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Highlights

• The interplay of neuronal recordings and network models is becoming ever stronger.

• Population activity structure provides common ground for incisive comparisons.

• Dimensionality reduction is used to identify population activity structure.

• This approach is used to study working memory, decision making, motor control, etc.
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Abstract 1

A long-standing goal in neuroscience has been to bring together neuronal recordings and neural 2

network modeling to understand brain function. Neuronal recordings can inform the 3

development of network models, and network models can in turn provide predictions for 4

subsequent experiments. Traditionally, neuronal recordings and network models have been 5

related using single-neuron and pairwise spike train statistics. We review here recent studies 6

that have begun to relate neuronal recordings and network models based on the 7

multi-dimensional structure of neuronal population activity, as identified using dimensionality 8

reduction. This approach has been used to study working memory, decision making, motor 9

control, and more. Dimensionality reduction has provided common ground for incisive 10

comparisons and tight interplay between neuronal recordings and network models. 11

Introduction 12

For decades, the fields of experimental neuroscience and neural network modeling proceeded 13

largely in parallel. Whereas experimental neuroscience focused on understanding how the 14

activities of individual neurons relate to sensory stimuli and behavior, the modeling community 15

sought to understand theoretically how neural networks can give rise to brain function. In 16

recent years, developments in neuronal recording technology have enabled the simultaneous 17

recording of hundreds of neurons or more [1]. Concurrently, increases in computational power 18

have enabled the simulation of large neural networks [2]. Together, these developments should 19

enable experimental data to more stringently constrain network model design and network 20

models to better predict neuronal activity for subsequent experiments [3]. 21

When relating large-scale neuronal recordings with large-scale network models, it is not 22

meaningful to correspond each recorded neuron to a neuron in the network model. This is 23

because network models typically do not attempt to replicate the precise anatomical 24

connectivity of the biological network from which the neurons are recorded. To date, 25

comparisons between recordings and models have primarily relied on aggregate spike train 26

statistics based on single neurons (e.g., distribution of firing rates [4], distribution of tuning 27

preferences [5], Fano factor [6]) and pairs of neurons (e.g., spike time [7] and spike count 28

correlations [8, 9]). To go beyond single-neuron and pairwise statistics, recent studies have 29

examined the multi-dimensional structure of neuronal population activity to uncover important 30

insights into mechanisms underlying neuronal computation (e.g., [10–18]). This has motivated 31

the inquiry of whether network models reproduce such population activity structure, in addition 32

to single-neuron and pairwise statistics, raising the bar on what constitutes an agreement 33

between a network model and neuronal recordings. 34

Population activity structure is typically characterized using dimensionality reduction [19], 35

which provides a concise summary (i.e., a low-dimensional representation) of how a population 36

of neurons covaries and how their activities unfold over time. The low-dimensional 37

representation describes a neural process being carried out by the larger circuit from which the 38

neurons were recorded (e.g., [20–23]). The same dimensionality reduction method can be applied 39

to the recorded activity and to the network model activity, resulting in population activity 40

structures that can be directly compared (Fig. 1). Importantly, the comparison of population 41

activity structure does not require a one-to-one correspondence between each recorded neuron 42

and a model neuron, and instead relies on correspondence at the level of the population. 43
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Fig 1. Relating biological and model networks using population analyses: Because
a model network typically does not attempt to replicate the precise anatomical connectivity of a
biological network, it is not meaningful to correspond each biological neuron with a model
neuron. Instead, dimensionality reduction can be used to obtain a concise summary of the
population activity from each network. This provides common ground for incisive comparisons
between biological and model networks. Discrepancies in the population activity structure
between biological and model networks can then help to refine model networks.

This approach has been adopted by recent studies to relate neuronal recordings and network 44

models more closely than ever before to study working memory, decision making, motor control, 45

and more. Although many studies have separately employed large-scale neuronal recordings, 46

large-scale network models, and dimensionality reduction, this review focuses on studies that 47

incorporate all three components. Below we describe these studies, organized by the aspect of 48

population activity structure used to relate neuronal recordings and network models: 49

population activity time courses, functionally-defined neuronal subspaces, and population-wide 50

neuronal variability. These were chosen first because they represent the key ways in which 51

dimensionality reduction has been used in the literature to relate population recordings and 52

network models. More importantly, these three categories represent fundamental aspects of 53

population activity structure – how it unfolds over time, how different types of information can 54

be encoded in different subspaces, and how it varies from trial to trial. 55

Population activity time courses 56

Dynamical structures, such as point attractors, line attractors, and limit cycles, arising from 57

network models have long been hypothesized to underlie the computational ability of biological 58

networks of neurons [24–26]. Such dynamical structures have been implicated in decision 59

making [27,28], memory [29–31], oculomotor integration [32,33], motor control [34], 60

olfaction [35], and more. A fundamental question in systems neuroscience is whether these 61

dynamical structures are actually used by the brain. Although single-neuron and pairwise 62

metrics can be informative [30,33], analyzing the activity of a population of neurons together 63

has enabled deeper connections. In particular, the time course of the activity of a population of 64

neurons can be summarized by low-dimensional neural trajectories [10,20], as identified by 65

dimensionality reduction. These neural trajectories can provide a signature of a particular 66
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dynamical structure. For example, a point attractor shows convergent trajectories. A key 67

advantage of this approach is that it does not require a one-to-one correspondence between each 68

recorded neuron and a model neuron, but instead relies on a summary of the population 69

activity time courses. 70

This approach was recently used to study how the brain flexibly controls the timing of 71

behavior [17]. By applying dimensionality reduction to neuronal activity recorded from medial 72

frontal cortex, Wang et al. found that population activity time courses for different time 73

intervals followed a stereotypical path, but traversed that path at different speeds (Fig. 2A, 74

top). To understand how a network of neurons can accomplish this, the authors trained a 75

recurrent network model with 200 neurons to produce only the appropriate stimulus-behavior 76

relationships. Wang et al. then applied dimensionality reduction to the activity from the 77

network model. They surprisingly observed that the neural trajectories of the network model 78

also followed a stereotypical path, even though the network model was not trained to reproduce 79

the recorded activity (Fig. 2A, bottom). This population-level correspondence enabled by 80

dimensionality reduction laid the foundation for them to then dissect the network model to 81

understand the core neuronal mechanisms [36]. They found that the input to the network drove 82

the network activity from one fixed point to another, where the transition speed was 83

determined by the depth of the energy basin created by the input (Fig. 2A, bottom). 84

Other studies have also used this approach to understand how the time course of neuronal 85

activity relates to computations underlying motor control [37–40] and decision 86

making [13,41,42]. In each of these studies, a network model was constructed without 87

referencing the recorded activity. Dimensionality reduction was applied to extract neural 88

trajectories to obtain a correspondence between the neuronal recordings and network models. 89

To study the neuronal mechanisms underlying the observed time courses, the network models 90

were then dissected to reveal dynamical structures, such as fixed points or point 91

attractors [13,41,42], line attractors [13], and oscillatory modes [37–40]. Whether or not these 92

dynamical structures are indeed at play in real neuronal networks is still an open question. 93

Nevertheless, these studies are beginning to demonstrate that it is at least fruitful to interpret 94

neuronal activity in terms of these dynamical structures, a process facilitated by dimensionality 95

reduction. 96

Functionally-defined neuronal subspaces 97

Recent studies have investigated how distinct types of information encoded by the same 98

neuronal population can be parsed by downstream brain circuits [44–46]. An enticing proposal 99

is that different types of information are encoded in different subspaces within the population 100

activity space, where the subspaces are identified using dimensionality reduction. For example, 101

Kaufman et al. [14] asked how it is possible for neurons in the motor cortex to be active during 102

motor preparation, yet not generate an arm movement. They found that motor cortical activity 103

during motor preparation resided outside of the activity subspace most related to muscle 104

contractions. This allows the motor cortex to prepare arm movements without driving 105

downstream circuits, a characteristic which can be implemented by a linear readout mechanism. 106

This concept of functionally-defined neuronal subspaces has also been used in other studies of 107

motor control [47,48], decision making [21,49], short-term memory [21,50], learning [15], and 108

stimulus encoding [51]. 109

To understand how a neuronal circuit can implement and exploit such functionally-defined 110
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Fig 2. Examples of comparing neuronal recordings and network models using
dimensionality reduction. A. (Top) Population activity time courses from medial frontal
cortex during a time production task. Each trajectory represents a different produced time
interval. Diamonds indicate 500 ms after the start of the time production interval. (Bottom)
Population activity time courses for a recurrent neural network trained to perform the same
time production task. Circles indicate fixed points of the network. Adapted with permission
from [17]. B. (Top) Delay period activity from prefrontal cortex during a delayed saccade task.
Each trajectory represents a different stimulus condition. The trajectories for different stimuli
remains well-separated in a stimulus subspace throughout the delay period. (Bottom) Network
model activity demonstrating similar subspace stability. Adapted with permission from [16]. C.
(Top) Dimensionality of population-wide neuronal variability in primary visual cortex increases
with the number of neurons recorded. (Bottom) A similar dimensionality trend is observed for a
spiking network model with clustered excitatory connections (blue), but not for a model with
unstructured connectivity (red). Adapted with permission from [43].

neuronal subspaces, one can construct a network model that reproduces the empirical 111

observations, then dissect the network to study mechanisms. Mante et al. [13] applied 112

dimensionality reduction to recordings in prefrontal cortex to find that motion and color of the 113

visual stimulus were encoded in distinct subspaces. They then trained a recurrent network 114

model with 100 neurons to produce only the appropriate stimulus-behavior relationships. When 115

they applied the same dimensionality reduction method to the network model activity, they 116

surprisingly found that the motion and color of the visual stimulus were also encoded in distinct 117

subspaces, even though the network model was not trained to reproduce the recorded activity. 118

This population-level correspondence between the network model and recordings was enabled 119

by dimensionality reduction and went beyond comparisons based on individual neurons or pairs 120

of neurons. Mante et al. then dissected the network model to uncover how the two types of 121

information encoded by a single neural population can be selectively used to form a decision. 122

Dimensionality reduction has also revealed that, in some cases, standard network models do 123

not reproduce the functionally-defined subspaces identified from neuronal recordings. For 124

example, Murray et al. [16] applied dimensionality reduction to recordings in prefrontal cortex 125
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during a working memory task to find that, even though firing rates of individual neurons 126

changed over time, there was a subspace in which the activity stably encoded the memorized 127

target location (Fig. 2B, top). They then applied the same analyses to activity from several 128

prominent network models and found that none of them reproduced both the time-varying 129

activity of individual neurons and the subspace in which the memory was stably encoded. This 130

provided the impetus to develop a new network model that did reproduce these features of the 131

recorded activity (Fig. 2B, bottom) (see also [52]). As another example, Elsayed et al. [53] 132

found that standard network models do not reproduce the empirical observation described 133

above that neuronal activity during movement preparation and movement execution lie in 134

orthogonal subspaces. Such insights obtained using dimensionality reduction can guide the 135

development of more sophisticated network models. 136

Population-wide neuronal variability 137

The previous sections focus largely on neuronal activity that is averaged across trials and on 138

firing rate-based network models. This naturally obscures the trial-to-trial variability that is a 139

fundamental feature of neuronal responses across the cortex [54], both at the level of single 140

neuron responses [55] as well as variability shared by the population [9, 56]. Theoretical and 141

experimental studies have focused on how the structure of that variability places limits on 142

information coding [57–60], and in turn influences our behavior. At the same time, a growing 143

body of work has demonstrated that variability can be thought of not only as noise to be 144

removed, but also a signature of ongoing decision processes and cognitive variables [61–63]. To 145

move beyond single-neuron and pairwise measurements of neuronal variability, recent studies 146

have begun to consider population-wide measures of neuronal variability [64–68], as enabled by 147

dimensionality reduction. Such measures allow one to i) assess whether the large number of 148

single-neuron and pairwise variability measurements can be succinctly summarized by a small 149

number of variables (e.g., the entire population increasing and decreasing its activity together 150

can be described by a single scalar variable), and ii) relate the population activity on individual 151

experimental trials to behavior [18,20,22,23,69–71]. 152

In parallel with the growing interest in neuronal variability have been attempts to create 153

network models that exhibit variability matching recorded neurons. In particular, a class of 154

models has used the balance between excitation and inhibition as a way to generate variability 155

as an emergent property of network structure, rather than via an external variable 156

source [57,72,73]. In these models, the particular structure of the network has a large impact 157

on the population-wide variability that emerges. Using the lens of factor analysis, Williamson et 158

al [43] found that the dimensionality of spontaneous activity fluctuations in V1 neurons 159

increases with the number of recorded neurons (Fig. 2C, top). This was more consistent with 160

activity generated by networks with clustered excitatory connections [6] than networks with 161

unstructured connectivity [72] (Fig. 2C, bottom). The combination of population-wide 162

measures of variability (in this case, dimensionality) and the ability to manipulate model 163

network structures facilitated an understanding of how features of variability observed in 164

biological networks relate to network structure. 165

The approach of using dimensionality reduction to compare the population-wide variability 166

of neuronal recordings and network models has also been applied to study spontaneous versus 167

evoked activity [74], the activity of different classes of neurons [75], and the activity during 168

different behavioral conditions, such as attention [66,67]. Dimensionality reduction has also 169
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been used to analyze population activity from balanced network models to help identify the 170

crucial network architecture and synaptic timescales required to produce the low-dimensional 171

shared variability that is widely reported in neuronal recordings [67, 73]. Together these studies 172

demonstrate the power of combining dimensionality reduction and network models to 173

understand the mechanisms and effects of neuronal variability. 174

Conclusion 175

Dimensionality reduction has enabled incisive comparisons between biological and model 176

networks in terms of population activity time courses, functionally-defined neuronal subspaces, 177

and population-wide neural variability. Such comparisons result in either i) a correspondence 178

between the the neural recordings and the network model, in which case the model can be 179

dissected to understand underlying network mechanisms, or ii) discrepancies between the neural 180

recordings and standard network models, leading to the development of improved models. This 181

approach (cf. Fig. 1) has already provided important insight into the neuronal mechanisms 182

underlying working memory, decision making, and motor control, and is likely to become even 183

more important as the scale of neural recordings and network models grows. 184

An important consideration in network modeling is what aspects of neuronal recordings the 185

model should reproduce. We posit that the population activity structure (including population 186

activity time courses, functionally-defined neuronal subspaces, and population-wide neuronal 187

variability) will provide key signatures of how neurons work together to give rise to brain 188

function. Thus, if a network model is to provide a systems-level account of brain function, we 189

should require it to reproduce the population activity structure of neuronal recordings, in 190

addition to standard spike train statistics based on individual and pairs of neurons. 191

Most studies described here have used neuronal recordings to inform network models via 192

dimensionality reduction. An important future direction is to use network models and 193

dimensionality reduction to design new experiments and form predictions. For example, if one 194

day we can experimentally perturb neuronal activity in specified directions in the population 195

activity space [47], we can test whether driving the population activity in particular directions 196

leads to particular decisions or movements predicted by the network model. The hope is to 197

establish a virtuous cycle, where neuronal recordings and network models closely inform each 198

other through the common ground provided by dimensionality reduction. 199
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Mante et al. [13]*: In a context-dependent decision-making task, the authors found that 398

color and motion information were encoded in distinct subspaces of PFC population activity. A 399

recurrent network model trained to perform the same task revealed a network-level mechanism 400

of how the two types of information can be selectively used to form a decision. 401

402

Murray et al. [16]**: The authors analyzed population activity recorded in prefrontal cortex 403

and identified a low-dimensional subspace in which stimulus information was reliably encoded, 404

despite the fact that individual neurons showed substantial time-varying activity. They then 405

found that standard models did not reproduce this empirical observation, and proceeded to 406

develop a “stable subspace” model that did reproduce this observation. 407

408

Wang et al. [17]**: Recording from medial frontal cortex during a timing task, the authors 409

found that population activity time courses followed a stereotypical path, but traversed the 410

path at different speeds based on the duration of the timing interval. They found similar trends 411

in a recurrent network model trained to perform the task and showed that speed of traversal 412

was determined by the network inputs. 413

414

Sussillo et al. [38]*: The authors trained a recurrent network model to produce muscle 415

activity patterns observed in an arm reaching task. The model activity surprisingly showed 416

rotational dynamics that mimicked those observed empirically in M1 population recordings. 417

418

Chaisangmongkan et al. [42]*: The authors found that PFC and LIP neurons show mixed 419

selectivity during a delayed match-to-category task, and that the neural trajectories extracted 420

using dimensionality reduction are interpretable during each epoch of the task. They then 421

constructed a recurrent network model to understand the network principles that govern the 422

activity time courses during this task. 423

424

Williamson et al. [43]**: This study compared the population activity structure of V1 425

recordings and spiking network models while varying the number of neurons and trials analyzed. 426

The scaling trends of the V1 recordings better resembled a model with clustered excitatory 427

connections than one with unstructured connectivity. 428

429

Elsayed et al. [53]*: This study found that M1 population activity during movement 430

preparation and movement execution resides in orthogonal subspaces. Standard network models 431

did not reproduce this empirical observation. 432

433

Mazzucato et al. [74]*: Comparing gustatory cortex recordings and spiking network models, 434

the authors examined how the dimensionality of population activity grows with population size 435

during spontaneous and evoked activity. They then developed a theoretical upper bound on 436

dimensionality based on the level of pairwise correlations. 437
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