PNS Chapter 7

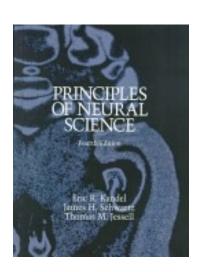
Membrane Potential

Carnegie Mellon

18-699 / 42-590 Neural Signal Processing Spring 2010 Prof. Byron Yu

Roadmap

Introduction to neuroscience


- Chapter 1 The brain and behavior
- Chapter 2 Nerve cells and behavior

How are neural signals generated?

- Chapter 7 Membrane potential
- Chapter 9 Propagated signaling: the action potential

How do neurons communicate with each other?

- Chapter 10 Overview of synaptic transmission
- Chapter 12 Synaptic integration

Membrane Potential

- Reading assignment from *Principles of Neural Science* (PNS):
 - Chapter 7 Membrane Potential
 - Chapter 9 Propagated Signaling: The Action Potential (up to p.158)
- Information carried within & between neurons w/ electrical & chemical signals.
- Transient electrical signals (action potentials) critical for transmitting timesensitive data rapidly and over long distances.
- Action potentials produced by temporary changes in current flow in/out of cell.
- This is turn changes the electrical potential across the cell membrane the **membrane potential**.
- Current flow controlled by ion channels in membrane.

Resting and Gated Ion Channels

Resting channels

- Normally open.
- Not influenced by membrane potential.
- Important for maintaining resting membrane potential.

Gated channels

- Normally closed.
- Probability of opening is a function of external factors.
- External factors: mechanical (pressure or strech) forces, changes in membrane potential, or ligand (chemical transmitter) binding

Separation of Charges Across Membrane

- At rest, excess of + charge outside of cell membrane; charge inside.
- Membrane maintains this separation by blocking diffusion.
- Membrane potential definition:

$$V_m = V_{in} - V_{out}$$

- Resting membrane potential (V_r) =
 V_m when gated channels are closed.
- V_r typically = -60 mV to -70 mV.

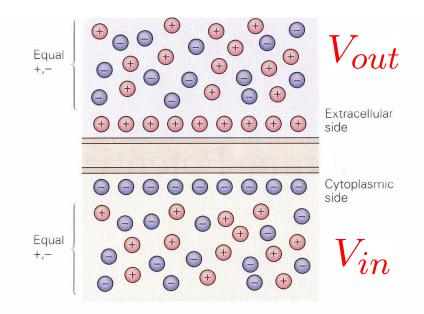


Figure 7-1 The membrane potential results from a separation of positive and negative charges across the cell membrane. The excess of positive charges (red circles) outside the membrane and negative charges (blue circles) inside the membrane of a nerve cell at rest represents a small fraction of the total number of ions inside and outside the cell.

- Electric current carriers are positive (cations) and negative (anions) ions.
- Direction of current flow defined as direction of net movement of + charge.

Recording the Membrane Potential

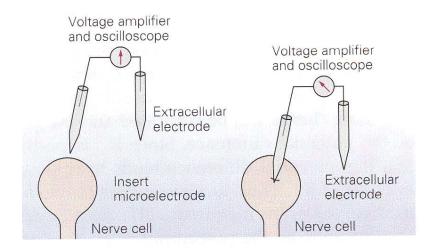


Figure 7-2A The recording setup.

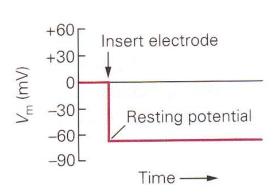


Figure 7-2B Oscilloscope display.

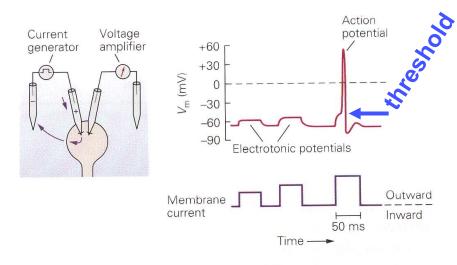


Figure 7-2C Depolarization.

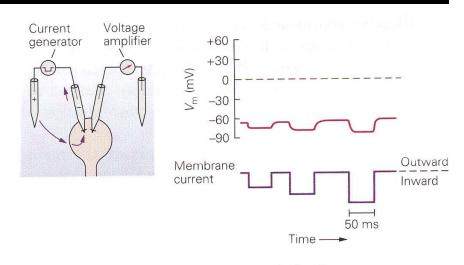
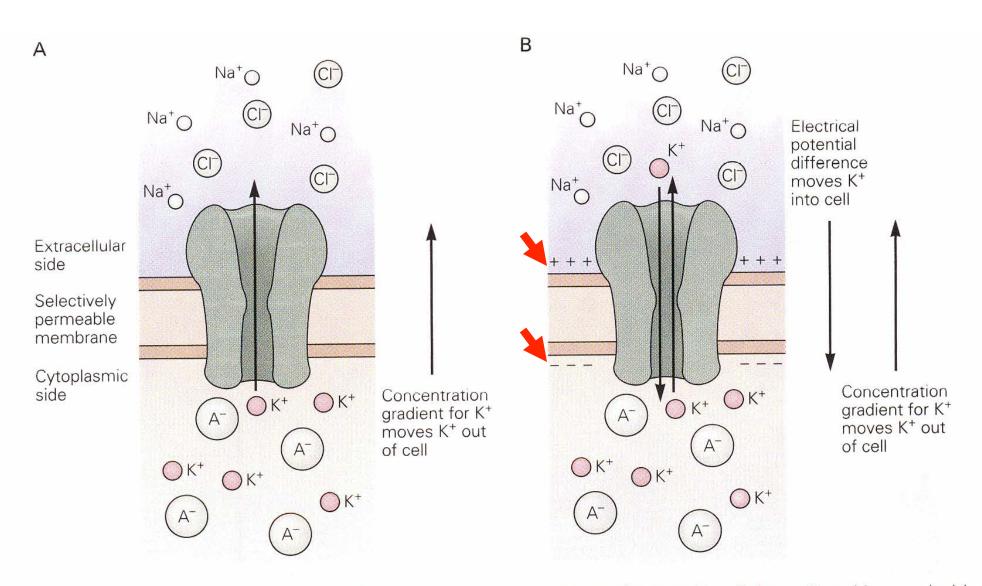


Figure 7-2D Hyperpolarization.

Resting Potential Determined by Resting Ion Channels

- No ion species is distributed equally inside/outside membrane.
- Table shows giant squid axon concentrations; ionic concentrations in vertebrates are 2-3x lower, but concentration gradients similar.

Table 7-1 Distribution of the Major lons Across a Neuronal Membr	rane at Rest: the Giant Axon of the Squid
--	---


Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K^{+}	400	20	-75
Na ⁺	50	440	+55
Cl^-	52	560	-60
A (organic anions)	385	_	

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

Concentration Gradients & Resting Potential

- For simplicity, we first consider glia.
- Simply because glial membranes are permeable to only K⁺, not to all species present (we'll consider this case next).
- A high concentration of K⁺ and A⁻ exists inside the cell.
- A high concentration of Na⁺ and Cl⁻ exists outside the cell.
- Intuitively, species that can not transport through the ion channels must stay put (inside or outside of cell).
- Intuitively, species (i.e., K⁺) that can transport through the ion channels can potentially do so but there must be a driving force.

Sketch of Drift and Diffusion Currents

7-3 The flux of K⁺ across the membrane is deterby both the K⁺ concentration gradient and the elec-

charge on the outside of the cell and leaves behind o side an excess of negative charge. This buildup of charge

Concentration Gradients & Resting Potential

- K⁺ diffuse inside → outside cell, down concentration gradient, creating diffusion current.
- 2) Thus, outside accumulates a slight excess of + charge (K⁺) and inside accumulates a slight excess of charge (lack of K⁺).
- 3) Excess charges attract, forming sheet charges along membrane.
- 4) Sheet charges create electric (E) field, pointing from outside \rightarrow in (+ \rightarrow -).
- 5) E-field applies force (drift) on K⁺ ions in direction of E-field (outside → in). This creates drift current.
- 6) At equilibrium (no net current flow), a specific E-field exists such that drift current is equal and opposite diffusion current.

Concentration Gradients & Resting Potential

- The potential difference across the membrane associated with this specific E-field is termed the equilibrium potential (E_K) .
- As per previous table, $E_{\rm K}$ = -75 mV. Note: don't be confused, here E is a voltage not an electric field.
- Equilibrium potential for arbitrary ion X given by Nernst equation:

$$E_x = \frac{RT}{zF} ln \frac{[X]_o}{[X]_i}$$

with R (gas constant), T (temperature in Kelvin), z (valence of the ion), F (Faraday constant) and $[X]_o$ and $[X]_i$ are chemical concentrations outside and inside of cell.

Calculating Resting Potential

• Since RT/F = 25 mV at room temperature (25° C), we can write:

$$E_x = \frac{25mV}{z} \ln \frac{[X]_o}{[X]_i}$$

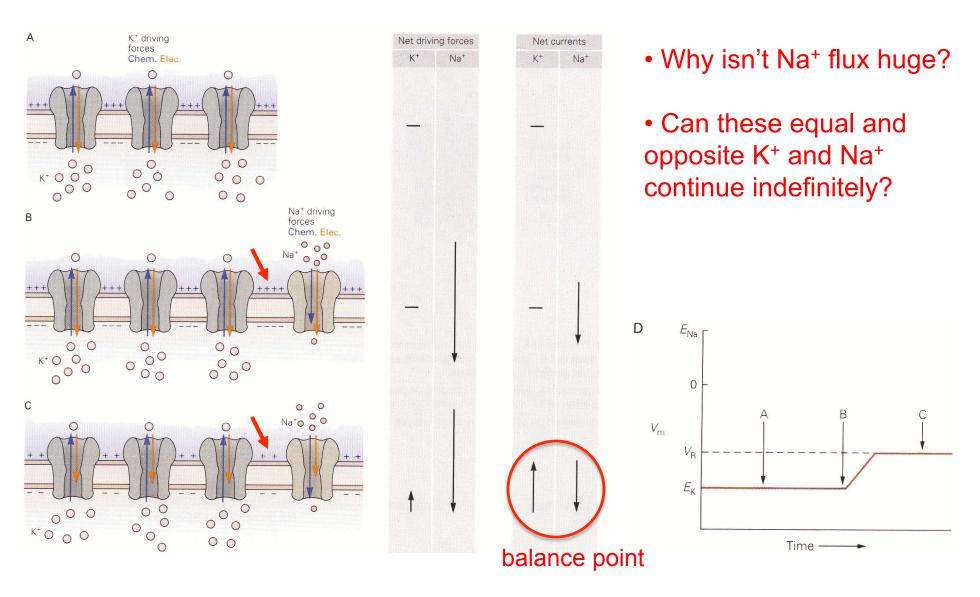
• Or, including a factor of 2.3 to convert In → log:

$$E_x = \frac{58mV}{z} \log \frac{[X]_o}{[X]_i}$$

• And, with z = 1 for K^+ :

$$E_x = 58mV \log \frac{[20]}{[400]} = -75mV$$

Calculating Resting Potential


- Nernst Equation can be used to find the equilibrium (resting) potential of any ion that is present on both sides of a membrane permeable to that ion.
- See previous table (repeated here for convenience) for equilibrium potentials associated with each ion present in the giant squid axon:

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K^{+}	400	20	-75
Na ⁺	50	440	+55
Cl ⁻	52	560	-60
A (organic anions)	385	_	\ _ /

Concentration Gradients & Resting Potential

- Having considered simple glia, we now turn to neurons.
- Neurons at rest are permeable to Na⁺ and Cl⁻ ions, in addition to K⁺ ions.
- A⁻ ions unable to permeate; thus set aside.
- When multiple ion species can permeate membrane, a new resting potential is established such that net current flow is zero (steady state).

Understanding Resting Potential w/ 2 Species

Why isn't Na⁺ influx huge?

• Ion flux is the product of electrochemical driving force and membrane conductance to that ion:

ion flux = (electrical driving force + chemical driving force) x membrane conductance

• There are relatively few <u>resting</u> Na⁺ channels (compared w/ resting K⁺ channels) so the conductance to Na⁺ is quite low.

Na⁺ - K⁺ Pump

- Now assume that the resting potential has been achieved.
- Passive movement of K⁺ out of cell = passive movement of Na⁺ into cell.
- But these concentrations gradients will eventually run down, thereby reducing the resting membrane potential!
- Need Na⁺ K⁺ pump.
- Moves Na⁺ and K⁺ against their net electrochemical gradients.
 Moves Na⁺ out of cell; moves K⁺ into cell.
- Pump requires energy (ATP hydrolysis).
- Continuous passive influx of Na⁺ and efflux of K⁺ through resting channels is counterbalanced by Na⁺ K⁺ pump.
- Pump: membrane-spanning protein; 3 Na⁺ ions out for every 2 K⁺ ions in.

Another Quick Peek at Action Potentials

- Though we will study action potentials in depth soon enough, a quick peek is warranted now.
- If the membrane is depolarized past the "threshold voltage", then voltage-gated Na⁺ channels open rapidly.
- Thus Na⁺ influx exceeds K⁺ efflux → further depolarization → even more voltage-gated Na⁺ channels open → ... (positive feedback system)
- Takes V_R very close to E_{Na} = + 55 mV because permeability to Na^+ is predominant.
- Why does membrane ever repolarize, to end action potential?
 - Voltage-gated Na⁺ channels gradually inactivate.
 - Voltage-gated K+ channels are slow, but eventually open.

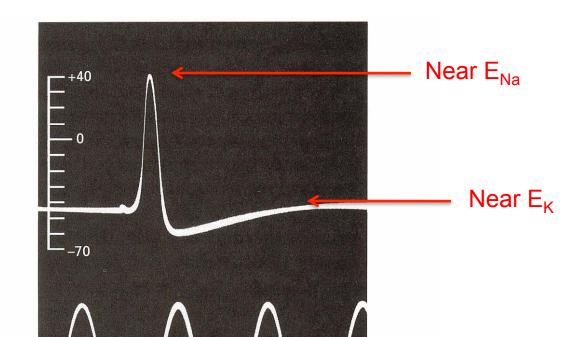
Goldman Equation: V_R w/ Multiple Species

- Membrane conductance (1/resistance) is a convenient measure of how readily an ion crosses the membrane.
- Permeability (P, units of cm/s) is another convenient measure; similar to a diffusion constant.
- Membrane potential is easy to calculate w/ Goldman Equation:

$$V_m = \frac{RT}{F} ln \frac{P_K[K^+]_o + P_{Na}[Na^+]_o + P_{Cl}[Cl^-]_i}{P_K[K^+]_i + P_{Na}[Na^+]_i + P_{Cl}[Cl^-]_o}$$

 Species with highest concentration and permeability dominates – consider limit cases:

At rest, permeability of K⁺ dominates.


At peak of action potential, permeability of Na⁺ dominates.

Dynamic range of action potential waveform

Table 7-1 Distribution of the Major lons Across a Neuronal Membrane at Rest: the Giant Axon of the Squid

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K ⁺	400	20	-75
Na ⁺	50	440	+55
Cl ⁻	52	560	-60
A (organic anions)	385		

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

Rest of Chapter 7

- We've covered topics in Chapter 7 up to, but not including, the section titled, "The Functional Properties of the Neuron Can Be Represented in an Electrical Equivalent Circuit".
- If you've had a circuits course, it turns out that a neuron can be thought of as an electrical circuit, where:
 - Resistors represent the ion channels.
 - Voltage sources represent concentration gradients of relevant ions.
 - Capacitors capacity of membrane to store charge.
 - Current sources Na⁺-K⁺ pump.
- Feel free to read if you are interested in learning more.