of use for illumination variations, but only frontal pose views were considered.  Eigenfaces8 have 
been shown to handle pose variations (using view-based methods) but they do not perform well on illumination 
variations7,9.  Many graphic techniques10,11,12 have been applied to the PIE and other databases with pose and 



illumination differences.  The light-fields method10 is computationally expensive on-line, and it assumes that a precise 
pose estimate is available.  The morphable 3D face model11 technique requires 3-D face images from a laser scanner.  
The last two methods10,11 have been applied to the PIE database.  An illumination cone12 method has also been used but 
it requires much storage.  The fusion13 of LDA (linear discriminant analysis) and PCA (principal component analysis) 
has been applied to face recognition with expression and slight pose differences present (not with illumination 
differences).  Quotient images14 are illumination-invariant, but the concept cannot be extended to other distortions such 
as pose variations.  In all of this prior work that considered face identification with one exception9, rejection of impostor 
faces (non-database faces) was not considered; all inputs were assigned a class label and no rejection threshold was used. 

In evaluating the performance of our face verification system, if the correct filter output for a database input is ≥ a 
threshold Th, it contributes to the number of correct scores (PC).  For any impostor test face, each filter output ≥ Th 
contributes to the false-alarm rate (PFA).  For face identification results, the highest filter output is retained for each test 
input.  If the highest filter produces the correct output ≥ Th for a face from the database, it contributes to PC (the number 
of test inputs correctly classified).  If the highest score for an impostor face is ≥ Th, it contributes to PFA.  In face 
verification, the total number of possible false alarms is much more than in the case of face identification, since an input 
test image can be a false alarm for any filter in face verification.  This scoring of false alarms in verification is not 
typically used in prior work, but it should be, since an imposter can claim to be anyone (i.e., all filters should be checked 
for each imposter claim).  When comparing our performance to that of other classifiers that are not DIFs, to obtain fair 
comparison results, it may be necessary to consider an imposter face as a false alarm if any of the filters gives a peak 
above threshold.  We use the same MINACE filters and impostor images for evaluating the performance of the face 
verification and identification systems.  None of the impostor faces are present in the training or validation stages.  The 
rest of this paper is organized as follows.  In Sect. 2, we present two different MINACE filter formulations that we 
consider in this work.  Section 3 describes the PIE database.  Section 4 describes the automated MINACE filter-
synthesis algorithm that is used to synthesize the filter for each person.  Performance results (PC and PFA) for the face 
verification and identification systems are presented in Sect. 5. 

2. DIFFERENT MINACE FILTER FOMULATIONS 
This section describes the version of the original MINACE filter2 that we use.  Vectors (matrices) are denoted as lower 
(upper) case bold letters.  All data are in the Fourier Transform (FT) domain.  The 2-D FT of the filter is 
lexicographically ordered into a column vector h.  The 2-D FT of each training set image included in the filter is 
lexicographically ordered into a column vector xi of the data matrix X.  The filter is required to give a specified 
correlation peak value for each training set image included in the filter; these values (usually one) are specified by the 
elements of a column vector u.  These peak constraints are described by 

 [ ]TH 111 K== uhX , (1) 

where ( )H denotes the complex conjugate  (Hermitian) transpose.  To improve performance, the filter h is also required 
to minimize a combination of correlation plane energy due to training images and correlation plane energy due to 
distorted versions of the objects to be recognized.  We use zero-mean white Gaussian noise to model the expected 
distortion power spectrum.  We choose the energy function to be minimized as 

 Thh H=E , (2) 

where T is a diagonal matrix whose diagonal entries are the spectral envelope of the training images and noise at each 
frequency.  That is, 
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where Si is a diagonal matrix whose diagonal entries are the elements of the lexicographically ordered 2-D power 
spectrum (|FT|2) of training image i , NT is the total number of training images, N is the identity matrix, the maximum 
value in S is normalized to one, and c (0 ≤ c ≤ 1) controls the variance of the noise.  The Lagrange multiplier solution 
that minimizes the expression in Eq. (2) subject to the constraints in Eq. (1) is 

 uXTXXTh )( 1H1 −−= . (5) 



The filter parameter c and the images to be included in the filter are selected using a set of training images and a set 
of validation images (Sect. 4.2).  S is based on all the images in the training set, not just the ones included in the filter.  
Thus, S and T (for a fixed c) do not change as new training images are included in the filter.  This is computationally 
attractive as S for a filter needs to be computed only once while T has to be computed once every time c is changed.  
The MINACE filter can be shown to be a linear combination of training images that have been preprocessed by T-1/2.  A 
lower value of c makes the filter minimize correlation plane energy due to training images more and makes T-1/2 
emphasize higher spatial frequencies.  This makes the filter more discriminative to false objects but it makes recognition 
of distorted versions of an object more difficult.  A higher value of c makes the filter emphasize correlation plane energy 
due to noise (that models distortions) more and makes T-1/2 emphasize lower spatial frequencies.  This improves the 
distortion-tolerance performance of the filter but it also makes the rejection ability of the filter worse.  Thus, c trades-off 
recognition versus rejection performance.  Since T in Eq. (3) is based on the max( ) operator, as c is varied, T does not 
change for all spatial frequencies, e.g. as c is increased, the value of T at higher spatial frequencies does not change. 

We also consider minimizing a different energy function in Eq. (2).  Instead of defining T to be the spectral envelope 
as in Eq. (3), we define T as15 

 ),(),()1(),( kkckkckk avg NST +−= , (6) 

 )],(,),,(),,([mean),( 21 kkkkkkkk
TNavg SSSS K= , (7) 

where the maximum value in Savg is normalized to one.  The filter solution is Eq. (5) with the new definition of T in Eq. 
(6).  We refer to this as the additive spectrum formulation.  For c = 1, both formulations are identical, while for c = 0, the 
spectral envelope formulation reduces to the minimum correlation energy (MICE) filter2 and the average spectrum 
formulation reduced to the MACE filter4.  As c (0 ≤ c ≤ 1) is changed, the value of T changes for all spatial frequencies. 

3. PIE DATABASE 
The subset of the PIE database3 we used consists of images of 65 subjects taken under 21 different illumination 
conditions (with the room lights off).  Each subject is facing the central (frontal) camera with a neutral expression.  The 
21 illumination differences for each subject were captured in approximately 0.7 seconds3, thus each subject’s pose and 
expression is almost constant across the 21 illumination differences.  We converted the original 640x486 pixel color 
images to grayscale, since we only use the intensity information.  As was noted in prior work1, many subjects in the PIE 
database have their heads titled (in all images).  A face recognition system constructed from these images will use the tilt 
of the head in addition to facial features for performing recognition and discrimination and this will improve 
performance.  Thus, the use of titled images is not fair.  And, in a real setting, different face images of the same person 
will have different head tilts and may be at different scales.  Thus we register (align) the faces in the images to remove 
tilt bias and scale variations.  This registration is done by manually locating the coordinates of three facial landmarks 
(the eyes and the center of the mouth) in each image.  Automated methods to locate the eyes16 and other facial features17 
exist.  Each 640x486 pixel image was affine transformed so that the coordinates of the three facial landmarks were the 
same for all images.  The images were then reduced to 64x64 pixels to retain the part of face containing the eyes, the 
nose, and the mouth.  These are referred to as registered images.  All training and test images were registered this way.  
Registration makes images of different persons look more similar and rejection of impostor faces is more difficult since 
impostor faces are also registered.  Figure 1 shows the registered images of subject 3 for all 21 illumination differences.  
The illumination differences are labeled in the order in which the flashes were indexed in the PIE database.  The camera 
flash is on the left side of the face for illumination 1 (extreme right shadow) and the right side of the face for 
illumination 16 (extreme left shadow).  Illumination 7 represents frontal illumination. 

3.1. Training and Validation Set Databases 
A separate MINACE filter is synthesized for each subject.  We synthesize filters for subjects 1-40.  The training set for 
the filter for a subject consists of four illuminations (1, 7, 16, and 19) of that subject.  Illumination 19 is also frontal 
illumination but the vertical coordinate of the camera flash is higher than that for illumination 7.  Not all training set 
images are included in the filter (Sect. 4.2).  MINACE filter synthesis uses a validation set of false-class images to select 
the MINACE parameter c.  We use illumination 7 of three subjects 63-65 as the false class validation set for each of the 
40 filters.  None of the validation set images are present in the filters.  No images of subject 63-65 are used in the test 
stage.  And, illuminations 1, 7, 16, and 19 (used in the training set) are not used in the test set (even for the impostor 



faces).  Thus, none of the training or validation set images or illuminations are present in the test set.  All training and 
test set images are normalized to have unit energy before synthesizing the filters and before performing recognition 
correlations (Sect. 4.2). 
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Figure 1.  Registered images of subject 3 for all 21 different illumination conditions. 

4. MINACE FILTER SYNTHESIS 

4.1. Match-score Metrics and Filter Size 
In prior work1, we used the peak value of the output correlation as a match-score in the test stage.  The MINACE filter is 
designed to produce correlation peak values of one for all images included in the filter while minimizing the correlation 
plane energy.  Thus, the filter maximizes the ratio of the correlation peak to the correlation plane energy for each image 
included in the filter.  We therefore consider another correlation match-score metric in this work.  We use the peak-to-
correlation plane energy ratio (PCER) metric which is 

energy planen correlatio average
peak valuen correlatioPCER = . 

The correlation peak is the largest value in the central 11x11 pixel region of the correlation plane.  The average energy in 
the full correlation plane is computed by taking the average value of the square magnitude of each pixel (including the 
correlation peak).  The PCER should be high for images of the filter’s subject and low for images of other subjects.  We 
evaluate PCER at the largest point in the correlation plane.  The MINACE filters synthesized using the correlation peak 
value/PCER in the training stage are evaluated using the correlation peak value/PCER in the test stage.  We use circular 
correlations instead of linear correlations since they are faster to compute.  Thus, the size of the filters is the same as the 
size of the training images, 64x64 pixels. 

4.2. Automated MINACE Filter Synthesis 
The goal of the automated MINACE filter synthesis algorithm is to use the training and validation sets to select the filter 
parameter c to achieve both good recognition and imposter rejection performance.  The filter-synthesis algorithm 
iteratively adds training images to the filter until the filter recognizes all training set images with correlation peaks ≥ 
some minimum value.  Thus, the selection of the images to be included in the filter is automated.  To ensure good 
recognition performance, we do not allow all training images to be included in the filter.  We evaluate the impostor 
rejection performance of the filter on the validation set to determine if the value of c needs to be adjusted to achieve 
better impostor rejection performance.  The automated MINACE filter-synthesis algorithm in Ref. 1 using the correlation 



peak value is shown below.  The MINACE filter-synthesis algorithm parameters used were chosen from preliminary 
data tests. 

1. Initialize c to a default value of 0.0006.  Set the minimum peak constraint for the training set images, 
min_true_peak and the maximum peak constraint for the false-class validation images, max_false_peak. 

2. Create a filter using one of the images from the training set with this value of c.  We use illumination difference 
1 as the first image to be included in the filter. 

3. Correlate this filter with the remaining images in the training set.  If any of the correlation peak values are 
below min_true_peak, then add the image with the lowest correlation peak value to the filter and synthesize a 
new filter with the new and old image.  Continuing this process ensures that the designed filter will recognize 
all training set images with correlation peaks ≥ some minimum (min_true_peak).  The filter (by definition) 
gives correlation peak values of 1.0 with all training set images included in the filter to satisfy Eq. (1). 

4. Repeat the correlation step in (3) and continue including more images from the training set as in step (3) until 
the filter gives correlation peaks ≥ min_true_peak for all images in the training set. 

5. If all images in the training set are needed to create the filter, this suggests that the filter does not have good 
recognition capabilities, i.e., it is not likely to give high correlation peaks for test inputs.  In this case, increase 
the value of c by 5x10-5 and repeat steps (2) – (4) with the new value of c.  Increasing c will make it easier for 
the filter to recognize different illumination variations. 

6. Correlate this filter with the images in the false class validation set.  If any of the correlation peak values for the 
false class validation set images are too large (above max_false_peak), then the filter is not discriminative 
enough.  Decrease the value of c by 3x10-5 and repeat steps (2) – (5).  We decreased c by 3x10-5 and not by 
5x10-5 to prevent the filter-synthesis algorithm from getting stuck in a loop. 

Once the filter-synthesis algorithm exits step (6), a filter with a good choice of c has been created which should have 
both good recognition and discrimination capabilities.  This concludes the synthesis process for the filter.  Steps (2)-(5) 
ensure good recognition and step (6) ensures good discrimination.  When the correlation peak value is used as the match-
score, we set min_true_peak to 0.75 and max_false_peak to 0.65.  When PCER is used as the match-score, we set 
min_true_pcer to 13.1 and max_false_pcer to 10.2.  These values were chosen after performing some initial tests.  When 
the PCER metric is used, c is decreased in step (5) and increased in step (6).  Increasing c makes the MINACE filter 
emphasize lower spatial frequencies and results in broader correlation plane outputs for true and false class test images 
(this increases correlation plane energy), while decreasing c has the opposite effect (the correlation plane outputs are 
sharper).  Increasing c seems to increase the correlation plane energy for the false-class images more than for the true-
class images, thus decreasing PCER for the false-class images more.  Thus, increasing c should improve impostor 
rejection performance.  Decreasing c leads to sharper correlation plane outputs thus increasing PCER for true-class 
images.  In future work, we will present data to explain these trends in more detail. 

4.3. Filter Data 
MINACE filters were synthesized for subjects 1-40 using the automated MINACE algorithm (Sect. 4.2) using both T 
measures, spectral envelope and additive spectrum in Eqs. (3) and (6), and using both the correlation peak value and 
PCER as performance measures.  Thus, 160 (40 subjects x 2 T measures x 2 performance measures) filters were 
synthesized.  Figure 2 shows the spatial templates of the MINACE filters for some of the subjects (the filters were 
synthesized using the spectral envelope T definition in Eq. (3) and the correlation peak value as the performance metric).  
As can be seen in Fig. 2, the filter performs edge enhancement and emphasizes key facial structures such as the eyes, the 
nose, and the mouth.  This is all done automatically.  This is why a MINACE filter can recognize faces independent of 
illumination variations. 

All filters required three illumination images (the maximum allowed) to be included in the filter during synthesis.  In 
the filter-synthesis step, the extreme right shadow (illumination 1) was the first image used in all cases (by definition).  
In all but three cases out of 160, the next two illumination images chosen were the extreme left shadow (illumination 16) 
and the frontal illumination (illumination 7) or illumination 7 followed by illumination 16.  In all cases, illumination 
differences 1 and 16 were used in filter synthesis.  This is somewhat expected, but automation is needed, as illumination 
16 was chosen as the third image in ten cases.  In three of the cases – filter 33 synthesized using both definitions of T 



with PCER as the performance metric and filter 11 synthesized using the additive spectrum T definition in Eq. (6) and 
with PCER as the performance metric – illumination 19 was the third image included in the filter. 
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Figure 2.  Spatial templates of the MINACE filters for a few subjects – key facial structures such as the eyes, the nose, and the mouth 
are emphasized by the filter’s automatic edge enhancement. 

Figure 3 shows the values of c used to synthesize the MINACE filters for all 40 subjects using the T definition in Eq. 
(3) and using the correlation peak value as the performance metric.  The horizontal axis in Fig. 3 is the filter number and 
ranges from 1-40.  From Fig. 2, we note that 27 (out of 40) filters were synthesized using the starting value of c (0.0006) 
and no iterations were required.  The rest (13) of the filters required iterations and lower value of c and of those 13, the 
filters for subjects 23, 39, and 35 required the three lowest values of c (6x10-5, 1.2x10-4, and 1.5x10-4 respectively).  
These subjects look more similar to one of the three validation set faces (subjects 63-65) than the other subjects do.  
Thus, the value of c for filters 23, 39, and 35 had to be decreased the most (this emphasizes higher spatial frequencies) 
during filter synthesis to achieve better discrimination against the impostor faces in the validation set.  When PCER was 
used as the performance metric, most filters required a different value of c (≈ 0.0003), half of the prior value.  A different 
value of c is expected because the performance metric used during filter synthesis was different.  We also note that for 
each subject and for each correlation plane metric (peak or PCER) considered, the c value used to synthesize the 
MINACE filter using the two definitions of T in Eqs. (3) and (6) were either the same or differed by small amounts.  For 
example, when the correlation peak value was used as the performance measure, for 29 (out of 40) subjects, the filter 
synthesized using the spectral envelope definition of T in Eq. (3) required the same value of c as the filter synthesized 
using the additive spectrum definition of T in Eq. (6).  The maximum difference in c value was 2.1x10-4 (subject 28). 

 

Figure 3.  c values used to synthesize the filters for subjects 1-40 using the spectral envelope definition of T in Eq. (3) and using the 
correlation peak value as the performance metric; different filters require different values of c during filter synthesis. 



5. PERFORMANCE RESULTS 

5.1. Test Set 
For face verification, the true-class test set for the filter for each of the 40 subjects consists of 17 true-class images (the 
17 illuminations out of 21 that were not used in the training set) for that subject.  As the false-class test set for each filter, 
we use face images of the 22 subjects 41-62 each with the 17 illumination differences that were not seen in the training 
stage.  The MINACE filter for each subject should reject these impostor images.  When considering face identification, 
the test set images to be classified are the 17 illumination differences of subjects 1-40 (that were not seen in the training 
stage).  For both face verification and identification results, PC is a percentage out of 680 (17x40) test set images.  For 
face verification, PFA is a percentage out of 14960 images (17 illumination differences x 22 impostor faces x 40 filters), 
while for face identification it is a percentage out of 374 (17x22) images. 

5.2. Face Verification Results 
Figure 4 shows the minimum true (authentic) test set peak (curve ○) and the maximum false (impostor) test set peak 
(curve x) for the filters for each of subjects 1-40 synthesized using the spectral envelope definition of T in Eq. (3) and 
using the correlation peak value as the performance measure.  The horizontal axis in Fig. 4 is the filter number and 
ranges from 1-40.  In Fig. 4, we also show the overall minimum authentic test set peak (indicated by ‘–‘) and the overall 
maximum impostor test set peak (indicated by ‘– ·’).  We wish to use the same correlation peak threshold for all filters in 
the test stage to evaluate performance scores (this is typically required).  From Fig. 4, we see that the overall minimum 
authentic test set peak (0.594 for filter 23) is below the overall maximum impostor test set peak (0.856 for filter 7), thus 
the use of any fixed correlation peak threshold in the test stage will result in either authentic faces being rejected 
(misses) or impostor faces being recognized (false alarms) or both.  For example, if we use a correlation peak threshold 
of 0.86 in the test stage, we can achieve PFA = 0%, however, the filters for 12 subjects (1, 2, 4, 12, 14, 20, 23, 29, 35-37, 
and 39) will reject authentic faces using this threshold (the PC score is 91.76%, since most illuminations of each subject 
are above threshold).  We note that if we use different thresholds for some of the filters, e.g. if we use a threshold = 0.59 
for filter 23, we can improve performance results, increasing the PC for filter 23 from 47.06% (8 misses out of 17) to 
100%.  With a different threshold allowed for each filter, we can obtain PC = 100% and PFA = 0%, but use of different 
thresholds is typically not allowed.  We also note that for the filters for subjects 1-40 synthesized using the spectral 
envelope definition of T in Eq. (3) and using PCER as the performance metric, the overall minimum authentic test set 
PCER (9.82) is greater than the overall maximum impostor test set PCER (9.75).  Thus for a range of PCER test 
thresholds from 9.76-9.82 (the same threshold is applied to all filters), we achieve PC = 100% and PFA = 0%.  Thus, 
PCER is a more preferable metric than correlation peak value. 

 

Figure 4.  Minimum authentic and maximum impostor test set correlation peak values for each of the MINACE filters for subjects 1-
40 synthesized using the spectral envelope definition of T in Eq. (3) and using the correlation peak value as the performance metric. 



To compare the performance of the face verification systems using MINACE filters with different definitions of T 
and using different correlation plane metrics, we plot ROC curves of PC vs. PFA for different values of the correlation 
match-score threshold.  Figure 5a shows the ROC curves of PC vs. PFA for the MINACE filters synthesized using the 
spectral envelope definition of T in Eq. (3) and using both the correlation peak value (the lower curve ○) and PCER (the 
upper curve ∆) as the performance metrics.  The horizontal axis in Fig. 5a is PFA and the vertical axis is PC.  A value of 
0.0067 along the horizontal axis indicates a total of one false alarm for all 14960 total imposter inputs for all 40 filters, 
while a value of 0.147 along the vertical axis indicates a total of one correct verification out of a total of 680 true inputs 
for all 40 filters.  In Fig. 5, we also show our version of the equal error rate (EER) point (*) for the two curves; in this 
case, it is where the total number of misses (total number of true-class test set images rejected) equals the total number 
of false alarms, along with the match-score threshold used in the test stage.  Note that we compute the EER point by 
considering the total number of errors (misses or false alarms) rather than the more conventional percentages of errors.  
From Fig. 5a, we see that the correlation peak ○ curve lies below and to the right of the PCER ∆ curve.  That is, for a 
given PFA score, the PC score for the PCER metric is higher, and for a given PC score, the PFA score for the PCER metric 
is lower.  For example for PFA = 0.2%, the PC scores for the correlation peak and PCER curves are 98.24% and 100% 
respectively, and for PC = 99%, the PFA scores are 0.33% and 0% respectively.  Thus, the performance scores for the 
MINACE filters synthesized and tested using PCER as the performance metric are clearly better than the scores for the 
MINACE filters synthesized and tested using the correlation peak value as the performance metric. 

 

Figure 5.  ROC curves (PC vs. PFA) for the MINACE filters for subjects 1-40 synthesized using the spectral envelope definition of T 
in Eq. (3) and using both the correlation peak value (lower curve ○) and PCER (upper curve ∆) as performance metrics for face (a) 
verification and (b) identification.  The EER points where the total number of misses equals the total number of false alarms are 
indicated by * and the corresponding thresholds and PC and PFA scores are shown. 

We now compare the PC and PFA scores at the EER point for the MINACE filters for subjects 1-40 synthesized using 
both the spectral envelope and the additive spectrum definitions of T in Eqs. (3) and (6) and using the correlation peak 
value and PCER as the correlation plane metrics.  Table 1 shows these values along with the match-score threshold 
required in the test stage to achieve the EER operating point.  From Table 1, we see that for a given T definition (spectral 
envelope or additive spectrum), the performance of the systems using the PCER as the performance metric is much 
better than the performance of the system using the correlation peak value as the performance metric, e.g. for the spectral 
envelope formulation, 0 total misses using the PCER versus 34 total misses using the correlation peak.  We also note that 
using the PCER metric, both MINACE filter T formulations produce very similar results (0 total errors for the spectral 
envelope formulation versus two total errors for the additive spectrum formulation).  However, when using the 
correlation peak value as the performance metric, the use of the additive spectrum formulation rather than the spectral 



envelope formulation leads to a reduction of six misses and six false alarms (a total of 12 errors) at the EER point.  This 
suggests that one should use the additive spectrum definition of T when using the correlation peak value as the 
performance metric.  However, we will have to examine this in more detail in future work. 

Table 1.  Comparison face verification PC and PFA scores for the MINACE filters for subjects 1-40 synthesized using both the spectral 
envelope and additive spectrum definition of T in Eqs. (3) and (6) and using the correlation peak value and PCER as performance 
measures at the EER point where the total number of misses equals the total number of false alarms and the test threshold used. 

Performance metric Peak PCER 
MINACE formulation Spectral envelope Additive spectrum Spectral envelope Additive spectrum 

Test threshold 0.805 0.78 9.82 10.02 

PC 97.5% 
17 misses 

98.38% 
11 misses 

100% 
0 misses 

99.85% 
1 miss 

PFA 0.11% 
17 false alarms 

0.07% 
11 false alarms 

0% 
0 false alarms 

0.007% 
1 false alarm 

 

5.3. Face Identification Results 
To compare the performance of the face identification systems using MINACE filters with different definitions of T and 
using different correlation plane metrics, we plot ROC curves of PC vs. PFA for different values of the correlation match-
score threshold.  Figure 5b shows the ROC curves of PC vs. PFA for the MINACE filters synthesized using the spectral 
envelope definition of T in Eq. (3) and using both the correlation peak value (lower curve ○) and PCER (upper curve ∆) 
as the performance metrics.  The horizontal axis in Fig. 5b is PFA and the vertical axis is PC.  A value of 0.267 along the 
horizontal axis indicates a total of one false alarm out of a total of 374 (17x22) test set impostor faces and a value of 
0.147 along the vertical axis indicates a total of one correct classification out of a total of 680 (17x40) true test set 
database faces.  In Fig. 5b, we also show our equal error rate (EER) point.  As was the case in face verification, the 
correlation peak ○ curve lies below and to the right of the PCER ∆ curve and the MINACE filters synthesized and tested 
using the PCER as the performance metric perform much better than the MINACE filters synthesized and tested using 
the correlation peak value as the performance metric. 

We now compare the PC and PFA scores at the EER point for the MINACE filters for subjects 1-40 synthesized using 
both the spectral envelope and additive spectrum definitions of T in Eqs. (3) and (6) and using the correlation peak value 
and PCER as the correlation plane metrics.  Table 2 shows these values along with the match-score threshold required in 
the test stage to achieve the EER operating point.  In Table 2, we also show the maximum classification score, PCM, 
when no rejection threshold is used.  A comparison of Tables 1 and 2 shows that the total number of misses and the total 
number of false alarms for verification and identification are identical at the EER point for both MINACE filter 
formulations and both match-score metrics, e.g., 11 misses and 11 false alarms using the additive spectrum formulation 
and using the correlation peak as the performance metric for both face verification and identification.  This is expected 
since PC   is the same in both tests and it sets the number of errors.  The PCM scores using the correlation peak value as the 
performance measure are 99.71% (for both MINACE formulations), that is, two misclassifications out of 680 (17x40) 
test inputs, while the PCM scores using the PCER as the performance metric are 100% for both MINACE formulations.  
Thus, if rejection of impostor faces is not of concern, then any of the combinations of the two MINACE filter 
formulations and the two correlation match-scores can be used to build the face verification system since all of them 
achieve 100% or nearly 100% accuracy. 

 

 

 

 

 



Table 2.  Comparison face identification PC and PFA scores for the MINACE filters for subjects 1-40 synthesized using both the 
spectral envelope and additive spectrum definition of T in Eqs. (3) and (6) and using the correlation peak value and PCER as 
performance measures at the EER point where the total number of misses equals the total number of false alarms and the test 
threshold used.  Also shown is PCM, the maximum classification score when no rejection threshold is used. 

Performance metric Peak PCER 
MINACE formulation Spectral envelope Additive spectrum Spectral envelope Additive spectrum 

Test threshold 0.804 0.778 9.82 10.02 

PC 97.5% 
17 misses 

98.38% 
11 misses 

100% 
0 misses 

99.85% 
1 miss 

PFA 4.55% 
17 false alarms 

2.94% 
11 false alarms 

0% 
0 false alarms 

0.27% 
1 false alarm 

PCM 99.71% 
2 misclassifications 

99.71% 
2 misclassifications 

100% 
0 misclassifications 

100% 
0 misclassifications 

 

6. SUMMARY 
Two different MINACE filter formulations (spectral envelope and additive spectrum) and two different correlation plane 
metrics (peak and PCER) were used to create face recognition systems that function with illumination variations present.  
Performance scores were presented for both face verification and identification.  Using the spectral envelope definition 
of the MINACE filter and using PCER as the performance measures, perfect results (PC = 100% and PFA = 0%) were 
obtained for both face verification and identification.  This is better than our earlier work where we achieved an EER of 
seven misses and seven false alarms for face verification (we did not consider face identification in that work), which 
corresponded to PC = 99.28% and PFA = 0.01%.  And, in comparison to our prior work, we used two fewer illumination 
differences per subject (four vs. six) in the training set.  Note that the MINACE filter for each subject has not seen the 
other database faces (to be classified) during the training stage.  This is different from other work7 where the decision to 
classify or reject a test database face is made using all database faces during training.  The advantage of using DIF based 
methods such as the MINACE filter is that when new faces (to be classified) are included in the database, the MINACE 
filters for existing faces do not have to be resynthesized, while other methods7 have to recompute the templates or 
parameters for existing database faces. 

We noted that the spectral envelope and additive spectrum MINACE filter formulations produced very similar results 
for both face verification and identification when PCER was used as the performance metric.  However, when the 
correlation peak value was used as the performance metric, the performance results were much better using the additive 
spectrum formulation.  We need to examine the reasons for this in future work.  The use of the additive spectrum 
formulation and the use of the correlation peak value as the performance metric produced an EER of 11 misses and 11 
false alarms for both face verification and face identification which are significantly worse than the perfect scores (0 
misses and 0 false alarms) obtained using the spectral envelope formulation and using PCER as the performance metric.  
In future work, we will examine the use of a combination of the correlation peak value and PCER as the performance 
metric during MINACE filter synthesis and for evaluating the face recognition system.  We will also extend our face 
recognition system to handle pose variations in addition to illumination variations. 
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