
Nature Computational Science | Volume 4 | September 2024 | 690–705 690

nature computational science

Article https://doi.org/10.1038/s43588-024-00688-3

Automated customization of large-scale
spiking network models to neuronal
population activity

Shenghao Wu   1,2,3, Chengcheng Huang   3,4,5, Adam C. Snyder   6,
Matthew A. Smith   1,3,7,11, Brent Doiron8,9,11 & Byron M. Yu   1,3,7,10,11

Understanding brain function is facilitated by constructing computational
models that accurately reproduce aspects of brain activity. Networks of
spiking neurons capture the underlying biophysics of neuronal circuits, yet
their activity’s dependence on model parameters is notoriously complex.
As a result, heuristic methods have been used to configure spiking network
models, which can lead to an inability to discover activity regimes complex
enough to match large-scale neuronal recordings. Here we propose an
automatic procedure, Spiking Network Optimization using Population
Statistics (SNOPS), to customize spiking network models that reproduce
the population-wide covariability of large-scale neuronal recordings. We
first confirmed that SNOPS accurately recovers simulated neural activity
statistics. Then, we applied SNOPS to recordings in macaque visual and
prefrontal cortices and discovered previously unknown limitations of
spiking network models. Taken together, SNOPS can guide the development
of network models, thereby enabling deeper insight into how networks of
neurons give rise to brain function.

Computational models help us understand brain function by repro-
ducing specific aspects of brain activity. Single-neuron models have
provided a mechanistic foundation for the generation of action poten-
tials1. Small neural circuit models, such as the stomatogastric ganglion
(STG) model of crustaceans2, have been used to understand the gen-
eration of rhythmic motor patterns. At the systems level, large-scale
network models, including rate-based recurrent neural networks3–5
and convolutional neural networks6, have informed how neural circuits
perform complex brain computations. Although neurons communi-
cate through temporally complex spike trains, these network models
focus on replicating neuronal firing rates without spikes. To better

link computational models and biological spiking neurons, large-scale
spiking neural networks (SNNs) have been proposed. These SNNs aim
to produce population spike trains whose time course and/or variability
mimic that of neuronal recordings7–12. SNNs are increasingly important
large-scale models in computational neuroscience: studying mecha-
nisms of the biologically realistic circuit of a SNN is a critical step in
understanding complex processing in cortical circuits.

A key goal in constructing network models is to customize their
parameters to recapitulate some aspect of the recorded neuronal
activity. In single-neuron models and small neural circuit models, each
model parameter corresponds to a specific biological component

Received: 22 September 2023

Accepted: 8 August 2024

Published online: 16 September 2024

 Check for updates

1Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. 2Machine Learning Department, Carnegie Mellon University, Pittsburgh,
PA, USA. 3Neural Basis of Cognition, Pittsburgh, PA, USA. 4Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA. 5Department of
Mathematics, University of Pittsburgh, Pittsburgh, PA, USA. 6Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.
7Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. 8Department of Statistics, University of Chicago, Chicago,
IL, USA. 9Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA. 10Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. 11These authors contributed equally: Matthew A. Smith, Brent Doiron,
Byron M. Yu.  e-mail: byronyu@cmu.edu

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00688-3
http://orcid.org/0009-0003-8624-8057
http://orcid.org/0000-0002-5299-9640
http://orcid.org/0000-0003-1794-035X
http://orcid.org/0000-0003-1192-9942
http://orcid.org/0000-0003-2252-6938
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00688-3&domain=pdf
mailto:byronyu@cmu.edu

Nature Computational Science | Volume 4 | September 2024 | 690–705 691

Article https://doi.org/10.1038/s43588-024-00688-3

a cost function, defined below). The cost function is based on a set of
activity statistics, which are computed for both the generated and
recorded spike trains.

In the following sections, we first introduce the activity statistics
used in this work and the SNOPS optimization framework. We next
validate SNOPS using simulated activity. We then apply SNOPS to
customize the CBN and its extension, the spatial balanced network
(SBN)11,26, to macaque visual area V4 and prefrontal cortex (PFC) record-
ings. We reveal that SBNs are better suited to reproduce key aspects of
neuronal recordings than CBNs, and identify the specific combinations
of activity statistics that the CBN cannot capture well.

Activity statistics for comparing models with neuronal
activity
We first introduce the activity statistics used to compare the spike
trains produced by the network model and the recorded spike trains.
For all activity statistics, we begin by counting spikes within predefined
time bins (Fig. 2a, left). This activity from individual neurons recorded
simultaneously can be represented in a population activity space, where
each axis represents the activity level of one neuron (Fig. 2a, center). We
then compute activity statistics based on individual neurons, pairs of
neurons and populations of neurons (Fig. 2a, right), as described below.

We considered two single-neuron statistics: the mean firing rate
(fr) and ff (Fig. 2b). The mean fr is defined as the average level of activ-
ity across all neurons in the population and across all time bins. The ff

and can often be measured experimentally1,2. Larger-scale models,
including rate networks and SNNs, are more difficult to customize
because of the larger parameter space that comes with a larger number
of neurons13,14. Furthermore, the lack of a one-to-one correspondence
between each neuron in the model network and each recorded neu-
ron challenges the comparison between model activity and neuronal
recordings15. In particular, the number of neurons within the model
network is often far smaller than the biological network that the model
is intended to describe.

Different approaches have been used to circumvent the need for
a one-to-one correspondence between model neurons and recorded
neurons. One approach is to construct network models whose output,
such as limb movement9,16 or decisions17, reproduces subject behavior
given a network input. Such models are customized by optimizing
a cost function representing the difference between model output
and behavior. These network models have shown impressively simi-
lar activity features to activity recorded in the brain, albeit without
explicit matching of neuronal activity in the cost function. The cost
function can be optimized using methods such as first-order reduced
and controlled error (FORCE)13 or backpropagation18 because it has a
closed-form expression with respect to model parameters.

Another approach is to reproduce statistical measures of neuronal
activity. SNNs are often designed to reproduce variability in individual
neuron activity (for example, Fano factor (ff) of spike counts19–22) and
pairwise spike count correlation14,23–25. SNNs have also been designed
to reproduce population-wide covariability in neuronal recordings26.
The cost function, representing differences in spiking activity statistics
between the model and recordings, has no closed-form expression with
the model parameters because it depends on computationally demand-
ing numerical simulations and cannot be directly evaluated. So far, the
parameters of these SNNs have been hand tuned26, customized using
exhaustive search14,27 or customized using Bayesian deep-learning
approaches when the network simulation time is small28. This has
limited the exploration and understanding of the full range of activity
regimes that large-scale SNNs are capable of exhibiting.

For example, different activity regimes have been identified for
the classical balanced network (CBN)7,29,30, the most widely studied
SNN (Fig. 1a). Searching the high-dimensional parameter space to find
a set of parameters that produces spike trains with specified prop-
erties is difficult. Simulating networks using all possible combina-
tions of parameters can be computationally intractable due to the
exponential growth in combinations of parameters. Furthermore, it is
unknown a priori whether there even exists a combination of param-
eters (referred to as a parameter set) that produces spiking activity with
the specified properties. Hence there is a clear need for an automated
framework to search the parameter space.

We propose an automatic framework, Spiking Network Opti-
mization using Population Statistics (SNOPS), for customizing the
parameters of a large-scale SNN to reproduce observed spiking activ-
ity statistics. SNOPS uses Bayesian optimization (BO) to determine
model parameters, a technique widely applied in machine learning
for optimizing cost functions without a closed-form expression. We
include population-wide activity statistics based on dimensionality
reduction to obtain a closer match of the network model to neuronal
recordings than using statistics defined only on individual neurons and
pairs of neurons31,32. SNOPS provides a guided search of the parameter
space and can help accelerate the development of SNNs, especially in
settings where the network simulation time is large.

Results
Model overview
SNOPS is designed to automatically customize a SNN to neuronal
recordings (Fig. 1b). It is based on iteratively updating the model
parameters to improve the correspondence between the spike trains
generated by the network model and the recorded spike trains (using

Re
co

rd
ed

ne
ur

on
s

M
od

el
ne

ur
on

s

200 ms

Update model parameters to reduce cost

Cost
function

b

Activity
statistics

Activity
statistics

Synchronous regular Asynchronous regular

M
od

el
 n

eu
ro

ns

200 ms

Parameter 1
Parameter 3

......

Parameter d

Pa
ra

m
et

er
2

Model parameters

Network model

a
Synchronous irregularAsynchronous irregular

200 ms

Fig. 1 | Framework for automated customization of a spiking network model
to neuronal recordings. a, A SNN has a complicated dependency between
its parameters and spiking output. For example, different parameter sets
correspond to each of four previously identified activity regimes of a CBN:
asynchronous irregular, synchronous regular, synchronous irregular and
asynchronous regular. In this work, the SNN has eight parameters, including
those that govern the connection strength between neurons as well as the
timescale of synaptic decay (Supplementary Table 1). b, Our customization
framework matches activity statistics of spike trains produced by the network
model to those of neuronal recordings. It uses a guided searching algorithm to
iteratively update the model parameters. The activity statistics are defined by the
user and can include single-neuron, pairwise and population activity statistics.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 692

Article https://doi.org/10.1038/s43588-024-00688-3

captures the activity variability of individual neurons across time33.
For the pairwise statistic, we computed the spike count correlation
between pairs of neurons (rsc, Fig. 2b), which is widely used to measure
the correlated variability among neurons34. Both single-neuron and
pairwise statistics have been widely used to customize network models
to neuronal recordings9,13,17,20,26,35.

There can also be structure in the population-wide variability that
is not apparent when considering only single-neuron and pairwise sta-
tistics32. Previous studies have used population-wide activity statistics
to compare network models with recorded activity26,31,36,37. Thus we
also considered population activity statistics based on dimensionality
reduction38. Specifically, we used factor analysis (FA), which is the most
basic dimensionality reduction method that separates the variance that
is shared among neurons from the variance that is independent to each
neuron. We computed the following three population activity statistics
based on FA (Fig. 2b, Methods and Supplementary Fig. 1): (1) the percent
shared variance (%sh) is the fraction of a neuron’s activity variance that
is shared with one or more of the other neurons in the recorded popu-
lation. This value is first computed per neuron, then averaged across
neurons. A high %sh indicates that the population of neurons strongly
covary, whereas zero %sh indicates that neurons are independent of
each other. While %sh is related to rsc, it is not identical and captures a
different aspect of population activity32. For example, a zero rsc might
correspond to a case where some pairs of neurons have positive correla-
tions and some have negative correlations. In this case, the %sh will be
nonzero, reflecting the presence of shared activity among neurons. (2)
We measured the dimensionality as the number of dimensions needed

to explain the shared variance among neurons (dsh). If the neurons
all simply increase and decrease their activity together, dsh will equal
one. If the neurons covary in more complex ways, dsh will be greater
than one. (3) The eigenspectrum (es) of the shared covariance matrix
measures the relative dominance of the dimensions identified above.
It may be that the first dimension explains far more shared variance
than the other dimensions (in which case the eigenspectrum would
have a sharp dropoff) or that all dimensions explain a similar amount
of shared variance (in which case the eigenspectrum would be flat).

Manual customization of SNNs to neuronal activity
It is challenging to manually customize a SNN to neuronal recordings
because it can be difficult to intuit the activity of the network result-
ing from changes to its parameters. To get around this difficulty, one
might ask whether any of the four CBN activity regimes shown in Fig. 1a
capture the key aspects of neuronal recordings (Fig. 2a, left). We thus
computed the single-neuron, pairwise and population activity statistics
of the spike trains shown in Fig. 1a for each of the four activity regimes
(Fig. 2b, colored shapes). We compared them with the activity statistics
computed from neuronal recordings in macaque visual area V4 dur-
ing a spatial attention task (Fig. 2b, dashed lines). Recordings were
performed using a 100 electrode Utah array in a 10 × 10 configuration.
We analyzed activity from 19 experimental sessions. We took spike
counts within a 200 ms window preceding the onset of each stimulus
presentation. To compare the activity statistics from network models
and neuronal recordings on equal footing, we subsampled the record-
ings from each session down to 50 neurons and 700 spike count bins.

0

10

20

0

1

2

0

0.05

0.10

0

25

50

0

6

12

0

15

30

1.0050 90 100

a

b

Single-neuron statistics

Pairwise statistics

Population statistics

N
eu

ro
n

2

Neuron 1

Neuron 1

N
o.

 tr
ia

ls
N

eu
ro

n
3

Neuron 1

Neuron 2

Spike count

N
eu

ro
ns

N
eu

ro
n

2

Neu
ro

n 1 ...

Neuron 3

Neuron N

Synchronous
irregular

Asynchronous
irregular

fr ff rsc %sh dsh es

Asynchronous
regular

Synchronous
regular

200 ms

V4 recordings

Fig. 2 | Activity statistics for comparing the activity of a spiking network
model to neuronal recordings. a, The three types of activity statistics based
on single neurons (for example, fr and ff), pairs of neurons (for example, spike
count correlation) and a population of neurons (for example, percent shared
variance, number of dimensions and eigenspectrum of shared variance). The
units of fr are spikes per second, those of ff are spike count and those of the
eigenspectrum of shared variance are (spike count)2. All other activity statistics
are unitless. These activity statistics are all based on spike counts within a 200 ms
spike count bin (left), which can be represented in a population activity space
(center). Each dot represents the activity across the neuronal population within
a given time window. b, The activity statistics based on population recordings

in macaque visual area V4 (dashed lines) were challenging to reproduce by the
four parameter regimes of a CBN (colored symbols, cf. Fig. 1a, mean across five
network instantiations of network connectivity graphs and initial membrane
potentials corresponding to the same network parameter set). None of the
four activity regimes accurately reproduced the activity statistics of the V4
population recordings (dashed lines). The V4 activity statistics are shown as
the mean ± 1 s.d. across 19 recording sessions (Methods). The spike counts
for V4 were computed using a fixed 200 ms time window preceding the onset
of each stimulus presentation. All activity statistics were based on randomly
subsampling 50 neurons from each CBN or V4 dataset.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 693

Article https://doi.org/10.1038/s43588-024-00688-3

We found that none of the four previously identified CBN activity
regimes recapitulated all of the activity statistics of the V4 neurons.
Thus, we needed an automatic method to search the parameter space
to determine whether there existed a parameter set whose activity
better resembled neuronal recordings.

Customizing SNNs using BO
The central contribution of this work is an automatic framework, SNOPS
(Fig. 3), to address this need. SNOPS iteratively updates the parameters
of the SNN so that the activity statistics of the model-generated activity
(Fig. 3a) better match those of the recorded neuronal activity (Fig. 3b).
To quantify how well matched are the two sets of activity statistics, we
define a cost function (Fig. 3c) as a linear combination of the squared
difference between the two sets of activity statistics (Methods).

Assessing how adjusting any model parameter influences the
cost requires generating spiking activity from the network model.
Therefore, the cost function cannot be expressed in a closed form
with respect to the model parameters and cannot be optimized using
gradient methods. Meanwhile, exhaustive search methods, such as
random search, may yield excessive running time because they are
computationally demanding for the network model to generate spikes.
Instead, we need a guided way of searching the parameter space. BO is
a natural choice to optimize a cost function whose evaluation depends
on a time-consuming simulation39. It automatically proposes the next
model parameter set to evaluate based on the cost of the previously
evaluated parameter sets. The key idea is that more similar model
parameter sets should correspond to more similar costs. In our method,
this relationship is described by a Gaussian process (GP), a common
choice for BO due to its closed-form expressions. The algorithm uses
the GP to propose model parameters whose predicted cost is low (that
is, parameter sets that may be better than those already considered)
and whose uncertainty about the predicted cost is high (to sample
from unvisited areas of the parameter space). This defines an exploita-
tion–exploration tradeoff.

The GP (Fig. 3d, solid line) approximates the cost function c(θ)
(Fig. 3d, dashed red line), which is a priori unknown, using all evalu-
ations of the cost function from previous iterations and the current
iteration (Fig. 3d, dots). BO will then construct an acquisition func-
tion (Fig. 3e) based on the GP-predicted cost and its uncertainty at
each setting of the model parameters θ (Methods). The parameters
θ⋆ that maximize the acquisition function are selected for the next
iteration, and the entire process restarts (that is, the new parameter
set θ⋆ is used to simulate spike trains from the SNN, whose activity
statistics are then computed and so on). With more iterations, BO
will probably sample parameter sets with lower cost until a stopping
criterion has been reached (see example in Supplementary Fig. 2). To
further accelerate the customization procedure, we introduced two
computational innovations in SNOPS: (1) running a short simulation
to assess whether a parameter set is likely to yield valid spike trains
(feasibility constraint; Methods) and (2) dynamically increasing the
number of simulations to reduce the variance of the estimated cost
(intensification; Methods).

Recovering activity statistics in simulation using SNOPS
To validate SNOPS, we first generated activity from a CBN and com-
puted its activity statistics (Fig. 4a). These served as the target activity
statistics in the customization procedure, in place of activity statistics
computed from neuronal recordings. We then used SNOPS to customize
a separate CBN to these activity statistics. In this case, there is no model
mismatch. Thus, there exists a CBN parameter set that reproduces the
target activity statistics exactly.

For comparison, we repeated the customization task with two
other optimization algorithms applicable to large-scale SNNs that do
not have a closed-form cost function: random search and its acceler-
ated variant. Random search proceeds by sampling parameter sets

from the search region uniformly at random. This method is similar to
the exhaustive search approach in previous literature14 and provides
a benchmark for performance comparisons. The accelerated random
search incorporates two computational innovations that we intro-
duced in SNOPS (feasibility constraint and intensification; Methods).
Therefore, when going from random search to its accelerated variant,
the only difference is incorporating the two innovations in SNOPS.
Going from accelerated random search to SNOPS, the only difference
is replacing random search with BO. This arrangement enables us to
systematically qualify the benefits of the two key features of SNOPS:
BO and the two innovations.

SNOPS (Fig. 4b and Supplementary Fig. 3, blue) outperformed
accelerated random search (Fig. 4b and Supplementary Fig. 3, red),
indicating that BO achieves a lower cost than random search after
the same amount of computer running time. Accelerated random
search outperformed random search (Fig. 4b and Supplementary Fig. 3,
green), indicating that the two innovations of SNOPS are beneficial.
Furthermore, all three methods yielded a CBN whose activity statistics

C
os

t
Ac

qu
is

iti
on

θk+1

θk
θ

θ

θ

θ

a

c

d

e

b

Next iteration

GP
Compute activity
statistics, strue

strue

Compute activity
statistics, s(θk)

ĉ(θk) =

ĉ(θk)

c(θ)

s(θk)

Re
co

rd
ed

ne
ur

on
s

M
od

el
ne

ur
on

s

Fig. 3 | Customizing a spiking network model using BO with GPs. The BO
algorithm attempts to find a parameter set θ for a spiking network model such
that its activity statistics match those of neuronal recordings. a, Spike trains are
recorded from the brain and their activity statistics, strue, are computed. This step
is performed only once, since the same recorded activity is used for comparison
on all iterations. b, On the k-th iteration, spike trains are generated from the
network model using parameter set θk, proposed by the previous iteration. c, The
activity statistics of the spike trains generated from the network model, s(θk), are
computed. The cost for θk depends on how far each of those activity statistics is
from the corresponding activity statistics of the neuronal recordings, strue. The
intensification procedure occurs between b and c. The feasibility of θk is
determined here using a short simulation. d, A GP (solid line) is used to
approximate the true, unknown cost function, c(θk) (dashed red line). We seek to
find the minimum of this true, unknown cost function (denoted by θ⋆). Each
iteration of the BO provides one evaluation of the cost at a particular setting of
the model parameters (black dots). The cost at the current iteration is labeled
̂

c(θ

k

) and the other black dots represent the costs evaluated during previous
iterations. The GP provides an uncertainty of our estimate of the cost function
(gray shading). For illustrative purposes, we show here a single model parameter
being optimized, whereas our algorithm typically optimizes multiple model
parameters simultaneously. A separate GP is used to approximate the feasibility
of θk (not shown). e, An acquisition function is defined based on the two GPs in d
to determine the next parameter set, θk+1, to evaluate. The acquisition function
implements an exploration–exploitation tradeoff, where areas of low predicted
cost and high uncertainty are desirable.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 694

Article https://doi.org/10.1038/s43588-024-00688-3

better match the target activity statistics with increasing running
time, as expected (Fig. 4b and Supplementary Fig. 3). Another related
method, Sequential Neural Posterior Estimator (SNPE)28, returns a
distribution of parameter sets and requires generating a large number
of SNN simulations upfront. We compare SNOPS with SNPE (Supple-
mentary Figs. 4 and 12 and Discussion) and a genetic algorithm (Sup-
plementary Fig. 3). SNOPS outperforms both methods in customizing
network models to a variety of datasets.

The cost (Fig. 4b, vertical axis) is a summary of how accurately
the activity statistics of the customized CBN match the target activ-
ity statistics. To further understand the difference in performance
between these methods, we then compared the individual activity
statistics returned by each method with their target values. Consist-
ent with Fig. 4b, SNOPS was better able to match the target activity
statistics than the other methods (Fig. 4c). Across all 40 customization
runs, SNOPS successfully identified CBNs whose activity statistics
closely matched the target activity statistics (Fig. 4d, all the dots are
located near the diagonal). In sum, SNOPS customizes a spiking net-
work model to neuronal activity more quickly and accurately than the
other methods.

Customizing SNNs to V4 and PFC population recordings
We next present a case study of using SNOPS to customize SNNs to
neuronal population recordings in macaque monkeys (from Utah arrays
implanted in visual cortical area V4 and in PFC).

In Fig. 2b, we demonstrated that none of the four CBN activ-
ity regimes from Fig. 1a recapitulated the V4 dataset (mean cost
± s.d., asynchronous irregular: 13.56 ± 0.12; synchronous regular:
1,823.67 ± 190.06; synchronous irregular: 1,489.71 ± 124.25; asynchro-
nous regular: 361.44 ± 9.30). Here, we used SNOPS to automatically
customize a CBN to the same V4 datasets and obtained a substan-
tially lower cost (2.71 ± 24, P < 1 × 10−5 for each of the four comparisons,
one-sided t-test). In other words, SNOPS reproduced the activity statis-
tics more accurately than any of the four previously identified activity
regimes (Fig. 5a, compare with Fig. 2b).

Despite this improvement, there were activity statistics that were
not accurately reproduced. Specifically, the rsc for the customized CBN
was substantially smaller than that of the V4 datasets (mean ± s.d.,
0.00085 ± 0.0011 versus 0.054 ± 0.015, P < 1 × 10−4, one-sided t-test)
(Fig. 5a). To verify the reliability of this disagreement, we reran SNOPS
with different initializations and obtained the same disagreement in
rsc (Supplementary Fig. 5). This indicates that the disagreement in rsc
was probably not due to a limitation of SNOPS.

We did not observe such a disagreement in rsc when we customized
the CBN to the simulated activity generated by CBNs across a wide range
of model parameters (Fig. 4d, third graph). This led us to hypothesize
that the CBN model framework is not flexible enough to capture the full
complexity of the V4 datasets, as measured by the six activity statistics.
We thus explored a more powerful SNN model with the goal of more
accurately capturing the properties of spiking activity in the V4 datasets.

0 5

Running time (×105 s)

0

2.5

5.0

7.5

lo
g(

co
st

)

Ground truth

SNOPS

Accelerated
random search

Random search

SNOPS fit

Optimization algorithm b

Ground truth

C
us

to
m

iz
ed

2 4

2

4

0 2.5

0

2.5

0 0.5

0

0.5

0 0.5

0

0.5

0 10

0

10

–0.1 2.5

–0.1

2.5

Be
tte

r

SNOPS

Accelerated
random search

Random search

a

c

d

3

6

9

1.0

1.5

2.0

–0.01

0

0.01

5

10

15

2.5

5.0

7.5

0

3

6

9

fr ff rsc %sh dsh

ff rsc %sh log(es)log(fr) dsh

es

θk

θtrue

strue

ĉ(θk)

s(θk)

Fig. 4 | Accurate customization of a CBN model to simulated spike trains
using SNOPS. a, A CBN was used to generate spike trains with randomly chosen
parameter sets θtrue (Methods). SNOPS (or other optimization algorithms) was
then used to customize the parameters, θk, of a separate CBN to match the
‘ground truth’ activity statistics, strue, of the generated spike trains. b, For a given
amount of computer running time (Methods), SNOPS (blue) finds parameters
with lower cost than accelerated random search (red) and random search (green).
The vertical axis represents the lowest log (cost) up to the given running time and
hence decreases monotonically. The solid lines and shading represent the
mean ± 1 s.d. across 40 customization runs. Note that 105 s equals 1.2 days or
27.8 hours. c, For a representative customization run, SNOPS (blue) identified

model parameters whose activity statistics were closer to the ground truth
(dashed lines) than accelerated random search (red) and random search (green).
The error bars on the ground truth represent one s.d. across five network
instantiations corresponding to the same ground truth parameter set. The circles
represent the mean across five network instantiations corresponding to the
network parameter set identified by each optimization algorithm. d, Across all 40
customization runs, SNOPS accurately reproduced the ground truth activity
statistics (all points lie near the diagonal). Each dot represents the results from
one SNOPS customization run to a randomly generated ground truth dataset. For
visual clarity, only the first (that is, most dominant) mode of es is plotted in the
rightmost image.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 695

Article https://doi.org/10.1038/s43588-024-00688-3

The SBN, an extension of the CBN, has been recently proposed as
a SNN framework capable of producing a wider range of population
statistics11,26. Neurons in a SBN are organized over a two-dimensional
spatial lattice and have connection probabilities that depend on the dis-
tance between neuron pairs. The SBN captures well-known spatial effects
of activity statistics, such as the dependence of rsc on distance26,40. This
introduces three additional model parameters, for a total of 11 param-
eters (Methods). This is in contrast to a CBN model, which lacks spatial
connectivity and has connection probabilities that are the same for all
neuron pairs. SBNs have been heuristically shown to produce activity that
resembles the V4 population activity26. However, this claim has not been
quantitatively verified. We next used SNOPS to systematically explore
the capacity for SBNs to capture a wider range of population activity.

We first verified that SNOPS can accurately customize a SBN to
simulated activity (Supplementary Figs. 5b and 6), mirroring our results
with the CBN (Fig. 4d and Supplementary Fig. 5a). We then customized a
SBN to V4 population activity and found that a SBN is able to more accu-
rately reproduce the activity statistics of the V4 population recordings
than a CBN (mean cost ± s.d., 0.26 ± 0.10 versus 2.71 ± 0.24, P < 1 × 10−5,
one-sided t-test; Fig. 5b). To test whether the benefit of the SBN over CBN
is data specific, we customized both models to each of the 16 ‘datasets’,
comprising four task conditions with recordings in two brain areas
(V4 and PFC) from two monkeys (Methods). Across these datasets, the
SBN consistently outperformed the CBN in reproducing the activity
statistics of the neuronal recordings (Fig. 5c and Supplementary Fig. 7).
We can also customize a SBN with task-dependent parameters to neu-
ronal recordings from multiple task conditions (Supplementary Fig. 8).

Revealing limits of network model flexibility using tradeoffs in
activity statistics
To understand why the SBN outperforms the CBN, we customized
each SNN to each activity statistic individually rather than all six activ-
ity statistics together. We found that the CBN was able to accurately
reproduce each activity statistic individually, including rsc (Fig. 6a).
This suggests that the reason why the CBN is unable to reproduce all
six activity statistics simultaneously is due to tradeoffs between dif-
ferent statistics: adjusting the model parameters to better reproduce
one statistic can affect how accurately another statistic is reproduced.

We thus defined a tradeoff cost, which measures whether more
accurately reproducing one activity statistic leads to less accurately
reproducing another activity statistic. For example, a model might
be able to accurately reproduce the %sh, but at the expense of making
rsc too low. In this case, there is a nonzero tradeoff cost, indicated by
a combined cost of customizing the two statistics simultaneously

that is greater than customizing them individually (Fig. 6b). Note that
the tradeoff cost is distinct from the overall cost, in that an accurate
model with a low overall cost might still have a nonzero tradeoff cost
for particular pairs of statistics.

We used the tradeoff cost to understand why the SBN can more
accurately reproduce activity statistics of neuronal recordings than
the CBN (cf. Fig. 5). We found that the CBN suffers from a tradeoff cost
between rsc and ff, as well as between rsc and the population statistics
(Fig. 6c, top). By contrast, the SBN has a small tradeoff cost for all pairs
of statistics (Fig. 6c, bottom). This is due to the flexibility afforded
to the SBN by the extra parameters that control the spatial scales of
connection probabilities that the CBN lacks (Methods). Note that the
average number of incoming connections is the same for the CBN and
SBN. The primary distinction between the two models is that the SBN
tends to have more connections between nearby neurons (controlled
by the connection widths), whereas in the CBN connection probability
does not depend on distance. A consequence of this flexibility is that the
SBN needs to be appropriately constrained during the customization
process. For example, if we customize a SBN using only single-neuron
and pairwise statistics, the population statistics of the SBN are not
accurately reproduced (Supplementary Fig. 10). This demonstrates the
value of including population statistics in the customization process,
especially for more flexible models such as the SBN.

Tradeoffs can also occur among more than two statistics.
To investigate this, we systematically increased the number of statistics
included in the cost function. The average cost of the customized sta-
tistics increases as more statistics are included (Fig. 6d). This illustrates
how customizing a model to simultaneously reproduce more statistics
imposes more constraints on the model customization process. For the
CBN, there is already a marked increase in cost when going from one
statistic to two statistics included in the cost function (Fig. 6d, top). In
particular, there is a high cost of customizing rsc and ff simultaneously
(highlighted dot), consistent with Fig. 6c (top). By contrast, the average
cost for the SBN remains low for even up to all six simultaneously cus-
tomized statistics (Fig. 6d, bottom). Hence the pairwise tradeoff cost
we show in Fig. 6c is sufficient for the comparison of model flexibility.
In the multidimensional space of activity statistics, these tradeoffs
form a boundary of combinations of statistics that each model is able
to reproduce (Supplementary Fig. 11): the tighter boundary of the CBN
than the SBN confirms its higher tradeoffs, as shown in Fig. 6c.

Discussion
A major application of SNOPS is to facilitate the development of more
flexible models and thereby further our scientific understanding of

SBN V4 recordingsCBN

0

10

20

0

1

2

0

0.05

0.10

0

25

50

0

6

12

0

0
0

1

1

2

2

3

3
15

30

0

10

20

0

1

2

0

0.05

0.10

0

25

50

0

6

12

0

15

30
CBN

SBN
b

PFC monkey P
V4 monkey P

PFC monkey W
V4 monkey W

SBN cost

C
BN

 c
os

t

Example
dataset

a cfr ff rsc %sh dsh es

Fig. 5 | Reproducing activity statistics of macaque V4 and PFC recordings
with the CBN and SBN. a, Left: stylized representation of the CBN. Right:
activity statistics of the CBN (circles, mean across five network instantiations
corresponding to the same identified parameter set) after being customized
using SNOPS to the same V4 dataset as in Fig. 2b. The dashed line and shading
represent the mean ± 1 s.d. across 19 sessions. b, Left: stylized representation of
the SBN. The SBN is different from the CBN in that the connection probability

depends on the distance between neurons. Right: activity statistics of the SBN
(triangles, mean across five network instantiations corresponding to the same
identified parameter set) after being customized using SNOPS to the same V4
datasets as in a. c, The SBN more accurately reproduced activity statistics than
the CBN across 16 datasets, comprising four task conditions with recordings in
two brain areas (V4 and PFC) in each of the two monkeys. The arrow indicates the
example V4 dataset shown in a and b.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 696

Article https://doi.org/10.1038/s43588-024-00688-3

brain function. This is achieved in the following two ways. First, if cer-
tain activity statistics are not accurately reproduced during manual
customization, it is unclear whether one needs to continue to manually
tune the model parameters in hopes of reproducing all activity statistics
or to consider a new class of models (for example, by introducing spatial
connectivity). SNOPS performs a guided search of the high-dimensional
parameter space, thereby providing greater confidence about when
a new class of models needs to be considered. Second, the automatic
optimization algorithm in SNOPS enables repeated customization
of a model with different subsets of activity statistics, facilitating a
more complete understanding of a model’s limitations. For example,
customization of a CBN to neuronal recordings might suggest that the
CBN is incapable of reproducing experimentally observed rsc values
(cf. Fig. 5a). In this case, one could be misled to invest time in modifying
the network model specifically so that it can reproduce the experi-
mentally observed rsc. Using SNOPS, we found that customizing rsc, in
itself was not problematic. Instead, it was the tradeoff between rsc and
other activity statistics that limited the CBN (cf. Fig. 6c). Such insights
will not only profoundly influence plans for making the model more
flexible, but also shed light on how different network architectures (for
example, CBN versus SBN) lead to different model flexibility.

We emphasize the benefit of incorporating population statis-
tics to compare the activity of network models and neuronal record-
ings. Indeed, population statistics have been widely used to study

decision-making17, working memory41, attention26,42, motor control43,
learning44 and more. Including population statistics yields a more
faithful reproduction of the neuronal activity compared with including
only single-neuron or pairwise statistics (cf. Supplementary Fig. 10).

There are several key considerations when selecting which method
to use for customizing a network model: properties of the cost func-
tion, the simulation time of the model, the number of customized
models desired for the scientific goal and the available computational
resources. The first consideration is whether the cost function has
a closed-form expression with respect to model parameters. If so,
evaluating the cost can be fast and one can utilize algorithms such as
FORCE13 to customize the network model. If the cost function is also
differentiable with respect to the model parameters, one can custom-
ize a network model using methods that utilize the gradient, such as
backpropagation18 and emergent property inference (EPI)45. These
approaches are computationally fast and scalable to a large number of
parameters. By contrast, the cost function of large-scale SNNs typically
has no closed-form expression with respect to the model parameters
and hence falls outside the scope of the aforementioned methods.
In such cases, three types of algorithms can be used: (1) evolutionary
algorithms, which are biologically inspired, have been applied to the
Hodgkin–Huxley model46–48; (2) SNPE28, a method based on deep neural
networks and Bayesian inference, has also been applied to customize
these models to find a distribution of the parameter sets whose activity

Number of activity statistics
included simultaneously

Av
er

ag
e

co
st

of
in

cl
ud

ed
ac

tiv
ity

st
at

is
tic

s

Tradeoff
cost

0

3

6

Av
er

ag
e

co
st

of
tw

o
st

at
is

tic
s

High
tradeoff
cost

Reproducing
each

statistic
separately

Reproducing
simultaneously

6

4

2

0

6

654321

654321

4

2

0

Low
tradeoff
cost

Reproducing one statistic at a time

0

10

20

0

1

2

0

0.05

0.10

0

25

50

0

6

12

0

15

30

b c d

a

SBN
V4 recordings

CBN

CBN CBN

rsc,ff

SBN
SBN

fr ff

ff

ff

fr

rsc

rsc

rsc

%sh

%sh

%sh

dsh

dsh

dsh

ff

fr

rsc

%sh

dsh

es

es

ff rsc %sh dsh es

Fig. 6 | Revealing the inflexibility of CBN relative to SBN with tradeoff cost.
a, Activity statistics of the CBN (circles, mean across five network instantiations
corresponding to the same identified parameter set) and SBN (triangles,
mean across five network instantiations corresponding to the same identified
parameter set) after being customized using SNOPS to one V4 activity statistic
(dashed line) at a time. The same V4 dataset as Fig. 2b was used. b, A high tradeoff
cost represents the case where customizing the network to reproduce two
activity statistics simultaneously yields a higher average cost of the two statistics
than customizing each statistic individually (top). By contrast, a low tradeoff
cost represents the case where the cost of customizing two activity statistics
simultaneously yields a similar cost to customizing each statistic individually

(bottom). c, Tradeoff costs between pairs of statistics for the CBN (top) and
SBN (bottom) on the same V4 dataset as Fig. 2b. We observed similar effects
when customizing these models to PFC recordings (Supplementary Fig. 9).
d, Customizing the CBN and SBN to different numbers of activity statistics
included in the cost function simultaneously, on the same V4 dataset as Fig. 2b.
Each dot represents one particular subset of activity statistics (for example,
highlighted dot indicates the average cost of rsc and ff when including only those
two activity statistics in the cost function). The cost of each dot was computed
over five network instantiations corresponding to the same identified parameter
set of that dot. Each bar indicates the average cost across all subsets of the
corresponding number of activity statistics.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 697

Article https://doi.org/10.1038/s43588-024-00688-3

statistics mimic those of the recordings; finally, (3) BO, as we propose
here in SNOPS, can be used to customize large-scale SNNs.

The second consideration is the simulation time of the network
model. SNPE requires generating a large number of simulations to
train the deep neural networks. This is feasible for models with short
simulation time, such as Hodgkin–Huxley and stomatogastric ganglion
models. Once trained, SNPE can be used to customize the network
model repeatedly to a large number of datasets without the need to
run additional simulations (Supplementary Fig. 12). Large-scale SNNs,
however, have a long simulation time due to the large number of neu-
rons in the network, which poses a challenge for simulation-intensive
methods such as SNPE. In such settings, optimization-based methods,
such as BO, are preferred as they minimize the cost function itera-
tively without needing to pregenerate a large number of simulations
(Supplementary Fig. 4).

The third consideration is the number of customized models
desired for the scientific goal. Most studies to date customize a single
model to the neuronal recordings (for example, refs. 6,7,9,11,14,26).
In this case, SNOPS is preferred because it finds a single customized
model more quickly and probably better reproduces the recorded
activity than SNPE (cf. Supplementary Fig. 4). SNPE can also be used
in this case by selecting the mode of the posterior distribution.
However, the running time would be substantially greater for SNPE
because it aims to capture the entire distribution of the parameters,
which requires substantially more network simulations. Interest-
ingly, there may exist different combinations of parameters that
lead to the same network activity49. One may seek to interrogate
how different parameters compensate each other to produce the
same activity28,45. Although SNOPS can be used in this scenario, it
requires repeated customization runs with different starting points
to obtain multiple solutions, which is computationally demanding. In
this case, deep neural networks, such as EPI and SNPE, are preferred
because they return a distribution of multiple parameter sets that
lead to the same activity properties. However, doing so requires
either differentiability (EPI) or the ability to generate a large number
of simulations quickly (SNPE).

The fourth consideration is the available computing resources.
The large number of simulations needed for training the deep neural
network in SNPE can be parallelized, thereby reducing the overall run-
ning time. By contrast, parallelizing SNOPS can be more challenging
due to its iterative nature. It is still possible to leverage multiple cores to
concurrently evaluate different parameter sets during BO (Methods),
thereby accelerating the SNOPS customization.

Our approach is modular and each component of SNOPS can be
tailored to the scientific goals of the user. First, we can task SNOPS with
replicating additional features of neuronal activity (for example, time-
scales of activity) by incorporating the appropriate activity statistics
(for example, autocorrelation50,51) in the cost function. Second, we
can consider replacing GPs with a more scalable model, such as neural
processes52, to accelerate the customization process. Third, we can
compare the distribution of the activity statistics, instead of their mean,
in the cost function using distributional metrics such as the Wasserstein
distance or Kullback–Leibler divergence. These and other extensions
of the SNOPS framework may be necessary when applying SNOPS to
other brain areas and/or when using other types of network models
(for example, refs. 53,54).

Advancements in neuronal recording technologies are enabling
measurements of brain activity at unprecedented scale. Large-scale
models and large-scale neuronal recordings are closely related:
large-scale models provide a systematic and mechanistic understand-
ing of large-scale neuronal recordings, whereas large-scale neuronal
recordings can further expose limitations of large-scale models. SNOPS
can be used to accelerate this cycle and facilitate the synergy between
model-based (mathematical) approaches and empirical measurements
of brain activity to further our understanding of the brain.

Methods
Components for customizing a network model
Here, we list the components one needs for customizing a network
model to neuronal population activity. Each of these components is
described in detail in the sections below.

•	 Neuronal recordings: neuronal activity recorded from a popula-
tion of neurons (or generated from a network model). In this
study, the neuronal activity is in the form of spike trains either
recorded experimentally or generated by a spiking network
model.

•	 Network model with unknown parameters: a mathematical
model to be customized to the neuronal recordings. In this
study, we use a CBN7 and a SBN26.

•	 Activity statistics: types of activity statistics that are used to
measure how similar the activity produced by the network
model is to the neuronal recordings. The user can define their
own activity statistics depending on their needs. In this study,
we use mean fr, ff, spike count correlation (rsc), percent shared
variance (%sh), dimensionality (dsh) and the eigenspectrum of the
shared variance (es).

•	 Cost function: a function that takes as input the activity statis-
tics of the network model and those of the neuronal recordings,
and outputs a scalar that summarizes how different are the two
sets of activity statistics. In this study, we use a weighted sum of
squared differences.

•	 Optimization algorithm: an algorithm for adjusting the param-
eters of the network model so that its activity resembles the neu-
ronal recordings (that is, to minimize the cost). In SNOPS, we use
BO. Users can also incorporate other optimization algorithms,
such as random search and evolutionary algorithms.

Spiking network models
Model details. Since both CBNs and SBNs are composed of the same
single-neuron model, we will present both network models together.
Each network has one feedforward layer and one recurrent layer. The
feedforward layer contains NF = 2,500 excitatory neurons emitting
spikes according to independent Poisson processes with a uniform
rate of 10 spikes per second. As in ref. 26, here, we use homogeneous
Poisson processes as the feedforward input to primarily attribute the
rsc observed in the SBN to its spatial connectivity, rather than correla-
tions inherited from the inputs. Note that other approaches, such as
using external inputs with specified input correlations, have been
explored to induce neuronal correlations within network models25,55.
There are Ne = 2,500 excitatory neurons and Ni = 625 inhibitory neurons
in the recurrent layer. Note that this number is smaller than our past
work26 (where NF = 2,500, Ne = 40,000 and Ni = 10,000); this was done
to reduce the simulation time while maintaining similarly rich network
activity (Supplementary Fig. 13). The membrane potential of a neuron
j in population α ∈ {e, i}, Vα

j

, in the recurrent layer obeys exponential
integrate-and-fire membrane dynamics56

C

m

dV

α

j

dt

= −g

L

(V

α

j

− E

L

) + g

L

Δ

T

e

(V

α

j

−V

T

)/Δ

T

+ I

α

j

(t). (1)

The passive membrane properties are given by the leak conduct-
ance gL, the leak reversal potential EL and the membrane capacitance
Cm. The second term on the right hand side of equation (1) models the
excitable membrane nonlinearity that causes an explosive spike onset
for V α

j

 above the soft threshold VT (∆T gives the sensitivity of spike
onset). Each time V α

j

(t) exceeds a voltage threshold Vth, the neuron
spikes and the membrane potential are held for a refractory period τref,
then reset to a fixed value V

re

. Here, V
re

< V

T

< V

th

. The neuron model
parameters are set to τm = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV,
Vth = −10 mV, ∆T = 2 mV, Vre = −65 mV and τref = 1.5 ms. For inhibitory

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 698

Article https://doi.org/10.1038/s43588-024-00688-3

neurons, τm = 10 ms, ∆T = 0.5 mV and τref = 0.5 ms. Similar model formu-
lations have been used in past studies11,26,57, and we used the same
parameters and constants as in our previous work26 unless otherwise
specified. There are also model parameters that are not fully explored
in previous literature and need to be determined as the goal of the
customization. We call them ‘free parameters’, to be introduced below.

Let the spike train from neuron k in population α ∈ {e, i, F} be
y

α

k

(t) = ∑

n

δ(t − t

α

kn

), where δ(t − s) is the Dirac delta function centered
at time t = s. The total synaptic current to a neuron j in population α is

I

α

j

(t)

C

m

=

N

F

∑

k=1

J

αF

jk

√

N

y

F

k

∗ η

F

(t) + ∑

β=e,i

N

β

∑

k=1

J

αβ

jk

√

N

y

β

k

∗ η

β

(t) + μ

α

, (2)

where N = Ne + Ni = 3,125, asterisk denotes convolution and
µα = 0 mV ms−1 is the static external input. The synaptic connection
strength J αβ

jk

 is equal to Jαβ if neuron k in population β connects to neuron
j in population α, otherwise it is set to zero (α ∈ {e, i} and β ∈ {e, i, F}).
There are then six total synaptic connection strengths: Jei, Jii, Jie, Jee, JeF
and JiF, which are free parameters. The synaptic kernel from population
β, ηβ(t), is given by

η

β

(t) =

H(t)

τ

βd

− τ

βr

(e

−t/τ

βd

− e

−t/τ

βr

) , (3)

where H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. The time constants
τer = τir = τFr = 1 ms, τFd = 5 ms and τed and τid are free parameters.

For the CBN, the connection probability from a presynaptic neuron
in population β to a postsynaptic neuron in population α is set to a
constant ̄

p

αβ. Throughout we used ̄

p

ee

= 0.15 , ̄

p

ei

= 0.6 , ̄

p

ie

= 0.45 ,
̄

p

ii

= 0.6, ̄

p

eF

= 0.1 and ̄

p

iF

= 0.05, to enable the network to display a
similar average number of connections as the model in our previous
work26.

For the SBN, neurons in the two layers are arranged uniformly on
a 1 mm square grid. The probability of a connection from presynaptic
neuron k in population β located at position (xk, yk) to postsynaptic
neuron j in population α located at position (xj, yj) is

p =

̄

p

αβ

g (x

j

− x

k

;σ

αβ

) g (y

j

− y

k

;σ

αβ

) , (4)

where g(x;σ) = 1

√

2πσ

∑

∞

k=−∞

e

−(x+k)

2

/(2σ

2

) is a wrapped Gaussian distribu-
tion. The connection widths (σee = σie = σe, σei = σii = σi, σeF = σiF = σF) are
free parameters for the SBN. Note that mathematically, the SBN is more
flexible than the CBN because the latter can be considered a special
case of the former: setting the three parameters that control connectiv-
ity width to infinity will turn a SBN into a CBN. For both the CBN and
SBN, self-connections are allowed. There can be more than one con-
nection between any given pair of neurons, in which case the effective
connection strength between the neurons is the number of connections
times Jαβ.

The summary of the free parameters common to both the CBN
and SBN network models is presented in Supplementary Table 1. The
SBN model has additional free parameters presented in Supplemen-
tary Table 2.

Model simulation. To simulate activity from the network, we first
instantiated a network model. This involves generating a network con-
nectivity graph based on the connection probabilities, and setting the
initial membrane potential of each neuron from a uniform distribution
between −65 and −50 mV, as in our previous work26. We will discuss the
impact of the randomness induced by the realization of the connectiv-
ity graph and initial membrane potentials in the following sections.
After model instantiation, the differential equations were solved by
the forward Euler method using a time step of 0.05 ms for a duration
of the simulation predetermined by the user. Future work may use a

more efficient integration scheme in place of the Euler’s method. For
example, the fourth-order Runge–Kutta method with adaptive step
size can be used to adjust the step size based on the estimated error of
the numerical solution to speed up the simulation process. However,
to take advantage of the increased accuracy from higher-order numeri-
cal integration methods, we will need to interpolate within the time
step when the voltage crosses the spike threshold (that is, Vα

j

(t) ≥ V

th

)
so as to identify the spike time with an accuracy that matches the order
of the numerical scheme58.

Identifying the four activity regimes for the CBN. For Figs. 1 and 2,
we needed to identify CBN parameters that correspond to each of the
four activity regimes introduced in ref. 30. As the network architecture
in ref. 30 is different from ours (in terms of the number of neurons,
choice of integrate-and-fire neuron model and so on), the parameter
values in their paper are not directly applicable to our network. Thus,
we randomly sampled 5,000 parameter sets from the search range of
the CBN (Supplementary Table 1). We then selected parameter sets that
produced each of the following four combinations of statistics: low rsc
and high ff (asynchronous irregular), high rsc and low ff (synchronous
regular), high rsc and high ff (synchronous irregular) and low rsc and
low ff (asynchronous regular). Figure 1a shows the spike trains of 50
randomly selected neurons over a period of 200 ms for each activ-
ity regime. For the analysis in Fig. 2b, we simulated 140.5 s of spiking
activity and computed the activity statistics of 50 randomly sampled
neurons for each of the four activity regimes (see ‘Estimating activity
statistics’ section).

Activity statistics
Let X ∈ ℝ

N

s

×T be a matrix of spike counts taken in a fixed time window
(defined below) for Ns sampled neurons (either from the neuronal
recordings or SNN) and T time bins. On the basis of X, we computed the
following activity statistics (illustrated in Supplementary Fig. 1):

Single-neuron statistics. We considered two commonly used
single-neuron statistics: fr and ff. The fr is defined as the mean fr across
all neurons and trials. Specifically, we average all elements of X and
divide by the duration of the spike count window.

The ff measures the trial-to-trial variability of the activity of each
neuron. For each neuron (that is, row of X), we compute its ff as the
variance of the T values divided by the mean of the T values. We then
average these ff values across all neurons. For reference, if the spike
counts for each neuron were Poisson distributed, then ff would equal 1.

Pairwise statistic. We considered the pairwise spike count correlation
(rsc), commonly used to measure how pairs of neurons covary34. The rsc
was computed by first computing the Pearson correlation for each pair
of neurons across the T trials, then averaging the correlation values
across all Ns(Ns − 1) pairs of neurons. We applied the Fisher transforma-
tion40 when comparing rsc values in the cost function because it makes
the rsc values more Gaussian distributed, as in previous work40:

z =

1

2

log (

1 + r

sc

1 − r

sc

) . (5)

Population statistics. We considered three statistics that characterize
population-wide covariability: the percent shared variance (%sh), the
dimensionality of the shared variance (dsh) and the eigenspectrum of
the shared variance (es)31,32. These statistics are based on FA, the most
basic dimensionality reduction method that partitions variance that is
shared among neurons from the variance that is independent to each
neuron. Note that principal component analysis does not distinguish
between these two types of variance.

Using the spike count matrix X, we can compute the Ns × Ns covari-
ance matrix C. For consistency, we used exactly the same spike counts

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 699

Article https://doi.org/10.1038/s43588-024-00688-3

for computing the single-neuron, pairwise and population statistics
(that is, we counted spikes in the same time bins). FA performs the
decomposition C ≈ LLT + Ψ, where L ∈ ℝ

N

s

×m is the loading matrix,
Ψ ∈ ℝ

N

s

×N

s is a diagonal matrix containing the independent variance of
each neuron and m is the number of latent dimensions. The matrix LLT
represents the variance shared among neurons (termed the ‘shared
covariance matrix’) and Ψ represents the variance independent to each
neuron. The FA parameters L and Ψ are estimated from the neuronal
activity using the expectation-maximization algorithm. The number
of latent dimensions m is determined by maximizing the fivefold
cross-validated data likelihood.

On the basis of these FA parameters, we define three population
statistics. The %sh quantifies the percentage of each neuron’s variance
that is shared with one or more of the other simultaneously recorded
neurons. This value is then averaged across neurons. Specifically,
we compute

%

sh

=

1

N

s

N

s

∑

j=1

L

j,∶

L

T

j,∶

L

j,∶

L

T

j,∶

+Ψ

j

, (6)

where Lj,: represents the j-th row of L, and Ψj represents the j-th diagonal
element of Ψ. Note that %sh is related, but not equivalent, to rsc

32.
The dsh measures the complexity of the shared variance among

neurons (that is, the number of population activity patterns needed
to describe the shared variance). For example, if all neurons increased
and decreased their activity together, dsh would equal 1. In principle,
we should choose dsh = m. In practice, we first found m by maximizing
the cross-validated data likelihood, as described above. Then, we chose
dsh as the number of dimensions needed to explain 95% of the shared
variance (based on the eigenspectrum of LLT). This procedure increases
the reliability of the estimated dimensionality31.

The es measures the relative dominance of the dimensions of
shared variance. For example, m might equal 3, but one dimension
might explain far more shared variance than the other two dimen-
sions. Specifically, es is defined as the vector of Ns eigenvalues of LLT,
where the eigenvalues are ordered from largest to smallest. Only the
first m eigenvalues are nonzero. We define es in this way so that two
eigenspectra with different m can be directly compared.

Estimating activity statistics. To estimate the activity statistics of the
SNN with a given parameter set, we first instantiated the model (which
includes generating a network connectivity graph and initial membrane
potentials, see ‘Model simulation’ section). For estimating the activity
statistics in Figs. 2 and 4–6, we repeated this network instantiation
procedure five times and averaged the estimated statistics over these
repetitions to increase estimation reliability (see below). For a given
network instantiation, we simulated the network (see ‘Spiking network
models’ section) to obtain 140.5 s of spiking activity. We then removed
the first 500 ms of the spike train to ensure the statistics are computed
on the spike trains when the network has reached a stable state, similar
to Huang et al.26. We also excluded neurons whose fr is less than 0.5
spikes per second for stable estimation of variance-based statistics
(see ‘Feasibility constraints’ section). We then binned the remaining
140 s into 700 bins, each of duration 200 ms. We used 140 s of activity
with 700 bins because empirically such a number of bins is sufficient
for a stable estimation of the aforementioned activity statistics while
still keeping the simulation time reasonably low (average of 373 s, see
‘SNOPS running time’ section) for our spiking network model with
5,625 neurons.

For the spike trains corresponding to a given network instantia-
tion, we computed their activity statistics using 50 randomly sampled
excitatory neurons in the recurrent layer (similar to Huang et al.26). We
sampled 50 neurons to compare model output spike trains directly
with that of recorded neuronal population activity, where the number

of recorded neurons is typically around 50. We repeatedly sampled 50
neurons without replacement from the network model ten times. The
activity statistics were then computed for each sampled population
and averaged across the ten samplings. This reduces the sampling
variance in the estimation of the activity statistics. If there are five
network instantiations, we further averaged the activity statistics over
these instantiations.

For the neuronal recordings, we first excluded neurons with frs less
than 0.5 spikes per second. We then randomly sampled 50 neurons and
700 trials without replacement for each recording session and condi-
tion, where each trial corresponds to a single stimulus presentation
(see ‘Neuronal recordings’ section). Within each trial, we took spike
counts in a 200 ms bin preceding stimulus onset. Hence, the activity
statistics for the network model and neuronal recordings are both
computed using 50 neurons and 700 trials to ensure consistency for
the comparisons.

Neuronal recordings
Experiments were approved by the Institutional Animal Care and Use
Committee of the University of Pittsburgh and were performed in
accordance with the United States National Research Council’s Guide
for the Care and Use of Laboratory Animals. We reanalyzed data from
experiments reported in previous studies42,59. In brief, we trained two
rhesus macaque monkeys (monkeys P and W) to perform a spatial atten-
tion task. At the beginning of each task trial, the animal first fixated on
a central dot for 300–500 ms. Gabor stimuli were presented, one on
each side of fixation, for 400 ms. One of the two stimulus locations
was block cued to change its orientation with 90% probability. After
the end of the stimulus presentation, a blank interstimulus period of
300–500 ms followed. The described sequence repeated and on each
presentation, there was a fixed probability of one of the Gabor stimuli
changing orientation at each presentation (that is, a flat hazard func-
tion). The task of the animal was to detect a change in orientation of
one of the two stimuli and make a saccade to the stimulus that changed.
Thus, the animal would benefit from maintaining constant attention
to the cued location throughout the task trial.

Two 100 electrode Utah arrays (Blackrock Microsystems, one in
V4 and one in PFC) were used to record neuronal activity in V4 and PFC
simultaneously during the spatial attention task. There were two cue
conditions (attention directed to the aggregate V4 receptive field or to
the other hemifield) and two stimulus orientations (45° and 135° with
the hemifields always containing orthogonal orientations), leading to
four unique task conditions with different frs and population statistics.
For each condition, we included only recording sessions with at least
50 neurons whose fr is greater than 0.5 spikes per second each and at
least 700 stimulus presentations for accurate estimation of the activ-
ity statistics (see ‘Estimating activity statistics’ section). This yielded
10 sessions for V4 of monkey W, 20 sessions for PFC of monkey W,
19 sessions for V4 of monkey P and 19 sessions for PFC of monkey P.
More sessions were excluded for V4 than PFC for monkey W because
many V4 neurons in monkey W had frs less than 0.5 spikes per second.
We included both successful and failed trials because we looked at the
200 ms bin preceding stimulus onset which was largely unaffected by
the eventual trial result. Since on each trial the monkey saw multiple
flashes of the stimulus, we took a 200 ms spike count bin immediately
preceding each flash (that is, stimulus onset), leading to multiple spike
count bins per task trial. We customized the network models to each
of the four conditions separately (see ‘Customizing CBN and SBN to
neuronal recordings’ section).

Cost function
We measured the discrepancy between the SNN-generated activity and
neuronal recordings using a cost function. Specifically, our cost func-
tion is a weighted linear combination of the normalized distance of
each activity statistic from its target value. Let S be the set of statistics

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 700

Article https://doi.org/10.1038/s43588-024-00688-3

included in the cost function. For example, S = {fr, ff, rsc, %sh, dsh, es}
indicates that all six activity statistics are used for customizing the SNN.
Let strue

j

 and sj(θ) denote the jth activity statistic of the neuronal record-
ings (that is, the target value) and that of a network model under param-
eter set θ, respectively, where j ∈ S. The cost function is defined as:

c

S

(θ) =

1

∑

j∈S

w

j

∑

j∈S

w

j

d (s

true

j

, s

j

(θ))

v

true

j

, (7)

where d(⋅, ⋅) is a distance function. In this work, d(strue
j

, s

j

(θ))
= (s

true

j

− s

j

(θ))

2. The weight, wj ∈ (0, 1), indicates the relative importance
of each statistic and is predefined by the user. If a weight is zero, the
corresponding activity statistic is not used during the customization
procedure. In this work, we set wj = 1 for all j because we wanted to weigh
each statistic equally. The terms strue

j

 and vtrue
j

 are the mean and variance
of the j-th activity statistic across simulations or recording sessions
(defined below). The variance term serves to downweight a statistic if
its variance is large, indicating the estimation is unreliable. For the
eigenspectrum of the shared covariance matrix (es), d(⋅, ⋅) is defined
as the sum of squared differences of the corresponding elements in
the eigenspectra. The variance term for es is then computed across
sessions or recording sessions using this scalar value.

For the network model (Fig. 4), strue
j

 and vtrue
j

 are the mean and
variance, respectively, of the corresponding statistic over five network
instantiations with randomly generated graphs and initial membrane
potentials corresponding to the same ground truth parameter set. For
neuronal recordings (Figs. 5 and 6), strue

j

 and vtrue
j

 are the mean and vari-
ance, respectively, across multiple recording sessions from the same
monkey and experimental condition. In the sections below, we will
refer to cS(θ) as simply c(θ), where S will be clear from the context.

Optimization algorithm
Problem setup. The goal of the optimization algorithm is to find a
parameter set θ ∈ ℝ

d in the search region Θ that minimizes c(θ) as

min

θ∈Θ

c(θ). (8)

In practice, c(θ) does not have a closed-form expression in terms
of the model parameters and cannot be optimized using gradient-
based methods. This is because, for a large-scale spiking network
model, c(θ) depends on several activity statistics, which in turn
depend on the computationally demanding numerical simulation
of the SNN (see ‘SNOPS running time’ section). Hence, for a given θ,
we cannot compute c(θ) directly as a function of θ. Instead, we simu-
late the network to obtain an estimate of c(θ), denoted ̂

c(θ). The
estimation error is c(θ) − ̂

c(θ) and arises from several sources. First,
for a given θ, network connectivity graphs are randomly generated.
This is because the network connectivity graph is not a parameter
of the network model, but is instead drawn from probability distribu-
tions specified by the parameters θ. Second, for a given graph, initial
membrane potentials of each neuron are drawn randomly to ensure
diversity of membrane potentials in the neuronal population, as in
our previous work26. Third, the network has multiple layers, where
the neurons in the first layer (the feedforward layer) emit spikes
according to independent Poisson processes. Hence the spike trains
from the first layer will differ under the same connectivity graph and
initial membrane potentials.

In the following sections, we will introduce two optimization algo-
rithms (BO and random search) to minimize c(θ), and two innovations
(feasibility constraints and intensification) to accelerate optimization.
Both innovations can be incorporated into BO or random search. We
term BO with both innovations ‘SNOPS’ (Fig. 4, blue), random search
with both innovations ‘accelerated random search’ (Fig. 4, red) and
random search without innovations ’random search’ (Fig. 4, green).

Random search. An intuitive approach to minimizing c(θ) without a
closed-form expression is random search. Random search is commonly
used as a benchmark in optimization and has been shown to have simi-
lar performance to more advanced algorithms in many optimization
tasks60. At each iteration, the algorithm randomly samples a parameter
set uniformly from the search region Θ and evaluates its cost. The
algorithm terminates after a user-defined number of iterations, K, has
been reached (Algorithm 1).

To reduce the variance of ̂

c(θ), we repeatedly simulate spike trains
with randomly generated graphs and initial membrane potentials using
the same parameter set for R repetitions (R = 5 in this work). For each
repetition, we evaluate the cost, then average across the repetitions
(Algorithm 1, the inner loop). Note that we will improve this
variance-reduction method using one of the innovations (that is, inten-
sification) to be introduced later.

Algorithm 1: Random search for SNN customization.
 Input: search region Θ; max number of iterations K; number of

repeated simulations R.
 Initialization: previously sampled parameter sets ̂

Θ = {} and their
costs ̂

C = {}.
 for k ← 1: K do
 θk ~ uniform(Θ).
 for r ← 1: R do
 Evaluate ̂

c(θ

k

)

r

 by simulating spike trains with a randomly gener-
ated graph and initial membrane potentials.

 end for
 ̂

c(θ

k

) =

1

R

∑

R

r=1

̂

c(θ

k

)

r

.
 ̂

ϴ ←

̂

ϴ ∪ {θ

k

}.
 ̂

C ←

̂

C ∪ {

̂

c(θ

k

)}.
 end for
 return

θ

⋆

← argmin

θ∈

̂

ϴ

̂

C

.

Algorithm 2: BO for SNN customization.
 Input: search region Θ; max number of iterations K; number of

repeated simulations R.
 Initialization: sample 50 initial parameter sets, either uniformly at

random or according to a prior distribution, to obtain Θ. For each
element θ ∈

̂

ϴ, estimate its cost ̂

c(θ) =

1

R

∑

R

r=1

̂

c(θ)

r

, where the cost
estimate is averaged over R repeated simulations. Then, define
̂

C = {

̂

c(θ) ∶ θ ∈ ϴ}.
 for k ← 1: K do
 Fit 𝒢𝒢𝒢𝒢 to (̂

ϴ,

̂

C).
 Compute θ

k

← argmax

θ∈ϴ

a(θ), where a(θ) is the acquisition function
in equation (10).

 for r ← 1: R do
 Evaluate ̂

c(θ

k

)

r

 by simulating spike trains with a randomly gener-
ated graph and initial membrane potentials.

 end for
 ̂

c(θ

k

) =

1

R

∑

R

r=1

̂

c(θ

k

)

r

.
 ̂

ϴ ←

̂

ϴ ∪ {θ

k

}.
 ̂

C ←

̂

C ∪ {

̂

c(θ

k

)}.
 end for
 return

θ

⋆

← argmin

θ∈

̂

ϴ

̂

C

.

BO. Random search samples parameter sets independently at each
iteration and is not guided by the previously sampled parameter sets.
To accelerate the algorithm, we turn to BO. BO utilizes previous evalu-
ations of the cost to guide the parameter search in a way that promotes
both exploration and exploitation. BO has been demonstrated to opti-
mize cost functions with fewer iterations than random search in various
optimization tasks39.

BO involves two major components: (1) a GP model to approxi-
mate the cost function and (2) an acquisition function to determine the

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 701

Article https://doi.org/10.1038/s43588-024-00688-3

parameter set to sample at the next iteration. The full algorithm of BO
involves iteratively updating the GP model and proposing the next param-
eter set using the acquisition function. This is outlined in Algorithm 2.

First, BO uses a GP to approximate c(θ). If two sets of parameters,
θ1 and θ2 are similar, we expect the corresponding costs c(θ1) and c(θ2)
to also be similar. To capture this intuition, BO approximates the cost
function as a smooth function of the model parameters using a GP.
The GP will allow us to predict c(θ) (posterior mean of the GP) and our
uncertainty about the value of c(θ) (posterior variance of the GP) for
a candidate θ without performing the computationally demanding
evaluation of c(θ) explicitly. Specifically, we write

̂

c(θ) ∼ GP(μ(θ), κ(⋅, ⋅)), (9)

where μ(θ) ∶ ϴ ↦ ℝ is the mean function of the GP and is set as a con-
stant, 0, without loss of generality. The covariance function,
κ(⋅, ⋅) ∶ ϴ ×ϴ ↦ ℝ, is a positive definite kernel function defined on any
two points in the search region, Θ. We use the automatic relevance
determination Matérn 5/2 kernel. The Matérn 5/2 kernel is commonly
used in BO because it allows for possible nonsmoothness of a cost
function. Its automatic relevance determination variant fits a different
length scale for each of the d elements of θ, as determined by data. Note
that incorporating prior knowledge of parameter interactions into the
kernel can be beneficial (Supplementary Fig. 14). We use the MATLAB
function fitgpr for fitting a GP model to the sampled parameter sets
and their associated costs. In practice, the GP is fit to the cost estimated
by averaging the estimate over R = 5 network instantiations of the same
parameter set to reduce variance (as in random search). The uncertainty
in the estimated costs is captured by the signal standard deviation in
the Matérn 5/2 kernel, which is fit along with other hyperparameters in
the kernel. We also log-transformed the cost values when fitting the GP
to mitigate the effect of extreme cost values. At the beginning of the
optimization, a set of initial parameter sets, Θ, is sampled uniformly to
fit the GP since we assume no prior knowledge about the location of
the optimal parameter set (Algorithm 2). One may sample Θ according
to a prior distribution other than the uniform distribution to guide the
initial optimization process if one has such knowledge. We sampled 50
initial parameter sets for Θ, although this number can be varied based
on user need. The larger this number, the better the initial GP estimate
of c(θ) will be, but the longer the initialization process will take.

Second, BO uses an acquisition function based on the posterior
mean and variance of the GP in equation (9) to decide the next param-
eter set to evaluate. BO selects the parameter set at which the acquisi-
tion function value is maximized. This corresponds to a combination of
low posterior cost (exploitation, where the cost is predicted to be low)
and high posterior variance (exploration, where we have not sampled
many parameter sets).

Let ̂

μ(θ) denote the posterior mean and ̂σ(θ) denote the posterior
standard deviation of the GP at θ. Let f− be the minimum of ̂

c(θ) over the
sampled parameter sets so far. We use the expected improvement39 as
the acquisition function

a(θ) = (f

−

−

̂

μ(θ))Φ (

f

−

−

̂

μ(θ)

̂

σ(θ)

) +

̂

σ(θ)ϕ (

f

−

−

̂

μ(θ)

̂

σ(θ)

) , (10)

where Φ and φ are the normal cumulative distribution function and
probability distribution function, respectively. Equation (10) is derived
based on the goal of preferring θ whose posterior mean, ̂

μ(θ), is as small
as possible compared with f− (for the complete derivation, see Brochu
et al.39). The first term of the equation represents exploitation: as ̂

μ(θ)
becomes smaller, this term will dominate because f

−

−

̂

μ(θ) will increase
and Φ will approach 1, while φ in the second term will approach zero.
The second term represents exploration: as ̂σ(θ) becomes larger, this
term will dominate because the first term will approach 0.5 while the
second term will increase as φ goes toward its peak.

The acquisition function, a(θ), also does not have an analytical
form with respect to θ because ̂

μ(θ) and ̂σ(θ) have a nonstraightforward
dependence on θ. However, ̂

μ(θ) and ̂σ(θ) are fast to compute using
fitgpr in MATLAB (typically less than a microsecond for one evaluation).
Hence we evaluate a(θ) on a large number of randomly sampled θ to
quickly maximize a(θ) (as in the bayesopt function in MATLAB). In
particular, we first evaluate a(θ) on 100,000 randomly sampled param-
eter sets. We then select ten parameter sets with the largest a(θ). We
run fminsearchbnd to search locally around each of these ten param-
eter sets to refine the solution. The final maximizer of a(θ) is the maxi-
mizer from these ten local searches.

In Algorithm 2, the algorithm stops once the maximum number of
iterations, K, has been reached. Depending on the specific use case, one
can specify other stopping criteria, such as when a maximum amount
of customization time has been reached, the cost function is no longer
decreasing, or the cost is below a user-defined threshold.

Feasibility constraints. Our first innovation seeks to accelerate the
optimization process using feasibility constraints. A parameter set,
θ, is labeled ‘infeasible’ if, for a particular connectivity graph and
initial membrane potentials (a single iteration in the inner loop in
Algorithms 1 and 2), it leads to neuronal population activity gener-
ated from the network model that falls into either of the following
two categories.

First, θ may lead to extreme frs. Low frs are undesirable because
the resulting spike count matrices are mostly zeros. This can lead to
unstable estimates of the variance-based activity statistics (for exam-
ple, ff, rsc and population statistics). High frs are biologically unrealistic
(typically <10 spikes per second for V4 and PFC recordings; Supple-
mentary Fig. 5). We set the low fr threshold as <0.5 spikes per second
and the high fr threshold as >60 spikes per second (mean fr across all
neurons and time).

Second, θ may lead to unstable solutions. The network activity
may take a period of time to reach a stable state, defined by when the
mean fr across the neuronal population converges. As noted above,
a standard preprocessing step is to remove the first 500 ms of the
network-generated spike trains (the period when the network has not
yet stabilized)26. However, some parameter sets may lead to networks
that take more time to stabilize or may never reach the stable state
(for example, switching between multiple stable states). These cases
need to be excluded from the customization process because they
represent unstable solutions and are not typically used to compare
with recorded neuronal activity. Specifically, to determine if a given θ
leads to an unstable solution, we first run change point detection (using
the findchangepts function in MATLAB)61 on the time course of the
population-averaged mean fr after removing the first 500 ms. We then
deem θ to be infeasible if the mean fr (across neurons and time) before
the change point and that after the change point exceeds a threshold.
The threshold is computed as three standard deviations of the mean
fr (across neurons and time) after the change point.

To speed up the customization process, we wish to rule out infea-
sible parameter sets with minimal computation. We propose to use a
‘freeze–thaw’ method62 by first running a short simulation to generate
10 s of spike trains to estimate the feasibility of a parameter set and
only proceed to the full simulation (140 s, see ‘Estimating activity
statistics’ section) if the parameter set is feasible. We use 10 s for the
short simulation because the two constraints only depend on the fr,
and empirically the estimation of the fr tends to stabilize within 10 s.
However, estimating population statistics, for example, %sh, requires
substantially more simulation time, hence a full simulation is still
needed to compute all activity statistics.

For random search, feasibility constraints can be incorporated in
a straightforward manner: for each sampled parameter set, if feasible,
the algorithm will run the full simulation of 140 s to compute the cost.
If the sampled parameter set is infeasible, it will simply proceed to the

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 702

Article https://doi.org/10.1038/s43588-024-00688-3

next sampled parameter set. Note that feasibility is evaluated at each of
the R repetitions in the inner loop (Algorithm 1). The inner loop aborts
as soon as the parameter set is deemed infeasible.

For BO, we incorporated the feasibility constraint into the opti-
mization problem63

min

θ∈ϴ

c(θ) such that g(θ) = 1, (11)

where g(θ) = 1 if θ is feasible and g(θ) = 0 otherwise.
To incorporate this constraint, two parts of BO will change. First,

in addition to the GP that approximates the cost function (the GP in
equation (9)), there is a separate GP that represents the feasibility
function, g(θ), which is fit to the sampled parameter sets and their
feasibility values (which are binary). Second, the acquisition function
will now incorporate the GP for the feasibility function. Let GP

c

 repre-
sent the GP on c(θ) as in equation (9) and GP

g

 represent the GP on g(θ).
Let ̂

μ

c

(θ),

̂

σ

c

(θ) denote the posterior mean and s.d., respectively, of GP
c

.
Similar to equation (10), f− is the minimum of ̂

μ

c

(θ) over the parameter
sets evaluated so far. The expected improvement (that is, acquisition)
function for the constrained Bayesian optimization becomes63

a(θ)

= Φ (

̂

μ

g

(θ)−0.5

̂

σ

g

(θ)

) × ((f

−

−

̂

μ

c

(θ))Φ (

f

−

−

̂

μ

c

(θ)

̂

σ

c

(θ)

) +

̂

σ

c

(θ)ϕ (

f

−

−

̂

μ

c

(θ)

̂

σ

c

(θ)

)) .

(12)

This differs from equation (10) in the term Φ (

̂

μ

g

(θ)−0.5

̂

σ

g

(θ)

)

, which yields a

larger acquisition value if the feasibility posterior mean is high. Note
that even though GP

g

 is fit to binary values (g(θ) is either 0 or 1), its
posterior mean, ̂

μ

g

(θ), is continuous valued. Furthermore, in this term,
̂

μ

g

(θ) is referenced to 0.5 to ensure symmetry.
It is also possible to replace the short simulation for evaluating the

feasibility of a parameter set with analytical calculations. For instance,
for networks with a large number of neurons, mean-field theory can be
used to predict the mean fr directly from the network parameters11. In
such networks, linear response theory can also be used to predict the ff
and rsc (ref. 11). These approaches can speed up the SNOPS customiza-
tion by eliminating the need for these network simulations.

Intensification. The second innovation seeks to improve the accuracy
of estimating the cost with less time. The estimation error arises from
several sources, described in ‘Problem setup’. A high estimation error
may result in a final parameter set returned by the algorithm with a
low cost in a single evaluation, but with a higher cost if evaluated and
averaged over multiple repetitions64.

One possible solution is to repeatedly run simulations under the
same parameter set for R repetitions, as in Algorithms 1 and 2. However,
this can be computationally demanding because each repetition cor-
responds to a lengthy simulation. To avoid performing R repetitions
for every θ sampled, we propose to use an intensification algorithm64.
The main idea is to only perform R repetitions of the simulation if we
encounter a potentially optimal parameter set. We first define the
incumbent parameter set as the parameter set whose cost, calculated
by averaging over R repetitions, is the smallest over the list of sampled
parameters. Similarly, the incumbent cost and standard deviation are
the associated mean and standard deviation of the cost of the incum-
bent parameter set over the R repetitions. A sampled θ is considered
potentially optimal if its cost evaluated in the first repetition is within
one standard deviation of the incumbent cost. Otherwise, we include
it in the list of sampled parameters and proceed to sample the param-
eter set for the next iteration. The algorithm will perform evaluations
for R repetitions only for the potential optimal parameter sets. If its
average cost over the R repetitions is smaller than the incumbent cost,
θ becomes the incumbent parameter set. Otherwise, we still include
it in the list of sampled parameters and its associated cost value is the
average over the R repetitions.

We adopt this method and introduce an additional evaluation
stopping criterion: the algorithm will stop performing repetitions if
the standard deviation of the cost across the performed repetitions is
below a specified threshold. A small standard deviation indicates the
estimate of the cost of this parameter set is consistent across repeti-
tions and needs no variance reduction. Note that at least two repeti-
tions need to be performed to compute the standard deviation and,
if this stopping criterion is met, we follow the same procedure above
in determining if θ becomes the incumbent parameter set. The addi-
tional stopping criterion further reduces the total number of simula-
tions throughout the optimization procedure and provides additional
acceleration. We set the predefined number of repetitions to R = 5 and
the standard deviation threshold to 0.15. A larger predefined number
of repetitions and a smaller standard deviation threshold will yield a
smaller estimation error, at the expense of greater simulation time.

Local optima. If SNOPS is run for infinite time, it is guaranteed to
return the global optimal parameter set39. In practice, finite running
time may result in the algorithm returning a local optimum. Empiri-
cally, we verified that SNOPS reliably returned a set of activity statistics
that matched the recorded neuronal activity when the optimization
algorithm was initialized with different initial parameter values (Sup-
plementary Fig. 5). This indicates that, even if the algorithm returns a
local optimum, this optimum corresponds to activity statistics that
match those of the recorded activity.

Tradeoff cost
We define a tradeoff cost to measure whether more accurately repro-
ducing one activity statistic leads to less accurately reproducing
another activity statistic (Fig. 6). Intuitively, customizing two statis-
tics sa and sb simultaneously might incur a larger cost (of sa and sb) than
customizing each of them individually. The gap between the cost of
customizing sa and sb together versus individually represents how much
the two statistics tradeoff with each other. Note that a similar idea has
also been explored to show the tradeoff in the loss function of a model
trained to perform two tasks simultaneously65.

For two statistics sa and sb, let c
s

a

(θ) and c
s

b

(θ) represent the cost
values of the optimal parameter sets when individually customizing sa
and sb, respectively. Let c

s

a

∪s

b

(θ) represent the cost resulting from cus-
tomizing the two statistics together. The tradeoff cost between sa and
sb is defined as:

tradeoff(s

a

, s

b

) = c

s

a

∪s

b

(θ) −

c

s

a

(θ) + c

s

b

(θ)

2

, (13)

where the second term represents the average of c
s

a

(θ) and c
s

b

(θ). This
average makes the second term comparable to the first term.

The tradeoff cost is guaranteed to be nonnegative because cus-
tomizing both statistics simultaneously is as challenging or more chal-
lenging than customizing each of them separately. This leads to a higher
cost for each statistic when the model is customized to both statistics
together (first term) as compared with when the model is customized to
each of them separately (second term). A tradeoff cost of zero indicates
that the ability of the model to reproduce one statistic is unaffected by
the incorporation of another statistic into the cost function.

Verifying SNOPS in simulation
To validate the performance of SNOPS in simulation (Fig. 4 and Supple-
mentary Figs. 3 and 4), we customized network models to the activity
generated from the same type of model. We first randomly sampled 100
parameter sets from the search region (see ‘Spiking network models’
section) for the CBN and SBN. We estimated the activity statistics for
each sampled parameter set over five network instantiations (see ‘Cost
function’ section). We excluded parameter sets resulting in fr smaller
than 1, dsh smaller than 1, and ff larger than 5 because they do not fall

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | September 2024 | 690–705 703

Article https://doi.org/10.1038/s43588-024-00688-3

within the range of the V4 and PFC activity statistics (Supplementary
Fig. 11). We then randomly sampled 40 of the remaining parameter sets
for both the CBN and SBN. We chose to use 40 parameter sets because
they represent a diverse combination of activity statistics while hav-
ing reasonable running time. We applied SNOPS, random search and
accelerated random search to customize the CBN and SBN separately.
We ran each optimization-based method (SNOPS, random search and
its accelerated variant) for 168 h (7 days). We found the cost usually
plateaus within 168 h, indicating that the running time is sufficient for
SNOPS to converge (Supplementary Fig. 3).

Customizing CBN and SBN to neuronal recordings
To compare the CBN and SBN as well as to validate the performance of
SNOPS on neuronal recordings (Fig. 5 and Supplementary Figs. 3 and 4),
we ran SNOPS, accelerated random search, random search and SNPE
on the 16 datasets comprising two monkeys (monkeys P and W), four
conditions (two cues by two saccade locations) and two brain areas
(V4 and PFC). As in the previous section, we set the stopping criterion
for the optimization-based methods to 168 h (7 days) because we found
the cost usually plateaued within 168 h (Supplementary Fig. 3).

To compare the tradeoffs of different subsets of statistics between
the CBN and SBN (Fig. 6), we customized each network model to the
example macaque V4 dataset in Fig. 2 with different subsets of activity
statistics included in the cost function. For each customization run, we
set the weight of each statistic (wj in equation (7)) to be either 0 or 1,
leading to a total of 26 − 1 = 63 customization runs for each network,
which accounts for all possible subsets of activity statistics. For each
customization run, we ran SNOPS for 168 h.

SNOPS running time
The running times indicated in this paragraph were obtained using clus-
ter machines with 40 Intel Xeon Gold 6230 2.10 GHz central processing
unit (CPU) cores and 250 GB of random access memory. For clarity, here
we refer to one customization run as the process of customizing a SNN
to one dataset using SNOPS (Algorithm 2). We used one CPU core for
each customization run. The overall running time for one customiza-
tion run is 168 h, corresponding to 1,200 optimization iterations on
average. Each optimization iteration involves the following compo-
nents. First, for a selected parameter set that maximizes the acquisi-
tion function, we randomly instantiated a network connectivity graph
and initial membrane potentials and generated spike trains from the
spiking network with 5,625 neurons. This is the most time-consuming
part of each iteration. It takes 23 s to generate 10 s of spike trains to
determine feasibility (see ‘Feasibility constraints’ section) and 373 s to
generate 140 s of spike trains. The values are the same for the CBN and
SBN since they have the same number of neurons (5,625). Second, for
the generated spike trains of 140 s, it takes 69 s to compute its activity
statistics. Finally, it takes 32 s to select the parameter set for the next
iteration, including fitting the GP for both the feasibility constraints
and cost function, as well as maximizing the acquisition function.
Note that for some iterations, the spike train generation and activity
statistics computation may be repeated up to five times due to the
intensification procedure (see ‘Intensification’ section).

We can utilize multiple CPU cores to implement SNOPS with par-
allelization. In Figs. 4–6 and Supplementary Figs. 3–10 and 13–14, we
implemented a parallelization scheme to accelerate the customization
process using SNOPS. The key idea is that parameter sets evaluated
by one thread (that is, one CPU core) could potentially benefit other
threads, allowing for the assessment of costs without necessitating
additional simulations. This is enabled by the fact that, regardless of the
target activity statistics in each thread, there is a common relationship
between model parameters and activity statistics (that is, that specified
by the network model). For example, when customizing network mod-
els to the 40 simulated datasets in Fig. 4, we ran 40 customization runs
on 40 CPU cores simultaneously. We saved the model parameters and

activity statistics in a log file for each iteration of each customization
run. Within each thread, we routinely checked the already-evaluated
model parameters and their activity statistics in the log files of the
other threads running concurrently, and computed their costs based
on the target activity statistics of the current thread. If there exists a
parameter set from other threads that leads to a cost that is lower than
any parameter set for the current thread, we would consider this param-
eter set potentially optimal and proceed to evaluate it. We performed
this routine check every ten iterations, although it can be done more
frequently. Even though each thread involved different target activity
statistics, this strategy allowed the utilization of the concurrent infor-
mation across threads. To ensure a fair comparison, we applied this
strategy to all optimization algorithms (random search, accelerated
search, BO) in this work. Moreover, in our comparison of SNOPS with
SNPE (Supplementary Fig. 4), we considered the total customization
time for SNOPS as the running time of each thread (168 h) times the
number of threads. This ensured a fair comparison by accounting for
the collective computational effort across all threads.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The V4 and PFC recordings we analyzed for SNN customization are
available at https://doi.org/10.1184/R1/19248827 (ref. 66). Source data
for Figs. 2, 4, 5 and 6 are available with this manuscript.

Code availability
MATLAB code for the SNOPS algorithm is available at https://github.
com/ShenghaoWu/SpikingNetworkOptimization and on Zenodo
at https://zenodo.org/records/13218535 (ref. 67). Data analysis was
performed using Python 3.8.5.

References
1. Hodgkin, A. L. & Huxley, A. F. Currents carried by sodium and

potassium ions through the membrane of the giant axon of loligo.
J. Physiol. 116, 449–472 (1952).

2. Marder, E. & Bucher, D. Understanding circuit dynamics using the
stomatogastric nervous system of lobsters and crabs. Annu. Rev.
Physiol. 69, 291–316 (2007).

3. Vogels, T. P., Rajan, K. & Abbott, L. F. Neural network dynamics.
Annu. Rev. Neurosci. 28, 357–376 (2005).

4. Kass, R. E. et al. Computational neuroscience: mathematical and
statistical perspectives. Annu. Rev. Stat. Appl. 5, 183–214 (2018).

5. Wang, Xiao-Jing Theory of the multiregional neocortex:
large-scale neural dynamics and distributed cognition. Annu. Rev.
Neurosci. 45, 533–560 (2022).

6. Yamins, DanielL. K. & DiCarlo, J. J. Using goal-driven deep learning
models to understand sensory cortex. Nat. Neurosci. 19, 356–365
(2016).

7. Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274,
1724–1726 (1996).

8. Buonomano, D. V. & Maass, W. State-dependent computations:
spatiotemporal processing in cortical networks. Nat. Rev.
Neurosci. 10, 113–125 (2009).

9. Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of
transient dynamics in balanced networks supports generation of
complex movements. Neuron 82, 1394–1406 (2014).

10. Denève, S. & Machens, C. K. Efficient codes and balanced
networks. Nat. Neurosci. 19, 375–382 (2016).

11. Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The
spatial structure of correlated neuronal variability. Nat. Neurosci.
20, 107–114 (2017).

http://www.nature.com/natcomputsci
https://doi.org/10.1184/R1/19248827
https://github.com/ShenghaoWu/SpikingNetworkOptimization
https://github.com/ShenghaoWu/SpikingNetworkOptimization
https://zenodo.org/records/13218535

Nature Computational Science | Volume 4 | September 2024 | 690–705 704

Article https://doi.org/10.1038/s43588-024-00688-3

12. DePasquale, B., Sussillo, D. & and Mark M Churchland, L. F. Abbott
The centrality of population-level factors to network computation
is demonstrated by a versatile approach for training spiking
networks. Neuron 111, 631–649 (2023).

13. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity
from chaotic neural networks. Neuron 63, 544–557 (2009).

14. Stringer, C. et al. Inhibitory control of correlated intrinsic
variability in cortical networks. eLife 5, e19695 (2016).

15. Williamson, R. C., Doiron, B., Smith, M. A. & Yu, B. M. Bridging
large-scale neuronal recordings and large-scale network models
using dimensionality reduction. Curr. Opin. Neurobiol. 55, 40–47
(2019).

16. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A
neural network that finds a naturalistic solution for the
production of muscle activity. Nat. Neurosci. 18, 1025–1033
(2015).

17. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T.
Context-dependent computation by recurrent dynamics in
prefrontal cortex. Nature 503, 78–84 (2013).

18. LeCun, Y. et al. Backpropagation applied to handwritten zip code
recognition. Neural Comput. 1, 541–551 (1989).

19. Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent
suppression of chaos in recurrent neural networks. Phys. Rev. E
82, 011903–011907 (2010).

20. Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability
in balanced cortical networks with clustered connections.
Nature Neurosci. 15, 1498–1505 (2012).

21. Deco, G. & Hugues, E. Neural network mechanisms underlying
stimulus driven variability reduction. PLoS Comput. Biol. 8,
e1002395 (2012).

22. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. áté &
Miller, K. D. The dynamical regime of sensory cortex: stable
dynamics around a single stimulus-tuned attractor account for
patterns of noise variability. Neuron 98, 846–860 (2018).

23. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in
neuronal networks: reconciling different perspectives on neural
coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

24. Snyder, A. C., Morais, M. J., Willis, C. M. & Smith, M. A. Global
network influences on local functional connectivity.
Nat. Neurosci. 18, 736–743 (2015).

25. Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. &
Josić, Krešimir The mechanics of state-dependent neural
correlations. Nat. Neurosci. 19, 383–393 (2016).

26. Huang, C. et al. Circuit models of low-dimensional shared
variability in cortical networks. Neuron 101, 337–348 (2019).

27. Billeh, Y. N. et al. Systematic integration of structural and
functional data into multi-scale models of mouse primary visual
cortex. Neuron 106, 388–403 (2020).

28. Gonçalves, P. J. et al. Training deep neural density estimators to
identify mechanistic models of neural dynamics. eLife 9, e56261
(2020).

29. Shadlen, M. N. & Newsome, W. T. The variable discharge of
cortical neurons: implications for connectivity, computation,
and information coding. J. Neurosci. 18, 3870–3896 (1998).

30. Brunel, N. Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208
(2000).

31. Williamson, R. C. et al. Scaling properties of dimensionality
reduction for neural populations and network models.
PLoS Comput. Biol. 12, e1005141 (2016).

32. Umakantha, A. et al. Bridging neuronal correlations and
dimensionality reduction. Neuron 109, 2740–2754 (2021).

33. Churchland, M. M. et al. Stimulus onset quenches neural
variability: a widespread cortical phenomenon. Nat. Neurosci. 13,
369–378 (2010).

34. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal
correlations. Nat. Neurosci. 14, 811–819 (2011).

35. De La Rocha, J., Doiron, B., Shea-Brown, E., Josić, Krešimir &
Reyes, A. Correlation between neural spike trains increases with
firing rate. Nature 448, 802–806 (2007).

36. Mazzucato, L., Fontanini, A. & La Camera, G. Stimuli reduce the
dimensionality of cortical activity. Front. Syst. Neurosci. 10, 11
(2016).

37. Recanatesi, S., Ocker, GabrielKoch, Buice, M. A. & Shea-Brown, E.
Dimensionality in recurrent spiking networks: global trends in
activity and local origins in connectivity. PLoS Comput. Biol. 15,
e1006446 (2019).

38. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for
large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

39. Brochu, E., Cora, V. M., & De Freitas, N. A tutorial on Bayesian
optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning.
Preprint at https://arxiv.org/abs/1012.2599 (2010).

40. Smith, M. A. & Kohn, A. Spatial and temporal scales of neuronal
correlation in primary visual cortex. J. Neurosci. 28, 12591–12603
(2008).

41. Murray, J. D. et al. Stable population coding for working memory
coexists with heterogeneous neural dynamics in prefrontal
cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).

42. Snyder, A. C., Yu, B. M. & Smith, M. A. Distinct population codes
for attention in the absence and presence of visual stimulation.
Nat. Commun. 9, 1–14 (2018).

43. Churchland, M. M. et al. Neural population dynamics during
reaching. Nature 487, 51–56 (2012).

44. Sadtler, P. T. et al. Neural constraints on learning. Nature 512,
423–426 (2014).

45. Bittner, S. R. et al. Interrogating theoretical models of neural
computation with emergent property inference. eLife 10,
e56265 (2021).

46. Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F. & Káli, S.
A flexible, interactive software tool for fitting the parameters of
neuronal models. Front. Neuroinform. 8, 63 (2014).

47. Carlson, K. D., Nageswaran, J. M., Dutt, N. & Krichmar, J. L. An
efficient automated parameter tuning framework for spiking
neural networks. Front. Neurosci. 8, 10 (2014).

48. Van Geit, W. et al. Bluepyopt: leveraging open source software
and cloud infrastructure to optimise model parameters in
neuroscience. Front. Neuroinform. 10, 17 (2016).

49. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from
disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

50. Murray, J. D. A hierarchy of intrinsic timescales across primate
cortex. Nat. Neurosci. 17, 1661–1663 (2014).

51. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct
timescales of population coding across cortex. Nature 548,
92–96 (2017).

52. Garnelo, M. et al. Conditional neural processes. In International
Conference on Machine Learning 1704–1713 (PMLR, 2018).

53. Destexhe, A., Contreras, D., Sejnowski, T. J. & Steriade, M. A model
of spindle rhythmicity in the isolated thalamic reticular nucleus.
J. Neurophysiol. 72, 803–818 (1994).

54. Burak, Y. & Fiete, I. R. Accurate path integration in continuous
attractor network models of grid cells. PLoS Comput. Biol. 5,
e1000291 (2009).

55. Rabinowitz, N. C., Goris, R. L., Cohen, M. & Simoncelli, E. P.
Attention stabilizes the shared gain of v4 populations. eLife 4,
e08998 (2015).

56. Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C. & Brunel, N.
How spike generation mechanisms determine the neuronal
response to fluctuating inputs. J. Neurosci. 23, 11628–11640
(2003).

http://www.nature.com/natcomputsci
https://arxiv.org/abs/1012.2599

Nature Computational Science | Volume 4 | September 2024 | 690–705 705

Article https://doi.org/10.1038/s43588-024-00688-3

57. Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity.
J. Neurophysiol. 94, 3637–3642 (2005).

58. Hansel, D., Mato, Germán, Meunier, C. & Neltner, L. On numerical
simulations of integrate-and-fire neural networks. Neural Comput.
10, 467–483 (1998).

59. Snyder, A. C., Yu, B. M. & Smith, M. A. A stable population code for
attention in prefrontal cortex leads a dynamic attention code in
visual cortex. J. Neurosci. 41, 9163–9176 (2021).

60. Li, L. & Talwalkar, A. in Uncertainty in Artificial Intelligence
(eds Adams, R. P. & Gogate, V.) 367–377 (PMLR, 2020).

61. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of
changepoints with a linear computational cost. J. Am. Stat. Assoc.
107, 1590–1598 (2012).

62. Swersky, K., Snoek, J. & Adams, R. P. Freeze-thaw Bayesian
optimization. Preprint at https://arxiv.org/abs/1406.3896 (2014).

63. Gelbart, M. A., Snoek, J. & Adams, R. P. Bayesian optimization with
unknown constraints. In Proc. 30th Conference on Uncertainty in
Artificial Intelligence 250-259 (AUAI Press, 2014).

64. Hutter, F., Hoos, H. H., Leyton-Brown, K. & Murphy, K. P.
An experimental investigation of model-based parameter
optimisation: Spo and beyond. In Proc. 11th Annual Conference on
Genetic and Evolutionary Computation 271–278 (Association for
Computing Machinery, 2009).

65. Yang, GuangyuRobert, Joglekar, M. R., Song, H. F., Newsome, W. T.
& Wang, Xiao-Jing Task representations in neural networks trained
to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

66. Snyder, A., Johnston, R. & Smith, M. Utah array recordings from
visual cortical area V4 and prefrontal cortex with simultaneous
EEG. CMU KiltHub https://doi.org/10.1184/R1/19248827 (2024).

67. Wu, S. Spiking network optimization using population statistics:
v1.0.0. Zenodohttps://doi.org/10.5281/zenodo.13218535 (2024).

Acknowledgements
This work was supported by National Institutes of Health (NIH) R01
NS121913 (C.H.), NIH K99 EY025768 (A.C.S.), NIH R01 EB026953 (B.D.,
M.A.S. and B.M.Y.), NIH R01 MH118929 (B.M.Y. and M.A.S.), National
Science Foundation (NSF) Integrative Strategies for Understanding
Neural and Cognitive Systems (NCS) Division of Behavioral and
Cognitive Sciences (BCS) 1734916/1954107 (B.M.Y. and M.A.S.),
Simons Foundation NC-GB-CULM-00002794-06 (C.H.), 542967
(B.D.) and 543065 (B.M.Y.), NSF NCS Research on Learning in Formal
and Informal Settings (DRL) 2124066 (B.M.Y. and M.A.S.), NIH R01
EY029250 (M.A.S.), NIH U19 NS107613 (B.D.), Vannevar Bush faculty

fellowship N00014-18-1-2002 (B.D.), NSF NCS BCS 1533672 (B.M.Y.),
NIH R01 HD071686 (B.M.Y.), NIH R01 NS105318 (B.M.Y.), NIH RF1
NS127107 (B.M.Y.) and NIH R01 NS129584 (B.M.Y.). This work used the
Extreme Science and Engineering Discovery Environment, which is
supported by National Science Foundation grant ACI-1548562.

Author contributions
S.W., C.H., M.A.S., B.D. and B.M.Y. designed the analyses. S.W.
implemented SNOPS and performed all analyses. A.C.S. and M.A.S.
designed and performed the experiments. S.W., C.H., M.A.S., B.D. and
B.M.Y. wrote the manuscript. All authors discussed the results and
commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43588-024-00688-3.

Correspondence and requests for materials should be addressed to
Byron M. Yu.

Peer review information Nature Computational Science thanks
Valentin Dragoi and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Primary Handling Editor:
Ananya Rastogi, in collaboration with the Nature Computational
Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

http://www.nature.com/natcomputsci
https://arxiv.org/abs/1406.3896
https://doi.org/10.1184/R1/19248827
https://doi.org/10.5281/zenodo.13218535
https://doi.org/10.1038/s43588-024-00688-3
http://www.nature.com/reprints

	Automated customization of large-scale spiking network models to neuronal population activity

	Results

	Model overview

	Activity statistics for comparing models with neuronal activity

	Manual customization of SNNs to neuronal activity

	Customizing SNNs using BO

	Recovering activity statistics in simulation using SNOPS

	Customizing SNNs to V4 and PFC population recordings

	Revealing limits of network model flexibility using tradeoffs in activity statistics

	Discussion

	Methods

	Components for customizing a network model

	Spiking network models

	Model details
	Model simulation
	Identifying the four activity regimes for the CBN

	Activity statistics

	Single-neuron statistics
	Pairwise statistic
	Population statistics
	Estimating activity statistics

	Neuronal recordings

	Cost function

	Optimization algorithm

	Problem setup
	Random search
	BO
	Feasibility constraints
	Intensification
	Local optima

	Tradeoff cost

	Verifying SNOPS in simulation

	Customizing CBN and SBN to neuronal recordings

	SNOPS running time

	Reporting summary

	Acknowledgements

	Fig. 1 Framework for automated customization of a spiking network model to neuronal recordings.
	Fig. 2 Activity statistics for comparing the activity of a spiking network model to neuronal recordings.
	Fig. 3 Customizing a spiking network model using BO with GPs.
	Fig. 4 Accurate customization of a CBN model to simulated spike trains using SNOPS.
	Fig. 5 Reproducing activity statistics of macaque V4 and PFC recordings with the CBN and SBN.
	Fig. 6 Revealing the inflexibility of CBN relative to SBN with tradeoff cost.

