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Abstract

Recent studies have applied dimensionality reduction methods to understand how the multi-

dimensional structure of neural population activity gives rise to brain function. It is unclear,

however, how the results obtained from dimensionality reduction generalize to recordings

with larger numbers of neurons and trials or how these results relate to the underlying net-

work structure. We address these questions by applying factor analysis to recordings in the

visual cortex of non-human primates and to spiking network models that self-generate irreg-

ular activity through a balance of excitation and inhibition. We compared the scaling trends

of two key outputs of dimensionality reduction—shared dimensionality and percent shared

variance—with neuron and trial count. We found that the scaling properties of networks with

non-clustered and clustered connectivity differed, and that the in vivo recordings were more

consistent with the clustered network. Furthermore, recordings from tens of neurons were

sufficient to identify the dominant modes of shared variability that generalize to larger por-

tions of the network. These findings can help guide the interpretation of dimensionality

reduction outputs in regimes of limited neuron and trial sampling and help relate these out-

puts to the underlying network structure.
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Author Summary

We seek to understand how billions of neurons in the brain work together to give rise to

everyday brain function. In most current experimental settings, we can only record from

tens of neurons for a few hours at a time. A major question in systems neuroscience is

whether our interpretation of how neurons interact would change if we monitor orders of

magnitude more neurons and for substantially more time. In this study, we use realistic

networks of model neurons, which allow us to analyze the activity from as many model

neurons as we want for as long as we want. For these models, we found that we can iden-

tify the salient interactions among neurons and interpret their activity meaningfully

within the range of neurons and recording time available in current experiments. Further-

more, we studied how the neural activity from the models reflects how the neurons are

connected. These results help to guide the interpretation of analyses using populations of

neurons in the context of the larger network to understand brain function.

Introduction

Dimensionality reduction methods (for review, see [1]) have revealed compelling descriptions

of neural mechanisms underlying decision-making [2, 3], motor control [4, 5], olfaction [6],

working memory [7], visual attention [8], audition [9], rule learning [10], and speech [11].

These methods characterize the multi-dimensional structure of neural population activity

based on how the activity of different neurons co-varies. Despite the growing use of

dimensionality reduction in systems neuroscience, it is unclear whether results obtained using

a limited number of neurons and trials are informative of the larger circuit from which the

neurons are sampled [12]. Furthermore, since the connectivity structure of the neural popula-

tion is typically unknown during in vivo recordings, it is unclear how these results relate to the

underlying network structure. This paper addresses these gaps by applying dimensionality

reduction to population activity from in vivo recordings and spiking network models.

While our ultimate goal is to understand the population activity structure of in vivo record-

ings, there are several important benefits of analyzing population activity generated by spiking

network models. First, because we can sample as many neurons and trials as desired from a

spiking network model, we can measure how the outputs of dimensionality reduction vary

over a wide range of neuron and trial counts. This allows us to assess whether the results

obtained using a limited number of neurons and trials are representative of the larger network.

Second, we can assess how these scaling trends are influenced by the known underlying net-

work structure. Third, we can study how the results are influenced by which neurons are sam-

pled in the network. This paper utilizes these three benefits of spiking network models to

develop a deeper intuition for the relationship between the outputs of dimensionality reduc-

tion and the underlying neural circuit.

Spiking network models that balance excitation and inhibition have been widely studied to

understand the mechanisms underlying spike timing variability and correlated variability

across neurons (e.g., [13–17]). Recent studies have introduced clustering structure and found

that the single-neuron and pairwise statistics of these networks better capture the slow fluctua-

tions in firing rate observed during in vivo recordings [17–19]. In this work, we focus on two

types of spiking network models: clustered networks and classic balanced (non-clustered)

networks.

To study single-trial population activity, we used factor analysis (FA), a linear dimensional-

ity reduction method [2, 4, 20–22]. A key feature of FA is that it partitions spike count
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variability into a component that is shared among the recorded neurons and a component that

is independent across neurons. From a statistical perspective, the shared component can be

thought of as the co-fluctuations of the underlying firing rates of the recorded neurons, and

the independent component can be thought of as the Poisson-like spiking variability of neu-

rons [5, 23]. Whereas the independent component could be averaged away during down-

stream processing by pooling across neurons, the shared component can be particularly

consequential for behavior [24, 25]. The partition between the shared and independent com-

ponents can depend on which neurons are recorded. For example, a neuron might not co-vary

with any of the recorded neurons, and instead co-vary with unrecorded neurons. By recording

from more neurons, a larger proportion of a neuron’s spike count variability may be assigned

to the shared component, and correspondingly less to the independent component.

In this work, we leveraged this separation of variability into shared and independent

components to quantify two aspects of the population activity structure: (1) shared

dimensionality, which is a measure of the complexity of the shared activity co-fluctuations,

and (2) percent shared variance, which measures the prominence of the shared component

in the spiking activity. These measures generalize the ideas behind spike count correlation

[26], measured between pairs of neurons, to an entire population of neurons. In addition,

we used FA to identify the characteristic ways in which the neurons co-fluctuate, known as

the modes of population activity. The modes of population activity have provided insight

about the neural basis of working memory [27], decision making [3, 28], motor preparation

[29, 30], and learning [4].

We studied the scaling trends of shared dimensionality and percent shared variance with

increasing numbers of neurons and trials. To perform this analysis we used spontaneous activ-

ity recorded in the primary visual cortex (V1) of anesthetized macaque monkeys and activity

generated from non-clustered and clustered spiking network models. In addition, we assessed

the effects of network structure on these metrics and found substantial differences in the scal-

ing properties of the clustered and non-clustered networks, with the clustered network show-

ing many similarities to the in vivo recordings. Furthermore, in vivo recordings from tens of

neurons were sufficient to identify dominant modes of shared variability that generalized to

recordings of larger numbers of neurons. Our results demonstrate how the outputs of

dimensionality reduction depend on the amount of data and the underlying network structure,

and provide support for the use of dimensionality reduction with current recording technolo-

gies (i.e., tens of neurons and hundreds of trials).

Results

A standard approach to studying pairwise relationships in populations of simultaneously

recorded neurons over many trials is to compute the spike count covariance of the population

(Fig 1A, left). To move beyond pairwise correlations to understand shared activity across the

whole population, we first applied FA to partition the spike count covariance into a shared

component and an independent component (Fig 1A, middle and right). We then computed

two metrics to summarize population activity based on the shared component: shared

dimensionality, or dshared (Fig 1B), and percent shared variance (Fig 1C). The dshared measures

the complexity of the shared activity co-fluctuations, or the number of modes, among the neu-

rons. For example, if dshared equals one, then all of the shared variance in the population can be

attributed to a single mode, whereas larger dshared indicates the presence of multiple modes of

shared variability. Percent shared variance measures the prominence of the shared component

in the spiking activity, and is computed based on how much of each neuron’s activity co-varies

with the activity of at least one other recorded neuron.
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Before studying how dshared and percent shared variance scale with the number of neurons

and trials, it is important to recognize that these two measures are distinct. To see this, con-

sider a population of neurons modulated by a common multiplicative gain factor that accounts

for a large portion of the variance [31, 32]. In this case, dshared would be one, and the percent

shared variance would be high. On the other hand, suppose that a population is grouped into

pairs of neurons, where each pair is modulated by a distinct multiplicative gain factor that

accounts for a small portion of total variance. In this scenario, dshared would be high (roughly

equal to half the number of neurons in the population), and the percent shared variance would

be low. Similar scenarios can be imagined that result in low dshared and low percent shared vari-

ance or high dshared and high percent shared variance. These scenarios show that dshared and

percent shared variance do not necessarily change together.

Fig 1. Calculation of shared dimensionality and percent shared variance. (A) Factor analysis partitions the spike count covariance

matrix into shared and independent components. (B) Shared dimensionality (dshared) was defined as the number of eigenvectors (modes)

required to explain 95% of shared variance. (C) The percent shared variance for an individual neuron is defined as the neuron’s shared

variance divided by its total variance. We then averaged this across all neurons to obtain an overall percent shared variance.

doi:10.1371/journal.pcbi.1005141.g001
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Below, we first assess the dshared and percent shared variance of in vivo recordings while

varying neuron and trial counts (Fig 2A). Then we apply the same analyses to spike counts

generated from clustered (Fig 2B) and non-clustered (Fig 2C) spiking network models, allow-

ing us to go beyond the range of neurons and trials available in the in vivo recordings. We per-

form these analyses on spontaneous neural activity. In the case of the in vivo recordings,

spontaneous activity refers to activity recorded during the presentation of an isoluminant grey

screen. In the spiking network models, spontaneous activity refers to the lack of dynamic

external inputs to the network.

Varying neuron and trial count for in vivo neural recordings

We first studied how dshared and percent shared variance scale with neuron count for in vivo
recordings. To do this, we applied FA to spontaneous activity recorded in primary visual cor-

tex (V1) of anesthetized macaques. We binned neural activity into 1-second epochs, where

each bin is referred to as a ‘trial’. Thus, the number of trials is equivalent to the recording time

(in seconds). We sampled increasing numbers of neurons or trials from the recorded popula-

tion activity, and measured dshared and percent shared variance for each neuron or trial count.

We expected dshared and percent shared variance to either saturate or to increase with increas-

ing neuron or trial count. Saturating dshared would suggest that we have identified all of the

modes for the network (or networks) sampled by the recording electrodes and increasing

dshared would suggest that additional modes are being revealed by monitoring additional neu-

rons or trials. We found that dshared increased with neuron count (Fig 3A, Top), while percent

shared variance remained stable with increasing neuron count (Fig 3A, Bottom). Similarly,

additional trials resulted in increasing dshared and stable percent shared variance (Fig 3B).

These scaling trends in dshared and percent shared variance remained the same for spike count

bins ranging from 200 ms to 1 second (S1 Fig). We also found that not taking into account the

sequential nature of the time bins when using factor analysis was reasonable for 1-second bins

(S2 Fig). Together these results demonstrate that, within the range of neurons and trials avail-

able from our recordings, additional neurons and trials allow us to identify additional shared

dimensions. This implies that we have not sampled enough neurons or trials to identify all of

the modes of shared variability. However, given the stable percent shared variance observed in

Fig 3A and 3B (bottom panels), the results suggest that the shared component is dominated by

the first few modes and that additional modes do not explain substantial shared variance. This

is supported by analyses in the next section.

Modes of shared variability for in vivo neural recordings

Recent studies have explored how different modes of population activity are used during dif-

ferent task epochs [28, 29], during learning [4], and after perturbations [30], as well as to

encode different types of information [3, 27]. It is currently unclear how the modes identified

with a limited sampling of neurons relate to those identified from increasingly larger sam-

plings. We studied this question by measuring (1) shifts in the subspaces spanned by the domi-

nant modes and (2) changes in percent shared variance along each mode as neurons are added

to the analysis.

We first examined the modes for the in vivo recordings (Fig 4A left panel), ordered from

most dominant (i.e., explaining the largest amount of shared variance) to least dominant. Con-

sistent with previous work [31–34], the most dominant mode (left-most column in Fig 4A)

comprised many entries of the same sign, implying that a large portion of shared activity

resulted from many neurons increasing and decreasing their activity together. This mode

accounted for over 60% of the shared variability (Fig 4A right panel), and there were other
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Fig 2. Neural populations and network models. (A) Neural activity was recorded using a Utah array

implanted in V1 of macaque monkeys during presentation of an isoluminant gray screen. (B) Clustered

network consisted of 4000 excitatory neurons grouped into 50 clusters of 80 neurons. Triangles represent

excitatory neurons and circles represent inhibitory neurons. Clusters had high within-cluster connection

probability relative to between-cluster connection probability. Connection probabilities between excitatory and

inhibitory neurons indicated above corresponding arrow. (C) Non-clustered network consisted of 4000

excitatory neurons with homogeneous connection probabilities.

doi:10.1371/journal.pcbi.1005141.g002
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modes representing more complex interactions that also accounted for a substantial propor-

tion of shared variability.

To measure how modes of shared variability from in vivo recordings changed direction in

the population activity space with increasing neuron count, we performed the following proce-

dure. We first sampled sets of 80 excitatory neurons from each array and then subsampled 20,

40, or 60 neurons from each 80-neuron set. We sampled such that the 40-neuron sample was a

subset of the 60-neuron sample and that the 20-neuron sample was a subset of the 40-neuron

sample, ensuring that all sets contained the 20-neuron sample. We then identified the five

most dominant modes in each of the 20-, 40-, 60-, or 80-neuron sets. We measured the princi-

pal angles between modes from the subsampled sets and modes from the 80-neuron set based

on the entries in each mode corresponding to the neurons in the 20-neuron set. Smaller princi-

pal angles indicated greater similarity between modes. Fig 4B shows that the most dominant

modes remained largely unchanged as neuron count increased. By definition, the angles

increased with principal angle index because angles were computed beginning with the small-

est possible angle between sets of modes. Percent shared variance along each mode also

remained stable with increasing neuron count (Fig 4C). Note that the quantity plotted in

Fig 3. Scaling properties of shared dimensionality and percent shared variance with neuron and trial count in V1 recordings. The

dshared and percent shared variance over a range of (A) neuron counts and (B) trial counts from population activity recorded in V1. Each

triangle represents the mean across single samples from each of three arrays. Error bars represent one standard error across the three

arrays.

doi:10.1371/journal.pcbi.1005141.g003
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Fig 4. Modes of shared variability in V1 recordings. (A) Left: Modes of in vivo recordings. Each column of

the heatmap is an eigenvector of the shared covariance matrix computed from a set of 80 neurons and 1200

trials. Columns are ordered with modes explaining the most shared variance on the left. Neurons (rows) are

ordered with highest mean firing rate at the top to lowest mean firing rate at the bottom. Right: Percent of

shared variance explained by each mode. Plot shows mean across three arrays. Trends were similar in each

Scaling Properties of Dimensionality Reduction
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Fig 4A (right panel) is related to, but different from, the quantity plotted in Fig 4C. Whereas

Fig 4A (right panel) considers only the shared variability, Fig 4C assesses how much of the

overall spike count variability is assigned to the shared component (as in Fig 3, see Methods

for details). Overall, our study of the modes from in vivo recordings revealed that a few domi-

nant modes explained most of the shared variance and that these dominant modes remained

stable as we added neurons to the analysis.

Varying neuron and trial count for network models within the

experimental regime

In the previous sections, we identified trends in dshared and percent shared variance using in
vivo recordings. Several experimental constraints limit the types of questions we can ask using

in vivo recordings. First, we are limited in the number of neurons and the number of trials that

are recorded. Second, in most experiments, we have no knowledge of the connectivity struc-

ture of the underlying network and cannot relate properties of the population activity to net-

work structure. In this section we overcome these constraints by analyzing activity obtained

from network models.

We consider recurrent spiking network models with distinct excitatory and inhibitory pop-

ulations whose synaptic interactions are dynamically balanced [13, 14]. In particular, we focus

on two subclasses of this model: one where excitatory neurons are grouped into clusters that

have a high connection probability (clustered network) and one where the excitatory popula-

tion has homogeneous connectivity (non-clustered network). Both the clustered and non-clus-

tered networks have been shown to capture variability in spike timing [14, 17]. Clustered

networks have also been shown to demonstrate slow fluctuations in firing rate [17] consistent

with in vivo recordings [20, 35, 36].

In the particular clustered network studied here, each cluster resembles a bistable unit with

low and high activity states that lead neurons in the same cluster to change their activity

together. We expected to identify dimensions that reflected these co-fluctuations within clus-

ters, resulting in dshared bounded by the number of clusters (i.e., 50 dimensions) and high per-

cent shared variance. In contrast, the non-clustered network lacks the highly correlated

activity seen in the clustered network [13, 14, 17], and so we expected to see little or no shared

variance. Note that no shared variance would result in both percent shared variance and dshared

being zero. Small amounts of shared variance relative to total variance would result in low per-

cent shared variance and either low or high dshared depending on the multi-dimensional struc-

ture of the shared variance.

To test how clustered connectivity affects the population activity structure and to under-

stand how the population-level metrics scale with the number of neurons and trials, we per-

formed the following analysis. We applied FA to spike counts, from non-clustered and

clustered network simulations. Each spike count was taken in a 1-second bin of simulation

time, which we refer to as a ‘trial’ in analogy to physiological recordings. We then increased

of the three arrays. (B) Principal angles between modes in in vivo recordings for 20- (black), 40- (blue), or

60-neuron (red) analyses and corresponding neurons from 80-neuron analyses. Modes were identified by

computing the eigenvectors of the shared covariances corresponding to neurons from the 20-neuron set.

Triangles and error bars represent mean and standard error across the three arrays, respectively. Grey

triangles represent principal angles (mean ± one standard deviation) between random 20-dimensional

vectors. (C) Percent shared variance along each mode in the clustered network for 20-neuron analyses (blue)

and 80-neuron analyses (black) used in (B). Note that the maximum number of modes (across the three

arrays) in the 20-neuron sets was 9 and the maximum number of modes in the 80-neuron sets was 22. The

recordings from each array had at least 5 modes. Curves and error bars represent mean percent shared

variance and standard error for each mode across single samples from each of three arrays.

doi:10.1371/journal.pcbi.1005141.g004
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the neuron count, as we did in Fig 3 for the in vivo recordings, with the number of trials fixed

at 1200 to match the analyses shown in Fig 3A. We observed increasing dshared with neuron

count in the clustered network and a dshared of zero for all neuron counts in the non-clustered

network (Fig 5A, Top). The percent shared variance for the clustered network increased with

neuron count and saturated at approximately 90% (Fig 5A, Bottom). In contrast, the non-clus-

tered network showed zero percent shared variance at all neuron counts. In other words, in

the range of trials and neurons studied, FA could not identify any shared population-level

structure in the non-clustered network. These results agree with our predictions, namely non-

zero dshared and high percent shared variance in the clustered network and zero dshared and per-

cent shared variance in the non-clustered network.

We next investigated how dshared and percent shared variance change for an increasing

number of trials, with the number of model neurons fixed at 80 to match the analyses shown

in Fig 3B. We anticipated that dshared and percent shared variance would increase to a satura-

tion point after which enough trials would be available to reliably identify all of the modes of

shared variability. In the clustered network, we observed that dshared (Fig 5B, Top) and percent

shared variance (Fig 5B, Bottom) initially increased and then saturated, indicating that fewer

Fig 5. Scaling properties of shared dimensionality and percent shared variance with neuron and trial count in spiking network

models. The dshared and percent shared variance over a range of (A) neuron counts and (B) trial counts from clustered (filled circles) and

non-clustered (open circles) networks. Circles represent mean across the five non-overlapping sets of neurons and five non-overlapping

sets of trials (25 total sets) and error bars represent standard error across all sets. Standard error was generally very small and therefore

error bars are not visible for most data points.

doi:10.1371/journal.pcbi.1005141.g005
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than 1200 trials were needed to characterize dshared and percent shared variance for 80 neurons

sampled from the clustered network. In the non-clustered network, we observed zero dshared

and percent shared variance for all trial counts. Therefore, of the two networks studied, only

the clustered network demonstrated population-level shared structure within the range of tri-

als obtained in the in vivo recording.

Comparing the model network results (Fig 5) with the experimental results (Fig 3) obtained

from equal numbers of neuron and trials, we observed similar trends in the clustered network

and in vivo recordings. In both cases we observed increasing dshared and saturating percent

shared variance with neuron and trial count. Note that we did not tune network parameters

(e.g., firing rates, number of clusters, etc.) in the clustered network to match the in vivo record-

ings and, therefore, we did not expect the magnitudes of dshared or percent shared variance to

match in the two cases. However, the trends of increasing dshared with neuron and trial count

accompanied by stable percent shared variance suggest that, in both cases, the population

activity is largely governed by a few dominant modes that are well characterized within the

range of neurons and trials obtainable with current recording technology.

Varying neuron and trial count for network models outside of

experimental regime

To better understand how the outputs of dimensionality reduction for limited sampling reflect

larger portions of the network, we investigated how the trends from Fig 5 continued for larger

numbers of neurons and trials. We first varied the number of neurons in the analysis up to 500

neurons. This required us to increase the number of trials from 1200 to 10,000 trials in order

to fit the larger number of parameters in the FA model. We found that dshared in the clustered

network saturated with roughly 100 neurons, whereas dshared in the non-clustered network

continued to increase with neuron count (Fig 6A, Top). In both networks, the percent shared

variance remained stable with additional neurons, but the clustered network had higher shared

variance than the non-clustered network (Fig 6A, Bottom). Within the experiment regime of

neuron counts (10 to 80 neurons) we found non-zero dshared and percent shared variance for

both networks (Fig 6A, Inset). Overall, in the clustered network, we observed saturation in

dshared and percent shared variance with few neurons relative to the network size. This likely

stemmed from the fact that neurons from the same cluster varied together. Therefore, we were

able to identify the majority of shared variance once multiple neurons were sampled from

most clusters. That result contrasts with our observation of increasing dimensionality and low

shared variance in the non-clustered network, which lacks modes describing activity from

groups of co-varying neurons. It is therefore likely that we identified many modes that each

explain small amounts of variability. We investigate this in greater detail below.

To study the effects of large trial count on population-level metrics, we computed dshared

and percent shared variance for 80 neurons while varying the trial count up to 20,000 (Fig 6B).

The non-clustered network had no identifiable shared population activity structure when the

trial count was less than 5,000, consistent with Fig 3; however, with 5,000 or more trials, we

identified non-zero dshared. It is clear from this result that trial counts within the experimental

regime were insufficient to identify shared dimensions, but that additional trials revealed

shared dimensions. Percent shared variance followed a similar trend, with zero percent shared

variance below 5,000 trials, as expected given zero dshared. These results show that many more

trials were required to identify the small amounts of shared variability in the non-clustered

network compared to the clustered network.

The above analyses showed substantial differences between the two model networks. In the

clustered network, the shared population activity structure was salient (approximately 90% of
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the raw spike count variability was shared among neurons) and defined by a small number of

modes (approximately 20 modes), all of which could be identified using a modest number of

neurons and trials. In contrast, for the non-clustered network, the shared population activity

was more subtle (approximately 20% of the raw spike count variability was shared among neu-

rons), distributed across many modes, and required large numbers of trials to identify.

Varying the number of clusters represented in sampled neurons

So far we have sampled neurons at random from the model networks. However, in our in vivo
recordings, we sampled from a spatially restricted population of neurons. When analyzing a

sampling of neurons from a network, it is unclear how the particular neurons that are sampled

influence dshared and percent shared variance. To investigate the effects of non-random sam-

pling procedures, we varied the number of clusters represented in a 50-neuron set. We found

that dshared generally increased with cluster representation (Fig 7A). Interestingly, dshared

exceeded cluster representation for low cluster counts, likely representing less dominant

Fig 6. Scaling properties of shared dimensionality and percent shared variance with large neuron and trial counts in spiking

network models. The dshared and percent shared variance over a range of (A) neuron counts and (B) trial counts from clustered (filled

circles) and non-clustered (open circles) networks. Insets zoom in on range of neurons used in in vivo recordings in Fig 3. Circles represent

mean across the five non-overlapping sets of neurons and five non-overlapping sets of trials (25 total sets) and error bars represent standard

error across all sets. Standard error was generally very small and therefore error bars are not visible for most data points.

doi:10.1371/journal.pcbi.1005141.g006
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modes that are washed out when more clusters are represented. For the 50-cluster case, dshared

was 22.5 ± 0.17 (mean ± standard error), roughly equal to the saturation value for the clustered

network of 21.8 ± 0.25 (mean ± standard error, 500-neuron, filled data point in Fig 6A). Unlike

dshared, percent shared variance remained stable across a wide range of cluster representation

(Fig 7B), even in the most extreme cases of sampling all neurons from a single cluster (one

cluster represented) and sampling one neuron from each cluster (50 clusters represented).

In our analyses, the distribution of samples across the network influenced the observed

dshared, with broader distributions (i.e., with more clusters being represented in the sample)

better characterizing the overall network. With only 50 carefully chosen neurons, we obtained

the saturation dshared and percent shared variance shown in Fig 6. For in vivo networks, our

lack of information about the underlying connectivity of the network prevents us from know-

ing exactly how we should sample to minimize the number of neurons required to fully char-

acterize the population activity structure of the network. However, our results suggest that

tailored sampling procedures may allow characterization of shared variability with fewer neu-

rons than random sampling.

Modes of shared variability for network models

As we did with the in vivo recordings (Fig 4), we also examined the modes of shared variability

for the model networks. In the top 50 modes of the clustered network (Fig 8A, rows sorted by

cluster identity and mean cluster firing rate), the entries corresponding to same-cluster neu-

rons tended to have similar values. Thus these modes described same-cluster neurons increas-

ing or decreasing their activity together. Since the modes were ordered by dominance (i.e.,

columns ordered by amount of shared variance explained), this indicates that the dominant

interactions in the clustered network are those between clusters. The modes beyond the 50th

mode did not reflect the cluster identities of the neurons, but instead described more subtle

interactions between neurons both within and across clusters. Additionally, neurons or clus-

ters of neurons with higher mean firing rates tended to be involved in more dominant modes

in both model networks (Fig 8A and 8B). This is reasonable because neurons with higher firing

rates tend to have higher variance [37], and are therefore capable of covarying more strongly

Fig 7. Influence of cluster representation on shared dimensionality and percent shared variance in the clustered network.

Dependence of (A) dshared and (B) percent shared variance on cluster representation in the set of sampled neurons. Analyses were

performed for 50 neurons with 10,000 trials. ‘Rand’ indicates random sampling over all excitatory neurons. Circles represent mean across

five non-overlapping sets of neurons and five non-overlapping sets of trials (25 total sets) of a single network with clustered structure. Error

bars represent standard error across all sets.

doi:10.1371/journal.pcbi.1005141.g007
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with other neurons (i.e., show higher activity covariance) than neurons with lower firing rates.

In contrast to the clustered network, there was no apparent clustering in the mode entries for

the non-clustered network (Fig 8B), as one would expect from the random uniform connectiv-

ity of the network.

Comparing the modes for the model networks (Fig 8A and 8B) to those for the in vivo
recordings (Fig 4A), neither model network reproduced the first dominant mode of the in vivo
recordings, which described all neurons increasing and decreasing their activity together. We

further asked whether it would be possible to reorder the neurons from the in vivo recordings

(Fig 4A) to obtain clustering structure as shown in Fig 8A for the clustered network. Using the

k-means algorithm to try to identify similar rows of the modes matrix, we did not find clear

clustering structure in the in vivo recordings (S3 Fig, also see Discussion).

Fig 8. Modes of shared variability for spiking network models. (A) Left: Modes of clustered network. Each column of the heatmap is an

eigenvector of the shared covariance matrix computed from a set of 500 neurons and 10,000 trials. Columns are ordered with modes

explaining the most shared variance on the left. Neurons (rows) are ordered by cluster (black lines indicate cluster boundaries), sorted with

the highest mean firing rate clusters at the top. Note that due to random sampling there are an unequal number of neurons in each cluster.

(B) Modes of non-clustered network. Same conventions as in (A), except rows are ordered by firing rate of individual neurons, with the

highest mean firing rate at the top. The number of dimensions that maximized the cross-validated data likelihood was 100 in (A) and 110 in

(B). (C) Percent of shared variance explained by each mode in (A). (D) Percent of shared variance explained by each mode in (B).

doi:10.1371/journal.pcbi.1005141.g008
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Each of the modes in Fig 8A and 8B describe some percentage of the overall shared vari-

ance. A small number of dominant modes explained a large proportion of the shared variance

in the clustered network (Fig 8C), whereas most of the modes in the non-clustered network

explained similar amounts of shared variance (Fig 8D). We summarized these curves (Fig 8C

and 8D) using dshared, defined as the number of modes needed to explain 95% of the shared

variance (see Methods). For a representative sample of neurons and trials from the clustered

network, only 20 modes were needed to describe 95% of the shared variance (Fig 8C, consis-

tent with Fig 6A for 500 neurons), whereas 99 modes were needed in the non-clustered net-

work (Fig 8D, consistent with Fig 6A for 500 neurons). Although one might initially expect

dshared to equal the number of clusters (50) in the clustered network, we found that dshared was

20 because the top 20 modes were sufficient for explaining 95% of the shared variance.

We then assessed how the modes of shared variability changed direction in the multi-

dimensional population activity space with increasing neuron count, using the same procedure

as with the in vivo recordings (Fig 4B). We found that, as neuron count increased, principal

angles between the modes from the subsampled population and the modes from the 500-neu-

ron population decreased in both networks (Fig 9A and 9B), indicating that the modes became

more similar to those of the 500-neuron set as neuron count increased. This implies that sam-

pling additional neurons provides a better characterization of the modes. In the clustered net-

work, the principal angles decreased to near zero in the 80-neuron set (Fig 9A), demonstrating

that the first five modes were nearly identical in the 80-neuron and 500-neuron sets. However,

in the non-clustered network, principal angles remained relatively large for all sets (Fig 9B).

These results show that, with as few as 80 neurons, we obtain an accurate estimate of the

modes of shared variability in the wider network in the clustered case, but not the non-clus-

tered case.

Analyzing the modes of shared variability allows us to better understand trends observed in

Fig 6A. Typically, one would expect percent shared variance to increase when dshared increases

because each dimension explains some amount of (positive) shared variance. However, for the

non-clustered network, we found that dshared increased without an associated increase in per-

cent shared variance. This can be understood by the fact that the dominant modes changed as

more neurons were added to the analysis (Fig 9B). As a result, the amount of shared variance

explained by the leading modes could decrease as more modes are identified. We assessed this

by partitioning the overall percent shared variance in Fig 6A into a percent shared variance

along each mode and examining how the distribution of percent shared variance across the

modes changed with additional neurons. In the clustered network, we found that percent

shared variance was very similar between the 80- and 500-neuron sets (Fig 9C), with percent

shared variance in the top five modes (the same modes used in Fig 9A) dropping only 9.22 ±
1.70% (mean ± standard error). In contrast, for the non-clustered network, percent shared

variance dropped 60.7 ± 2.07%(mean ± standard error) (Fig 9D) in the top five modes (the

same modes used in Fig 9B). Thus, there is a shift in percent shared variance from dominant

to less dominant modes in the non-clustered network as neurons are added, which explains

how it is possible for dshared to increase without an associated increase in percent shared

variance.

For the in vivo recordings, we also see that dshared increases without an associated increase

in percent shared variance (Fig 3A). However, this occurs for a different reason than for the

non-clustered network. As neurons are added to the in vivo analysis, the dominant modes

tend to be stable (Fig 4B), so we do not see the same shift in percent shared variance from

dominant to less dominant modes (Fig 4C, 17.7% ± 2.3 drop in percent variance in the top five

modes) as in the non-clustered network. Furthermore, the additional modes identified with

more neurons explain only small amounts of shared variance relative to the dominant modes
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(Fig 4C). Thus, the percent shared variance appears not to increase for the in vivo recordings

because the additional shared variance contributed by newly identified dimensions is small.

In summary, for the clustered network, the dominant modes of shared variability among

the original neurons remained stable as neurons were added to the analysis. In contrast, the

non-clustered network modes changed as neurons were added to the analysis and tended to

become less dominant (i.e., the percent shared variance along those modes decreased). The

results shown here for the clustered network are largely consistent with the results for in vivo
recordings (Fig 4B and 4C). The similarities between the clustered network and in vivo

Fig 9. Stability of modes of shared variability in network models. (A) Principal angles between top five modes in clustered network for

20- (blue), 40- (black), or 80-neuron (red) analyses and corresponding neurons from 500-neuron analyses. Modes were identified by

computing the eigenvectors of the shared covariances corresponding to neurons from the 20-neuron set. Plots show mean and standard

error across 25 sets of 500 neurons and 10,000 trials. Grey circles represent principal angles (mean ± one standard deviation) between

random 20-dimensional vectors. (B) Principal angles between modes in the non-clustered network. Same conventions as in (A). (C) Percent

shared variance along each mode in the clustered network for 80-neuron analyses (red) and 500-neuron analyses (black) shown in (A). The

maximum number of modes across the 25 sets was 75 for the 80-neuron analysis and 130 for the 500-neuron analysis. The two curves were

nearly identical between modes 50 and 75 and therefore only the first 100 modes are shown. Curves represent mean percent shared

variance for each mode across 25 sets. Error bars show standard error computed across the 25 sets. (D) Percent shared variance along

each mode in the non-clustered network for the 80-neuron analyses (red) and the 500-neuron analyses (black) used in (B). Same

conventions as in (C). The maximum number of modes across the 25 sets was 45 in the 80-neuron analysis and 130 for the 500-neuron

analysis. Inset shows zoomed in vertical axis.

doi:10.1371/journal.pcbi.1005141.g009
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recordings remained true when we matched number of neurons and trials for the clustered

network to in vivo recordings (S4 Fig).

Discussion

In this study, we used V1 recordings and spiking network models to understand how the

results obtained using dimensionality reduction methods generalize to recordings with larger

numbers of neurons and trials, as well as how these results relate to the underlying network

structure. We found that recordings of tens of neurons and hundreds of trials were sufficient

to identify the dominant modes of shared variability in both in vivo recordings and a spiking

network model with clustered connectivity. Comparing spiking network models, we found

that scaling properties differed in non-clustered and clustered networks and that in vivo
recordings were more consistent with the clustered network. These findings can help guide the

interpretation of dimensionality reduction analyses in terms of limited neuron and trial sam-

pling and underlying network structure.

We focused on variability that is shared among simultaneously-recorded neurons. Shared

variability has been widely studied due to its implications for the amount of information that

is encoded by a population of neurons [25]. For the same population of neurons, the

dimensionality computed using the raw (spike count) covariability can be substantially differ-

ent from that computed using the shared covariability. To see this, consider a population of

independent neurons. As the number of neurons in the analysis grows, the dimensionality

based on the raw covariability would increase, whereas the dimensionality based on the shared

covariability (i.e., dshared) would remain at zero because independent neurons have no shared

variance.

We used FA to partition the raw covariance matrix into shared and independent compo-

nents and measured the dimensionality of the shared component [5, 23]. By contrast, principal

components analysis (PCA), a standard dimensionality reduction method, applied to spike

counts measures dimensionality of the raw covariability. Recently, Mazzucato et al. used PCA

to examine the dimensionality of 3 to 9 neurons recorded simultaneously in rat gustatory cor-

tex [19]. Despite the difference in methods used to compute dimensionality, they also found

that dimensionality increases with neuron and trial count in in vivo recordings and spiking

network models. Our use of FA to isolate the shared and independent components provides

two important insights. First, we are able to assess the scaling trends of the dimensionality of

the shared component in isolation. Relative to independent variability, shared variability is

more difficult to average away within the network and is therefore more likely to influence

downstream processing. Our dimensionality measurement indicates the richness of this shared

aspect of the population activity. Second, we can measure the percent of the overall variance

that is shared across neurons, which provides context to the dimensionality metric. For exam-

ple, in the non-clustered network (Fig 6A, Top), given many trials and neurons, we identified

many shared dimensions. However, these dimensions represented only a small fraction of the

overall variance (Fig 6A, Bottom). By contrast, the clustered network exhibited fewer dimen-

sions, but those dimensions represented a large fraction of the overall variance (Fig 6A). These

results suggest that FA provides a more nuanced characterization of single-trial population

activity than PCA.

In this work, we studied spontaneous activity during in vivo recordings and in spiking net-

work models. Our study could be extended to scaling trends in evoked activity, in which visual

stimuli are presented during the V1 recordings and non-zero inputs are used in the spiking

network models. Previous studies have found that shared variance tends to decrease after stim-

ulus presentation [20, 35, 38–40] and that the scaling properties of PCA dimensionality change
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after stimulus presentation [19]. However, under certain conditions, the population activity

patterns expressed in spontaneous activity can resemble those expressed in evoked activity [9,

41]. Studying the scaling properties of shared dimensionality and percent shared variance

using evoked activity would allow us to better interpret such results in the context of limited

neuron and trial sampling.

We focused on trends in shared dimensionality and percent shared variance. Specific

shared dimensionality and percent shared variance values obtained for the model networks

likely depend on model parameters, including the number of clusters, the synaptic weights,

and the probability of synaptic connection. We used the parameters described in [16], and we

did not attempt to adjust parameters to make results match those found in experimental data.

An interesting avenue for future work would be to understand the trade-offs among the differ-

ent model parameters necessary to reproduce the absolute levels of shared dimensionality and

percent shared variance measured for the in vivo recordings.

While many existing models reflect various aspects of neural activity, we studied two bal-

anced spiking network models, which can be viewed as representing the two ends of a con-

nectivity spectrum. At one end is the classic balanced network with homogeneous

connectivity which has been studied for decades (i.e., the non-clustered network) [14, 15].

At the other end is a balanced network in which each excitatory neuron belongs to a particu-

lar cluster and there is high within-cluster connectivity (i.e., the clustered network) [17–19].

Although neither of these model networks is a perfect match with cortical networks, both

model networks have been shown to mimic some single-neuron and pairwise spiking statis-

tics measured in cortical neurons [14, 15, 17, 19]. Model networks which bridge these two

ends of the spectrum are currently under development. Examples include networks with

spatially dependent connectivity [42] and explicit stimulus tuning structure [43]. Analysis

methods similar to those used here can be applied to study the population activity structure

in those networks.

Comparisons between network models and in vivo recordings are usually made using

aggregate single-neuron and pairwise statistics, such as mean firing rate, Fano factor, or Pear-

son correlation [13, 14, 17]. To move beyond single-neuron and pairwise statistics, the present

work illustrates how multi-dimensional population statistics can be used to compare model

networks and in vivo recordings. This approach has been adopted by several recent studies [3,

18, 19, 44] and can reveal discrepancies in the multi-dimensional activity patterns produced by

model networks compared to biological networks of neurons. For example, the dominant

mode of the in vivo recordings represented many neurons increasing and decreasing their

activity together (Fig 4B, most elements in left-most column of the mode matrix are of the

same sign). However, neither the clustered nor the non-clustered model reproduced this activ-

ity pattern in their dominant mode (Fig 8A and 8B). Such observations can guide the develop-

ment of future network models.

Recent developments in neural recording technology are making it feasible to record from

orders of magnitude more neurons simultaneously than what is currently possible (e.g., [45]).

Thus it may soon be possible to analyze population activity for larger neuron counts from in
vivo recordings. Furthermore, recent work has demonstrated the ability to access underlying

network connectivity during in vivo recordings, an advance that may make it possible to deter-

mine the effects of connectivity structure on population activity [46, 47]. However, the number

of trials available for studying population activity is still limited by various experimental con-

straints, such as an animal’s satiation or recording stability. To increase trial counts, it may be

possible to combine data across multiple sessions by identifying the same neurons across mul-

tiple sessions [48–50] or by applying novel statistical methods [51–53].
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Materials and Methods

Ethics statement

All experimental procedures followed guidelines approved by the Institutional Animal Care

and Use Committees of the Albert Einstein College of Medicine at Yeshiva University and

New York University, and were in full compliance with the guidelines set forth in the US Pub-

lic Health Service Guide for the Care and Use of Laboratory Animals.

Neural recordings

Details of the neural recordings were reported previously [38, 54]. Briefly, we recorded from

primary visual cortex of anesthetized, paralyzed male macaque monkeys. We maintained anes-

thesia throughout the experiments, typically 5-7 days, with a continuous intravenous infusion

of sufentanil citrate (6-18 μg/kg/hr). Eye movements were minimized with a continuous intra-

venous infusion of vecuronium bromide (100-150 μg/kg/hr).

We implanted multi-electrode arrays in primary visual cortex (V1) in three hemispheres of

two anesthetized macaque monkeys. We recorded spontaneous activity for 20–30 minutes

while a uniform gray screen was displayed on a computer monitor in front of the animal.

Recorded waveform segments were sorted off-line using a competitive mixture decomposition

method [55], after which waveform sorting for each electrode was refined by hand with cus-

tom time-amplitude window discrimination software taking into account waveform shape and

inter-spike interval distribution. Signal-to-noise ratio (SNR) was then computed as the ratio of

the average waveform amplitude to the standard deviation across waveforms [56]. Units with

SNR below 1.5 and average spike counts less than one spike per second were excluded from

the analyses, yielding a mixture of single- and multi-units, with median SNR of 2.74, 2.39, and

2.30 in the three arrays. The total number of units for each array was 118, 88, and 82 units. We

randomly selected 80 units from each array to facilitate comparison between arrays. We then

divided the neural activity into 1-second epochs. We refer to each of those 1-second epochs as

a “trial” throughout this work.

Spiking network simulations

Network simulations were performed using the same parameters as described in [17]. Briefly,

we constructed a network of simulated neurons consisting of 4000 excitatory and 1000 inhibi-

tory neurons. The voltage, V, for each neuron was modeled with the differential equation

_V ¼
1

t
ðm � VÞ þ Isyn ð1Þ

where _V is the derivative of the membrane potential and Isyn is the total synaptic input to the

neuron. The membrane time constant τ was set to 15 ms for excitatory neurons and 10 ms for

inhibitory neurons. The bias μ was defined for each neuron by drawing from a uniform distri-

bution with values between 1.1 and 1.2 for excitatory neurons and 1 and 1.05 for inhibitory

neurons. These values helped ensure low mean firing rates similar to those observed in cortex

[57]. A spike occurred when neurons reached the threshold Vth = 1, after which the neuron

was reset to Vre = 0 with an absolute refractory period of 5 ms. Here we have normalized the

voltages to range between 0 and 1, with a value of 0 corresponding to roughly -65 mV and a

value of 1 corresponding to roughly -50 mV, as in biological networks.
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For each neuron, total synaptic input current, Ix
i;synðtÞ, to neuron i in population x at time t

was defined as

Ix
i;synðtÞ ¼

X

jy

Jxy
ij Fy � sy

j ðtÞ ð2Þ

where x, y 2 {E, I} indicate populations of excitatory and inhibitory neurons and Jxy
ij describes

the synaptic weight from neuron j in population y to neuron i in population x. The convolu-

tion of the spike train, sy
j ðtÞ, with a filter, Fy, is denoted by �. The filter, Fy is described by the

equation

FyðtÞ ¼
1

t2 � t1

ðe� t=t2 � e� t=t1Þ ð3Þ

where time constants τ2 = 3 ms for excitatory synapses and 2 ms for inhibitory synapses and τ1

= 1 ms for all synapses, consistent with fast glutamatergic and GABAergic synaptic transmis-

sion. These values were selected to reproduce the effects of fast-acting excitatory and inhibitory

neurotransmitters. One trial was defined as one second of time according to the simulation.

We simulated two network structures, one with homogeneous connection probability

across excitatory neurons (non-clustered network) and one with clusters of high within-cluster

connection probability (clustered network). In the non-clustered network, synaptic strengths

were JEE = 0.024, JEI = −0.045, JIE = 0.014, and JII = −0.057. The probability of synaptic connec-

tion between excitatory neurons projecting onto other excitatory neurons occurred with prob-

ability pEE = 0.2. All other types of synaptic connections occurred with probability pEI = pIE =

pII = 0.5. These connection probabilities are similar to the connection probabilities seen in cor-

tex [58, 59]. When no synaptic connection existed between neurons, Jxy
ij was set to zero.

In the clustered network, the probability of connection between excitatory neurons

depended on whether two neurons were in the same cluster or in different clusters, with pEE
IN ¼

0:4854 for pairs within the same cluster and pEE
OUT ¼ 0:1942 for pairs in different clusters

(mean connection probability was pEE = 0.2). This ratio of pEE
IN to pEE

out has been shown to maxi-

mize spiking variability for this network size [17]. Synaptic strength between excitatory neu-

rons was JEE
IN ¼ 0:0456 for within-cluster synapses and JEE

OUT ¼ 0:024 for between-cluster

synapses. These parameters were used ensure that cluster transitions led to spike train autocor-

relation functions with decay timescales consistent with in vivo recordings [35]. All other syn-

apses were set as specified above for the non-clustered network. The clustered network

contained 50 clusters of 80 neurons each.

Factor analysis

We used factor analysis (FA) to characterize the population activity structure [2, 4, 20–22]. In

contrast to principal component analysis (PCA), FA explicitly partitions the spike count

covariance into a component that is shared across neurons in the recorded population and a

component that is independent across neurons [20]. This allows us to characterize the shared

population activity structure (i.e., the shared component), which can be masked by Poisson-

like spiking variability (i.e., the independent component) during single-trial activity. As a

result, FA is more appropriate than PCA for analyzing single-trial spike counts [23].

FA is defined by:

x � N ðμ; LLT þCÞ ð4Þ

where x 2 Rn�1 is a vector of spike counts across the n simultaneously-recorded neurons,

Scaling Properties of Dimensionality Reduction

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005141 December 7, 2016 20 / 27



μ 2 Rn�1 is a vector of mean spike counts, L 2 Rn�m is the loading matrix relating m latent var-

iables to the neural activity, and C 2 Rn�n is a diagonal matrix of independent variances for

each neuron. The model parameters μ, L, and C were estimated using the expectation-maxi-

mization (EM) algorithm [60].

As shown in Fig 1A, FA separates the spike count covariance into a shared component,

LLT, and an independent component, C. The rank, m, of LLT indicates the number of latent

variables needed to describe the shared covariance. If m equals one, then the shared covariance

exists on a line. If m equals two, then the shared covariance exists on a plane, and so on. To

determine m, we applied FA to the spike counts and selected the value for m that maximized

the cross-validated data-likelihood.

In this study, we used two key metrics derived from the shared covariance matrix to

describe population activity: shared dimensionality (dshared) and percent shared variance. First,

we sought to measure the number of dimensions in the shared covariance as a metric for the

complexity of the population activity. We followed a two step procedure to obtain this metric.

We first found the m that maximized the cross-validated data likelihood, as is standard prac-

tice. We then defined dshared as the number of dimensions that were needed to explain 95% of

the shared covariance, LLT. We did this for the following reasons. In simulations, we found

that, when training data were abundant, there was not a strong effect of overfitting and the

cross-validated data likelihood curve saturated at large dimensionalities. As a result, the peak

data-likelihood appeared at widely varying dimensionalities along the flat portion of the curve,

leading to variability in the value of m from one run to the next. In contrast, we found that

defining dshared as described above provided a more reliable estimate of dimensionality across

analyses, even if it may have been slightly smaller than the true dimensionality.

Second, we measured the amount of each neuron’s variance that was shared with at least

one other neuron in the recorded population (Fig 1C). Mathematically, percent shared vari-

ance for the kth neuron was computed as:

Percent shared variance for neuron k ¼
LkLT

k

LkLT
k þCk

ð5Þ

where Lk is the kth row of the factor loading matrix and Ck is the independent variance for the

kth neuron. The values reported in this paper (see Figs 3, 5, 6 and 7B) represent averages over

all neurons included in a given analysis.

For Figs 1B, 4A, 8C and 8D, we computed a separate metric, the percent of overall shared

variance explained by each mode. This was used to quantify the relative dominance of each

mode for explaining shared variability. The percent of shared variance explained by the ith

mode was computed as:

% of shared variance explained by mode i ¼
liPm
j¼1

lj
ð6Þ

where λi is the eigenvalue of LLT corresponding to the ith mode and m is the rank of L. Note

that this metric does not take into account the independent variances. Throughout this work,

modes are referred to as “dominant” if they explain a large percentage of shared variance.

In Figs 4C, 9C and 9D, we partitioned the percent shared variance (Eq 5) along each mode.

We computed percent shared variance along the ith mode for the kth neuron as:

% shared variance for mode i and neuron k ¼
liu2

ik

LkLT
k þCk

ð7Þ

where uik is the kth entry in the ith eigenvector of LLT. We then averaged this value across all
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neurons. This allowed us to break down the contribution of each mode to percent shared vari-

ance and illustrated a contrast between the clustered and non-clustered network models. Note

that Eq 5 is equivalent to summing Eq 7 over all i.

Varying neuron and trial count

A central goal of this study was to determine how dshared and percent shared variance vary with

neuron and trial counts for in vivo recordings and spiking network models. To study these

trends with changes in neuron count, we sampled increasing numbers of neurons from either

the V1 recordings or the network simulations. FA was then applied to the selected neurons to

obtain dshared and percent shared variance. To increase the neuron counts, we augmented the

next smaller sample of neurons with additional randomly selected neurons. For example, we

first randomly selected 10 neurons, computed dshared and percent shared variance for this set,

and then added 10 additional randomly-selected neurons to obtain a new sample of neurons.

For the in vivo recordings we repeated this procedure for each of three arrays, using 1200 trials

for each neuron count.

For the model networks, we repeated this procedure 25 times at each neuron count using 5

non-overlapping sets of neurons and 5 non-overlapping sets of trials, using either 1200 or

10,000 trials for each neuron count. All neuron samples were obtained exclusively from the

excitatory populations in the two networks. Since inhibitory neurons in both model networks

did not have clustering structure, exclusion of this population allowed us to isolate the impact

of clustering on the observed trends.

We studied how dshared and percent shared variance change with trial count by performing

the same procedure as described above, except that trials were increased rather than neurons.

For in vivo recordings, we repeated this procedure once for each of three arrays with the same

80 neuron sampled in all trial counts. In the model networks 25 analyses were run with 5 non-

overlapping sets of 80 neurons and 5 non-overlapping sets of trials for each trial count.

Modes of shared population activity structure

We sought to assess how the identified modes of shared variance change with increasing neuron

count. We could do this by measuring the angles between corresponding modes; however as

neuron count increases, modes can change order, causing direct angle measurements between

modes with the same index to overestimate the difference between the two sets of modes.

To overcome this, we measured principal angles between sets of modes [61]. We first iden-

tified the modes of shared variability as the eigenvectors of the shared covariance matrix LLT.

We then computed the principal angles between modes from two different conditions (i.e., dif-

ferent numbers of neurons). Since the vector defining each mode had length equal to the num-

ber of neurons in the sample, we could not directly measure the principal angle between the

eigenvectors of conditions with different neuron counts. To overcome this, we first computed

LLT in each condition using only the rows of L that correspond to a set of 20 neurons common

across the 20-, 40-, 80-, and 500-neuron sets studied. Once we computed the reduced LLT in

each condition, we then measured the angle between the modes as described above. Addition-

ally, to restrict the analysis to the most dominant modes, only the five modes explaining the

largest amount of shared variance were included in all principal angle measurements.

Distribution of neurons across the network

To study how the choice of sampled neurons influences dshared and percent shared variance, we

sampled excitatory neurons from the clustered network by varying the number of clusters rep-

resented in a set of 50 neurons sampled. This was done by first randomly selecting N clusters
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from the total of 50 clusters in the network. Next, 50/N excitatory neurons were selected at ran-

dom from each of the chosen clusters. The variable N was selected so that 50/N resulted in an

integer value. FA was applied to 10,000 trials from the 50 selected neurons. The procedure was

repeated 25 times with 5 non-overlapping sets of neurons and 5 non-overlapping sets of trials.

Supporting Information

S1 Fig. Trends in dshared and percent shared variance are robust to time bin size. To assess

the effects of spike count bin size on the observed results, we repeated the analyses in Fig 3 for

200 ms and 500 ms bins. We measured dshared and percent shared variance over a range of (A)

neuron counts and (B) trial counts from population activity recorded in V1 with spike counts

taken in 1000 ms (black), 500 ms (blue), and 200 ms (red) bins. Each triangle represents the

mean across single samples from each of three arrays. Error bars represent one standard error

across the three arrays. We observed trends of increasing dshared and stable percent shared vari-

ance with neuron and trial counts for all bin sizes, implying that the observed trends are con-

sistent across a range of timescales. Furthermore we found that dshared and percent shared

variance were lower for smaller bin sizes, consistent with previous work showing that noise

correlations scale with bin size [26, 38].

(EPS)

S2 Fig. Sequential and non-sequential time bin samplings yield similar dshared and percent

shared variance. Factor analysis does not take into account sequential relationships between

time bins. In other words, it assumes that the spike counts in consecutive time bins are inde-

pendent of one another. We found that this assumption is valid for 1-second time bins using

the following analyses. (A) We computed the autocorrelation of the spike counts in 1-second

bins and found near-zero auto-correlation at all non-zero lags. Black line represents mean

across 80 neurons from 3 arrays (n = 240) and vertical bars represent one standard error across

all neurons from three arrays (n = 240). In addition, we replicated the analysis in Fig 3B corre-

sponding to 400 trials (mean dshared of 4.3, mean percent shared variance of 51.8%, labeled

here as ‘Random’) using three different trial sampling methods: (1) sampling of adjacent trials

(‘Skip 0s’), (2) sampling trials separated by 1 second (‘Skip 1s’), and (3) sampling trials sepa-

rated by 2 seconds (‘Skip 2s’). We used 400 trials in each case. Triangles represent mean across

3 arrays and error bars represent one standard error across the three arrays. All of these mea-

sures produced qualitatively similar results across these sampling methods and no sampling

method was significantly different from the random set (p> 0.05 in all cases). Taken together,

these results suggest that the 1-second bin size is large enough such that successive bins are

effectively independent, and our use of random time bins did not impact our results.

(EPS)

S3 Fig. In vivo recordings do not show clear cluster structure. (A) We applied the k-means

algorithm to the rows of the modes matrix in Fig 4A in an attempt to identify clusters of neu-

rons in the in vivo recordings. Rows are sorted according to groups identified by the k-means

algorithm for k = 5. (B) Same convention as in (A) except k = 10. (C) To assess whether there is

clustering among neurons in the in vivo recordings, we applied linear discriminant analysis to

find the 2-dimensional projection of the 10-dimensional row vectors with the best separability

of the five groups identified by k-means in (A). Each circle corresponds to a neuron, and each

color corresponds to a group identified by the k-means algorithm. Although neurons assigned

to the same group tend to have similar 10-dimensional vectors, we saw no clear separation of

the groups identified by k-means. Repeated random initialization of k-means yielded different

groupings among the neurons, further indicating that there is no clear clustering among the
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neurons. Note that the fact that points with the same color lie near each other in the 2-dimen-

sional projection is not an indication that there is clustering among neurons. This would result

from applying the k-means algorithm to any scatter of points. The key is whether the groups

identified by k-means are well-separated. (D) Same analysis as in C for the groups shown in (B).

(EPS)

S4 Fig. Modes of shared variability for clustered network model in experimental regime of

neuron and trial counts. (A) Principal angles between top five modes in clustered network for

20- (blue), 40- (black), or 60-neuron (red) analysis and corresponding neurons from 80-neu-

ron analysis. Modes were identified by computing the eigenvectors of the shared covariances

corresponding to neurons from the 20-neuron set. Plots show mean and standard error across

25 sets of 80 neurons and 1200 trials. Grey circles represent principal angles (mean ± one stan-

dard deviation) between random 20-dimensional vectors. (B) Percent shared variance along

each mode in the clustered network for the 20-neuron analyses (blue) and the 80-neuron anal-

yses (black) shown in (A).

(EPS)
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