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BRAIN–COMPUTER INTERFACES

From unstable input to robust output
In the presence of recording instabilities, the performance of brain–computer interfaces can be robustly maintained 
by exploiting ‘hidden’ structures underlying neural activity.

Lahiru N. Wimalasena, Lee E. Miller and Chethan Pandarinath

In people with paralysis, brain–computer 
interfaces (BCIs) can restore voluntary 
movements by interfacing directly with 

the brain to translate movement intention 
into action. The best-performing BCIs 
monitor movement-related neural signals 
via implanted microelectrodes. To translate 
the monitored signals into commands, 
a decoder is trained to find a mapping 
from recorded neural activity to a control 
signal. Progress in the development of 
BCIs has enabled their use in a range of 
applications, such as rapid typing, the 
control of anthropomorphic robotic arms, 
the production of synthetic speech and the 
stimulation of paralysed muscles to enable 
reaching and grasping1–4. However, neural 
recording instabilities incurred over time 
present challenges to maintaining robust 
closed-loop performance. For example, slight 
displacements of the implanted electrodes 
(relative to the surrounding brain tissue) 
can cause changes in recorded neuron 
identity and lead to intraday and inter-day 
instabilities, confounding the decoding of 
intent5,6. Reporting in Nature Biomedical 
Engineering, Byron Yu and colleagues now 
show that the decoding performance of BCIs 
can be stabilized by harnessing ‘hidden’ 
structures (known as low-dimensional neural 
manifolds) underlying the activity of large 
numbers of neurons7.

Neural manifolds represent patterns 
of coordinated activity across neurons 
that would be unidentifiable by looking 
only at individual neuronal activity8,9 
(Fig. 1a). They are thought to reflect 
constraints imposed by the underlying 
neural circuitry9. BCI decoders that rely 
on neural manifolds use a two-stage 
approach: a dimensionality-reduction 
stage to map the activity of individual 
neurons onto the underlying manifold, 
followed by the mapping of the manifold 
onto movements. And because manifolds 
are computed from a small, random 
sample of the cortical neurons, many 
different sets of recorded neurons can be 
mapped onto the same manifold10–14. These 
manifolds and their decoded output have 
a consistent relationship with behaviour 

across timescales ranging from months 
to years10,12,14. Hence, stable decoding can 
be achieved by properly recalibrating 
the dimensionality-reduction algorithm 
to correctly map the new set of neurons 

onto the same manifold10–14. This can be 
performed without supervision11,13.

Two complementary strategies represent 
the leading methods to reduce the reliance 
on supervised recalibration (the need to 
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Fig. 1 | Patterns in the underlying activity of simultaneously recorded neurons can be leveraged to 
improve the robustness of decoders for BCIs. a, The spiking activity of neurons (vertical marks at 
the top of the schematic) at any point in time can be represented as a point in a ‘state space’ (with 
as many dimensions as electrodes), where each axis represents the degree of activity recorded by a 
single electrode. Not all possible patterns of activity are observed; rather, neural activity is confined to 
a lower-dimensional manifold (in this example, a two-dimensional plane within the three-dimensional 
state space). To decode the movements intended by the user of the BCI, a manifold-decoding approach 
projects neural activity onto a set of one or more output axes (the arrows here denote a single axis).  
b, Left: a low-dimensional manifold, which can be obtained via factor analysis, can be defined by a set of 
vectors (p) within the higher-dimensional state space of neural activity. The decoder’s output relies on 
a set of decoding axes (d) defined in reference to p (for simplicity, only a single axis is shown). Middle: 
during the use of the BCI, new estimates of the manifold (p’) are periodically made. Right: accurate 
decoding from the new manifold requires finding an orthogonal transformation that orients p’ so as to 
map onto p. This involves the identification of ‘reference’ electrodes (black) that remained stable with 
respect to the manifold. p’ differs from p in its relationship to individual electrodes because of recording 
instabilities, as some electrodes no longer monitor the same neurons (red). Panel b adapted with 
permission from ref. 7, Springer Nature Limited.
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collect a new labelled training dataset to 
correct for neural signal instability, which 
interrupts device use, increases training time 
and user effort, and needs the assistance of 
a technician or caregiver): training neural 
network decoders by using month-long 
datasets that expose the decoder to a wide 
variety of neurons and thus limits the 
amount of human supervision required5, 
and the automatic adaptation of decoders 
without the need for explicit supervised 
recalibration15. The use of large training 
datasets and neural network decoders can 
achieve impressive robustness, as shown 
in a two-dimensional cursor movement 
task performed by non-human primates5. 
However, collecting such large supervised 
datasets would require a substantial time 
commitment from the user and is therefore 
challenging to perform clinically. Instead, 
semi-supervised approaches recalibrate 
decoders by using the retrospective analysis 
of data collected during the subject’s normal 
use of the BCI8. For instance, in a setting 
with predefined targets, the neural activity 
preceding movement to a given target 
likely reflects the subject’s intention to 
move toward that target. This knowledge 
can be used to update the decoder (much 
like the fully supervised case). For clinical 
BCIs, semi-supervised recalibration is 
state-of-the-art and confers stability across 
months of BCI use. However, it works 
only when the user’s intent can be guessed 
post-hoc (as in BCI spellers or movement 
among a limited number of predefined 
targets). Thus, it is unlikely to scale to 
complex, naturalistic settings, such as the 
operation of a prosthetic robotic arm  
with several degrees of freedom moving 
without constraints.

Yu and co-authors’ method stabilizes 
manifold decoders during online 
use by periodically updating the 
dimensionality-reduction stage in an 
unsupervised fashion (Fig. 1b). Their 
dimensionality reduction uses factor 
analysis, a statistical method for finding 
unobserved variables that explain relations 
among a larger number of correlated, 
observed variables. The authors’ approach 
iteratively aligns the estimated manifold to 
the previous one. This consistent manifold 
is then passed onto a fixed decoding stage 
to produce robust output. The authors 
tested the method with two rhesus 
monkeys performing a cursor control 
task via an intracortical microelectrode 
array implanted in their primary motor 
cortex. Because neural instabilities occur 
unpredictably, the authors intentionally 
perturbed the system with known synthetic 
instabilities (such as adding firing-rate 
offsets, dropping electrodes and swapping 

activity between electrodes). Across 42 
single-day experiments with new synthetic 
instabilities introduced each day, the 
authors observed that their stabilization 
method quickly restored the performance of 
the BCI (prior to stabilization, success rates 
had dropped by half and target-acquisition 
times increased at least fourfold) and 
within approximately 90 seconds, 
performance approached baseline levels. 
Without stabilization, the performance 
never returned to baseline levels within 
a session, indicating that the stabilizer 
addressed instabilities that the monkeys 
were unable to overcome on their own. 
The authors also show that the stabilizer 
counteracted both known synthetic and 
naturally occurring instabilities over 5-day 
experiments. However, the recovery from 
synthetic instabilities in these experiments 
took more than four times longer than 
that for the single-day sessions. This is 
partially due to the longer window of 
neural activity needed to estimate the 
manifold in multi-day experiments. Also, 
manifold stabilization yielded decoded 
command signals that were more accurate 
than those from an offline analysis using 
semi-supervised recalibration (which 
relies on knowing the monkey’s intended 
target). This is in line with the fact that the 
intended target information accounts for 
just a small fraction of the activity of the 
neural population and shows that neural 
manifolds provide a richer signal14.

Yu and co-authors’ results are an online 
demonstration of robust recovery of BCI 
cursor control via manifold alignment 
(which had been shown previously in an 
offline setting11,13). Their study highlights 
the need for the further investigation 
of a number of translationally relevant 
questions, such as the degree to which the 
manifold structure is conserved across 
diverse naturalistic behaviours (in the 
authors’ study, the monkeys performed 
a simple two-degrees-of-freedom cursor 
movement task); if other behaviours 
elicit a higher-dimensional manifold 
structure, its alignment might require the 
user to execute a fixed set of calibration 
behaviours. This in turn raises the question 
of how well the manifold alignment would 
generalize. Furthermore, although manifold 
approaches may yield stable decoding for 
well-learned behaviours, the learning of 
new behaviours may fundamentally alter the 
manifold9,16. Maintaining stable decoding 
in the face of a behaviour-dependent or 
learning-dependent manifold structure 
may be impossible without resorting 
to supervised methods. Solutions to 
this may include the identification of 
poor decoding performance via the 

detection of corrective movements, the 
monitoring of error-related neural activity 
or the integration of semi-supervised 
approaches15 that learn gradual changes 
in the manifold-to-behaviour mapping. 
Moreover, a particular drawback of the 
authors’ method is that the alignment 
of successive windows of neural activity 
requires that the activity recorded by a 
subset of electrodes remains stable across 
two successive windows, which may allow 
the manifold alignment and thus the 
decoder’s performance to drift. If any given 
behaviour generates neural data spanning 
only a limited portion of the full manifold 
structure (which seems likely), it may be 
necessary to collect alignment data from 
many different behaviours within a time 
window that retains a sufficient number of 
stable electrodes. The fewer the available 
electrodes, the worse this problem becomes. 
Ultimately, an alignment approach that 
compares any current data distribution 
to a large reference distribution without 
requiring stable electrodes may prove 
advantageous.

Yu and co-authors used linear methods 
to robustly align successive windows 
of neural activity because they are 
computationally tractable for real-time 
applications. However, the dependence 
on successive-window alignment could be 
removed with alternative strategies. For 
example, a neural network that implemented 
adversarial domain adaptation achieved 
accurate manifold alignment and offline 
decoding with surprisingly small data 
windows and without requiring stable 
electrodes13. Also, approaches for dynamical 
systems that learn the rules that govern 
how neural activity evolves over time 
can provide complementary information 
to manifold structure that may further 
improve alignment10,12. Overall, further 
improvements to the stabilization of neural 
decoder performance will help mitigate 
the robustness issues that are hampering 
progress in the development of BCIs that 
can enable individuals with paralysis to 
regain function and independence. ❐
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	Fig. 1 Patterns in the underlying activity of simultaneously recorded neurons can be leveraged to improve the robustness of decoders for BCIs.




