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1 Introduction

Fingerprints~FPs! are a well-established biometric for per-
sonal identification with proven use and performance. Live-
scan FP sensors have become the main FP acquisition sen-
sors for limited access, the U.S. Immigration and
Naturalization Service, etc., in the face of recent terrorism.
These new sensors produce FP data that are quite different
from the classic rolled FPs. Specifically, live-scan FP im-
ages exhibit elastic distortions, as shown in Figures 1 and 2.
Figure 1 shows two FP images taken at two times in suc-
cession. They appear very similar. However, upon exami-
nation of the location of specific minutiae~denoted by
crosses in Fig. 2!, we see that the locations of the minutiae
are shifted differently in the two images and that the shifts
are different for different regions of the FP. This phenom-
enon is referred to as elastic distortion and creates recogni-
tion problems for live-scan FP data. We have produced a
database using such variations and filters to achieve FP
recognition in the face of such distortions and others.

Section 2 presents the modified version of NIST Special
Database 241 that we use. It is the only extensive database
of elastic distortions for live-scan data. That section also
notes numerous other expected FP distortions~oily, dry,
partial, etc., FPs!. ~Section 6 shows example imagery.! Sec-
tion 2 also describes the finely and coarsely aligned ver-
sions of the database we used~different degrees of prepro-
cessing are needed for each case! and the normalized data
we prepared. Section 3 notes the different correlation filters
considered; several are novel with respect to their data pre-
processing. Each of these FP recognition filters is a sum of
training-set images for one FP. Section 4 notes the test and
evaluation procedures developed and used to evaluate dif-
ferent algorithms for FP verification and identification. This
is a major new result. Section 5 presents initial test results.
Analysis of the results follows in Sec. 6.

Much prior work exists in FP recognition. Most uses
image processing based on minutia matching;2–4 neural net
classification methods have been found attractive.4,5 These
methods all require extensive image preprocessing,3,6,7 and
they require good FPs, since tracking FP ridges to locate
minutia regions requires continuous high-quality ridge

lines. These standard methods are thus not of use for about
10% or more of available FPs. Use of correlation filters is
thus attractive.8–16 However, no prior work we have seen
has addressed FP recognition in the face of the realistic
elastic distortions expected. Several well-engineered optical
correlations have been suggested for FP recognition,8–11

however, and can benefit greatly from the filter results we
present.

2 Modified NIST Special Database 24

The second portion of this database1 was used, consisting
of separate dab FP images obtained over 10 s~the user dabs
his finger on the reader a number of times!, since these data
represent the elastic distortions we wish to consider. There
were 55 cases~out of 200! in which the test subjects were
able to provide at least nine FP samples. These were the 55
FPs used in our more extensive recognition tests on the
ability of various algorithms to perform recognition of FPs
with elastic distortions present. We felt that nine versions of
each FP should be enough samples to represent most elas-
tically distorted representations. Section 6 investigates the
number of samples needed. Our database is not a large one,
but it is the largest available livescan one with a number of
multiple samples.

For each FP, one image~the one with the least rotation!
was selected as the test image; the other eight or more FP
images were used to form filters. For each set of data on a
given FP, we used the NIST centering algorithm17–19 to
locate the center of the FP and to thus initially align all
versions of each FP. We then used NIST software to locate
two minutiae close to the FP center~core!. These locations
were then used to rotate each FP to produce a set of rota-
tionally aligned images for each FP. This yielded a set of
coarselycentered and rotationally aligned images of each
FP. We then iterated shifts and rotations on this set of im-
ages and used correlation of the different images to produce
a set offinely aligned FP images for each FP. Both align-
ment methods were automated. These represent our
coarsely and finely aligned FP data, with elastic distortions
left as the major difference between them. The central 350-
pixel-diameter area of each centered and rotationally

1Opt. Eng. 43(10) 1–0 (October 2004) 0091-3286/2004/$15.00 © 2004 Society of Photo-Optical Instrumentation Engineers

  PROOF COPY 004410JOE  



  PROOF COPY 004410JOE  

  PRO
O

F CO
PY 004410JO

E  

aligned FP image was used in filter synthesis and testing.
Figure 3~a! shows the original image, Fig. 3~b! shows its
rotated version, and Fig. 3~c! shows the 350-pixel-diameter
final image used. A set of normalized and nonnormalized
images were obtained for each FP and for each finely and
coarsely normalized case. Normalized images have the en-
ergy within the 350-pixel radius normalized. Normalized
data were initially considered for handling the presence of
partial FPs, but were eventually found to also be useful for
handling dry and oily FP variations.

Thus, the modified NIST 24 database used contained
primarily elastically distorted data, but it also included oily,
dry, scarred, etc., FP variations. It represents the most ex-
tensive database of elastic distortions. Coarse FP alignment
is easier to achieve, and good filter performance on such
data is thus preferable to making use of fine-aligned data.
Distortion-invariant filters~DIFs! were found to be very
good for handling such poor FPs, including FPs with scars.
Conventional minutia-matching methods often cannot
handle such FPs and refuse decision on many of them,
while our proposed DIF filters easily handle such cases.
Section 5.4 notes this, and Sec. 6 shows examples of such
FP images successfully recognized.

3 Distortion-Invariant Filters

Many different types of DIFs exist.20 We considered the
synthetic discriminant function~SDF!21 and the minimum
average noise and correlation discriminant function
~MINACE!22 filters as well as a simple averaging filter. The
averaging filter,Havg, gives the sum of allN training-set

images,F(I n), divided by N, with filter values scaled so
that the maximum training-set peak was 1.0. The scaling
factorc is 1/~maximum correlation peak of the training im-
ages!. Thus we have

Havg5c
(F~ I n!

N
. ~1!

The SDF filter Hsdf is also a linear combination of
training-set images, but with an unequal set of combination
coefficientsa determined by the elements of the vector
inner-product matrix V, since they show the cross-
correlation~similarity! of the different training set images.
The coefficients are selected to yield equal correlation peak
values of 1.0~the elements ofu! for all training-set images
included in the filter. The coefficients are given by

a5V21u, ~2!

and the filter is the sum

Hsdf5( a~n!F~ I n!. ~3!

Fig. 2 Locations of minutia shifts in Fig. 1 due to elastic distortions.

Fig. 1 Same fingerprint with different elastic distortions.

Fig. 3 Processing of NIST Special Database 24.
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The MINACE filter Hmin also specifies a correlation
peak value of 1.0~the elements ofu! for each training-set
image, but it also minimizes a combination of the effect of
distortions:T(u,v), modeled by white Gaussian noiseSn
~this improves distortion tolerance!, and the correlation-
plane signal energy for different training-set images
S1 ,...,SN ~this reduces sidelobes and produces a sharp cor-
relation peak!. The parameterc determines how much each
term is minimized. The rows of the transpose conjugate
data matrixXH are the conjugate Fourier transforms of the
training-set images that are included in the filter. The filter
must satisfy peak constraints

XHHmin5u ~4!

and minimize an objective function. This is achieved by the
preprocessing function

T~u,v !5max@S1~u,v !,...,SN~u,v !,cSn~0,0!#. ~5!

The MINACE filter is a linear combination of nonlinearly
preprocessed images described by

Hmin5T21X~XHT21X!21u. ~6!

In addition, the training-set images used in the averaging
and SDF filters are highpass-filtered; this is a simple ap-
proximation of the preprocessing provided by advanced fil-
ters such as MINACE. Thus, these are not conventional
averaging and SDF filters; they are actually much closer to
MINACE filters. This highpass preprocessing was done to
improve discrimination between similar FPs~by suppress-
ing dc and low-spatial-frequency data!. In this work, all
training-set images are included in each filter for consis-
tency; this is not generally done.

4 Test Procedure

This represents the first formulation of the test procedure to
be used for evaluating candidate filters for FP verification
or identification. ByFP verificationwe mean the case when
a person enters his FP and some PIN indicator of his iden-
tity. In use, only the single filter corresponding to this FP
will be accessed and compared with the input test FP. If the
agreement is above some threshold, the system will verify
his identity, else access will be denied. In evaluating differ-
ent verification algorithms, all filter outputs are considered,
as we now discuss. We consider the case of a 50-person
~50-FP! database. For each test FP input~50 test inputs, one
per FP!, there is one filter; we consider all 50 filter outputs
for the test input FP. We determine the correlation-peak
output for each filter and produce a 50350 array of
correlation-peak values~Fig. 4!. If any wrong filter output
is aboveT ~the threshold!, it is a false alarm~there are thus
a maximum of 50225052450 false alarms!, andPFA is the
percentage of this outcome. If the correct filter output is
aboveT, it contributes toPC. If no filter output is aboveT
for a given input, it is rejected and contributes toPR. To
produce receiver operating characteristic~ROC! data (PC

versusPFA), we vary T; thus for a given test input, the

correct filter can give the largest output~aboveT!; but asT
is lowered, many other filters may give outputs aboveT and
thus false alarms.

In identification, the user enters a test FP, it is checked
against all filters in the database; the largest filter output
yields the class. Only the largest filter output is considered.
If the correct filter output is largest, it contributes toPC; if
any wrong filter is largest (.T) for a test input, it is a false
alarm. If no filter output is aboveT, it contributes toPR.
There are a maximum of only 50 false alarms in identifica-
tion.

Rejection rates (PR) are also present and of concern. For
a given test input, if the true filter output is not aboveT,
that test FP is considered to be rejected so that a false alarm
will not occur. We varyT to obtain ROC data. For the
identification case,PC1PFA1PR5100% ~and PFA is a
percentage out of 50 for our example!. For verification,PFA
is a percentage of 2450 for our example. This evaluation
procedure is equivalent to testing the system on nondata-
base test inputs.

5 Initial Test Results

We present test results for the 55 FPs for which eight or
more training-set images were available. As noted earlier
~Sec. 2!, only one test image per FP is available. We note
that '70% of the database consists of partial FPs with a
large portion~.30%! missing ~in the 350-pixel-diameter
image after our centering steps! and that many of the FPs
are oily, dry, or scarred. Thus, this is a formidable pattern
recognition problem. The fundamental questions to be ad-
dressed were: Can DIFs handle elastic distortion? Can DIFs
recognize oily or dry or scarred FPs~standard minutia-
matching methods have problems with such FPs!? What
type of preprocessing~rotation, normalization! is needed,
and why? Which type of DIF is best?

5.1 Highpass-Filter Preprocessing

The MINACE and advanced DIFs tend to highpass-filter
the training-set~and test-set! data, emphasizing higher spa-
tial frequencies to improve discrimination and reduce false
alarms (PFA). We also highpass-filtered all training-set
~and test-set! data for the other filter types. All pixels within
a radiusR of dc in the frequency domain were set to 0, and
the response beyondR was tapered over 10 pixels to avoid
ringing effects. A validation set was used to selectR; it
consisted of a number of distorted versions of one print

Fig. 4 Verification test procedure for the case of 50 fingers.
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~true class! and a number of other FPs of the same type
~false class!. After tests, we choseR530, since it gave a
large true-to-false separation; a wide range ofR choices
performed comparably. Without blockingR pixels, many
false FPs were present with larger outputs than the distorted
true FPs gave.

The MINACE filter requires selection of one parameter
c that determines whether to emphasize detection of dis-
torted FPs or false-alarm reduction. A validation set was
used to selectc, as suggested elsewhere.23 Three filters
were made from each of these sets of FPs. Tests were
against three true FPs and 50 others. All FPs were of the
same type. Asc for the filter was varied, the lowest true
correlation-peak value minus the largest false correlation-
peak value was recorded. Thec value (531025) with the
largest difference was chosen. The exactc value was not
critical. Normalization is done after application ofc prepro-
cessing~MINACE filter! or after highpass filtering~with
SDF and averaging filters!.

5.2 Verification Results

We showPC ~the percentage of all 55 test FPs correctly
recognized! versusPFA ~the percentage of false alarms out
of 2970 possible errors—false inputs!, and we record the
rejection ratePR ~the percentage of the 55 test inputs with
correct filter outputs below the thresholdT!. For verifica-
tion, PC1PR5100%; PFA50.034% corresponds to one
error. At a givenT, if any wrong filter gives an output>T,
it contributes toPFA , even if the correct filter output is
largest.

5.2.1 Need for finely aligned data

Figure 5 shows test results using normalized data for both
coarsely and finely aligned data for the different filters. We
expect better results~larger true correlation peaks! with
better-aligned FP data, due to the rotation sensitivity. Filters
formed from aligned data also have more structure and less
blur, due to the summation of shifted training-set FPs; this
also yields lower false correlation peaks. All the ROC data
in Fig. 5 are better when finely aligned data are used, as
expected. We see that the improvement inPC is at least 5%
and can be as much as 25% when finely rather than
coarsely aligned data are used.

We now discuss results@Fig. 5~a!# for the MINACE fil-
ter. When finely aligned data are used, the test results are
perfect (PC5100%,PFA5PR50%). These results occur
for a thresholdT>0.48 up to 0.56~the minimum true cor-
relation test peak is 0.56, and the maximum false peak is
0.47!. With coarsely aligned data, the performance is worse
(PC574.5% atPFA50% andPR525.5% forT50.55; at
a lowerT50.41, we can achievePC5100% but withPFA

52.26, which is very large!. Thus, finely aligned data im-
prove performance by 25%, they also provide a larger mini-
mum true correlation peak~0.56 versus 0.41! and a smaller
maximum false-alarm rate~0.47 versus 0.546!. This result
is attributed to the better structure of the filter~less blur!
when training data are more finely aligned; true correlation
peaks are always larger when rotation alignment of test
inputs is better. It is important to note that the correct MI-
NACE filter output is always the largest of those of all 55
filters; this occurred for all cases~coarsely or finely aligned,
and normalized or not!. This fact is needed in identification

Fig. 5 Fine versus coarse alignment (shift and rotation) improvement using normalized FP data. ROC
verification results for the MINACE (a), SDF (b), and average (c) filters.
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tests; thus, fine alignment is less needed for identification
than for verification. In our verification tests, the sameT is
used for all test inputs; this is why finely aligned data are
needed to increase all true test peaks above someT. Use of
different T for known problematic FPs could allow relax-
ation of the need for fine alignment.

We now discuss results for the SDF@Fig. 5~b!# and av-
eraging@Fig. 5~c!# filters. The trends are similar to those in
Fig. 5~a!. We first discuss SDF filter results. For the low
PFA,1% region of interest,PC is better by 9%–27% when
finely aligned data are used. With such data, SDF filters
give good performance:PC592.7% with PFA50.067%
~only two false alarms!. The problem is that with coarsely
aligned data, true correlation peaks are too low~minimum
0.25! and false peaks are too high~maximum 0.55!, and use
of low T values such as 0.25 is not realistic. Even with
finely aligned data, very lowT values are needed for high
PC, too low to be realistic: atT50.395, we havePC

594.5% ~3 of 55 FPs missed! and PFA50.2% ~6 false
alarms!.

Averaging-filter results@Fig. 5~c!# are now discussed.
Trends are again similar. The value ofPC improves by
23.5%~from 65.4% to 89.1%! with no false alarms, and by
22% ~from 72.7% to 94.5%! with PFA50.067% ~2 false
alarms! when finely rather than coarsely aligned data are
used. As with SDF filters, theT levels are too low to be of
use if highPC is needed. In general, MINACE-filter results
are much better than those using other filters. SDF- and
averaging-filter results are not appreciably different; we at-
tribute this to the highpass preprocessing used, which im-
proves discrimination and makes all filters more similar.

5.2.2 Need for normalized data

Our original motivation for the use of normalized data was
for the cases of partial input test FPs~Fig. 11!. This is still
valid. However, only one of our present 55 test inputs is a
partial FP~intentionally!. In retrospect, normalization also
greatly aids recognition of oily and dry FPs, as we now
discuss. Dry FPs have more white areas~and hence higher
energy! and lower contrast. Oily FPs have more dark area
~and hence lower energy!. See Fig. 9~c! and 9~d! in Sec. 6.
Dry FPs produce larger correlation peaks~and possibly
false alarms!; oily FPs produce lower true correlation peaks
~and thus require lowT, causing problems!. Thus, use of
normalized data~in training and in testing! will aid in such
realistic FP cases. Figure 6 shows test results for all three
filters with finely aligned data and with and without use of
normalized data. For the MINACE filter, at a lowPFA

50.03% ~one error!, use of normalized data improves the
results by 5.5%. For the SDF filter, the improvement is
'7% at PFA50.03%; for the averaging filter, it is 5% at
PFA50.17% ~5 errors!. Thus, use of normalized data is
clearly of help. It increases the lowest true peak~from 0.52
to 0.56 for the MINACE filter!, and it significantly reduces
the maximum false peak~from 0.67 to 0.48 for the MI-
NACE filter!. These lower false maxima allow use of a
lower T and result in better ROC data.

5.2.3 Verification test summary

Figure 7 shows ROC (PC versusPFA) results for the low-
PFA region of interest for the case of finely aligned and
normalized data. We also include test results for a one-to-
one filter case, in which one training image was used as the

Fig. 6 Normalized versus unnormalized improvement (with fine alignment). ROC verification results
for fine-shifted data for the MINACE (a), SDF (b), and average (c) filters.
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filter and another as the test input. This last filter case per-
forms worst; thus clearly DIF methods are needed to handle
elastic distortions, as expected. The MINACE filter per-
forms perfectly (PC5100%,PFA5PR50%) and better
than all other filters. Thus, its combination weights~used to
assemble the filter from the training sets! and its highpass
filtering are preferable to those of the other filters~averag-
ing filters have equal weights for all training-set images!.
Recall that with the highpass filter preprocessing used, the
SDF and averaging filters are not the conventional ones.

5.3 Identification Test Results

Recall that in these tests, the user does not state his identity,
and each test input is correlated with all 55 filters. If any
filter output is >T, the input is accepted. Thus only the
filter with the largest output is considered. If it is the correct
one, PC is incremented; if it is the wrong class,PFA is
incremented; if no filter output is aboveT, the input is
rejected. Thus,PC1PFA1PR5100%. The quantityPFA is
now a percentage of 55~not 2970!; and the percentagesPFA
are now much larger than in verification. We use the same
T for all FPs in the present test procedures. The only way to
achievePC5100% is with no errors (PFA50%).

Identification test results are now analyzed. The
MINACE filter gave perfect results (PC5100%, PFA

50%, andPR50%) over a large range (T50.48 to 0.56!.
The correct MINACE filter output is always the largest, and
the largest false peak is below the minimum true peak for
all 55253025 filter cases. This occurs for all fine versus
coarse and normalized versus unnormalized data cases and
for all partial, oily, dry, and elastically distorted test FPs.
Thus, the MINACE filter is very robust and for identifica-
tion does not require any preprocessing beyond coarse ro-
tation alignment, which can easily be automated.

SDF filters using normalized and finely aligned data per-
formed much better for identification than for verification
(PC598.2% versusPC578.2% withPFA50%). The cor-
rect filter output is largest for 54 of the 55 cases (PC

598.2%). Thus, SDF filters are very attractive; however, a
very low T50.315 was needed. In practice, test prints with
low score would be rejected, as the confidence of such
classifications is low.

Averaging filters also perform well~a bit worse than the
SDF filter!. Their identification performance is better than
their verification performance, as expected. We obtainPC

598.4% versus 89.1% withPFA50%, but this occurs at a
low T50.245. The problem is again that these averaging
filters ~like the SDFs ones! give low true correlation peaks
~even though the largest peak is the correct one!, compared
to the MINACE filters. In practice, most errors in the
present identification filter tests would be handled by reject-
ing the input FP and requiring the user to reenter his FP.
Figure 8 shows identification test results; only finely
aligned and normalized data results are included, as they
provide the best scores.

5.4 Minutia-Matching Tests

The performance of minutia-matching software at NIST on
this database of 55 fingerprints was also obtained. Since
minutia-matching methods require only one reference FP,
only the first four elastically distorted versions of each FP
were analyzed. This provides useful minutia-matching data
for the case of multiple test inputs; how to use these data is
the subject of ongoing work. Other minutia-matching meth-
ods may perform better, but the one used is the benchmark
NIST employs. It does not need rotationally aligned data.
For each FP, there are six possible matching combinations.
A minutia-matching score of 40 is generally considered ac-
ceptable for the matcher used. At this threshold, twelve of
the 55 FPs had at least one miss~a true FP version that was
not recognized!; this is more than 20% of the FPs. Six of
the FPs had three or more misses~at least half of the six
possible cases!, and for one FP all six combinations were
missed~regardless of which of the four FP versions was
used as the reference and which was the test input, none
matched!. At this threshold level of 40, eight of the 55
prints, or'15%, gave false alarms~some other false FPs
also gave a score above 40!; for three of the cases, there
were three false alarms for the given FP. These tests do not
allow direct comparison of the performance of minutia-
matching filters versus DIFs~we could have used different
FP versions as the test input for our DIFs; a much larger
database is obviously needed; etc.!. In addition, DIFs need
at least seven or eight training samples, while minutia
matchers do not. However, MINACE filters gave no errors
in initial tests. Thus, these initial results seem to indicate
more misses and more false alarms using standard minutia-
matching methods. A comparison of minutia matching and
DIFs is not our purpose. These initial results are, however,
of use and merit further attention on a larger database with
attention to how to perform valid comparisons.

Fig. 7 Verification test results. Fig. 8 Identification test results.
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6 Analysis of Results and FP Imagery

Elastic distortions are the primary distortions we intended
to address in this study. DIFs are able to handle such dis-
tortions with proper preprocessing. However, many other
FP variations arise in practice and in our present database
~Fig. 9!; all examples shown are test-set FPs, which are
~ideally! the best for a given finger. Figure 9~a! shows a
good FP~it occupies the entire 350-pixel diameter!. Figure
9~b! shows an FP with noticeably higher ridge spatial fre-
quency than other FPs~the person was female, and the
smallness of her fingers seems to be the cause of this!. Her
test errors seem to be due to the need for more accurate
rotational alignment, even better than our fine rotational
alignment. Figure 9~c! shows an oily FP; as seen, it is very
dark and has less energy~thus, it requires use of normalized
data for good performance!; its ridges and valleys are less
clear, being broken up and having low contrast. Figure 9~d!
shows a dry FP; it is whiter and has more energy; its ridges
are also broken up and less clear, and its contrast is low
~dry FPs do not make good contact with the FP scanner!.

Figure 9~e! shows a partial FP; Fig. 9~b! is also a partial FP
~normalization should help such cases, especially when dif-
ferent parts of the FP are present in training and in testing!.
Figure 9~f! shows a scarred test FP. Automated minutia
systems have problems with scarred FPs, and some of the
other cases shown and often reject such FPs, since a suffi-
cient number of minutiae may not be located~e.g., for par-
tial FPs!. These examples in Fig. 9 are typical, not isolated,
cases. With finely aligned and normalized data, all three
filter types successfully performed verification and identifi-
cation of all cases in Fig. 9.

Some oily FPs@Fig. 10~a!# can cause problems. The
correct averaging filter for this test case~with finely aligned
and normalized data! gave only a modest~but reasonable!
correlation peak of 0.49, and no other filter output was
above 0.18. With finely aligned but unnormalized data, a
lower correct peak~0.37! occurred, due to the low energy
of the test FP; this peak was still the largest among all 55
filters. It gave no identification errors; however, the peak is
too low, as other test inputs have false filter peaks above

Fig. 9 Representative examples of different test FP variations to be expected.

Fig. 10 Images of similar oily partial test fingerprints.
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0.37, and thus errors occur in verification tests. For the test
FP in Fig. 10~a!, the MINACE filter ~with finely aligned
and normalized data! give a large peak~0.64!; no other
filter output was above 0.34. With finely aligned but unnor-
malized data, a lower but still large peak~0.52! resulted;
however, other filters for other FPs@such as in Fig. 10~b!#
of a similar class~loops! gave larger outputs~0.67, 0.56!
and thus errors. That this was a partial as well as an oily FP
contributed to these effects. However, the training set is
also an obvious factor. The oily FP in Fig. 10~c! was not a
problem. The MINACE filter ~with finely aligned data!
give large correct peaks of 0.97 and 1.1 for unnormalized
and normalized data. The SDF~0.95 and 0.99! and the av-
eraging filter~0.79 and 0.9! also performed well. This is
attributed to the fact that the training set captured the oily
nature of the test FP~as well as its elastic distortions!. This
may not always occur when the test FP is taken at a very
different time from the training set used to synthesize the
filter. Thus, training-set effects are also of concern; varia-
tions must be captured by the training set.

Figure 11 shows several of the training-set images and
the test-set FP for a case in which all images were of severe
partial FPs. Standard minutia matching systems would re-
ject such inputs, as an insufficient number of minutiae
would be located. Surprisingly, all filters performed well on
this test input~using finely aligned and normalized data!.
With finely aligned and either normalized or unnormalized
data, the correct MINACE filter gave a large correlation
output of 0.84 or 0.78. The correct averaging filter~0.84
and 0.80! and the correct SDF filter~0.96 and 0.84! also did

well. We attribute these very high test-set peak values to the
fact that the training set is very typical of the test set and
captured this expected partial nature of the test FP. If the
test FP had been taken at a much later time, then normal-
ization might be expected to have been of more help.

Figure 12 shows ROC MINACE-filter verification re-
sults for persons with fewer than eight training-set FPs. For
all cases there are some errors. This seems to indicate that
having at least eight training-set images is a good choice;
much more extensive tests are needed, of course, to confirm
this. There are 145 fingers with less than eight training
samples: 42 had seven samples, 34 had six samples, etc.,
and seven did not even produce four samples. As expected,
performance degrades with fewer training samples.

7 Summary

A database of FPs with elastic distortions was assembled.
Various distortion-invariant filters were considered for clas-
sification in the face of elastic and other distortions. The
MINACE filter was found to be best among all filters
tested. It gave perfect verification and identification results.

The need for finely aligned and normalized databases
was investigated. They were found to be needed for verifi-
cation tests, but not for identification. The database also
contained oily, dry, partial, and scarred FPs. These repre-
sent other distortion cases that the filters handled success-
fully. Filters seem tolerant of poor FPs and can achieve
correct recognition of them; conventional minutia-matching
FP systems seem to have large rejection rates for such
cases. Much more extensive tests are needed to confirm
these results.
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