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Delay period activity in the dorsolateral prefrontal cortex (dlPFC) has been linked to the maintenance and control of sensory infor-
mation in working memory. The stability of working memory-related signals found in such delay period activity is believed to sup-
port robust memory-guided behavior during sensory perturbations, such as distractors. Here, we directly probed dlPFC’s delay
period activity with a diverse set of activity perturbations and measured their consequences on neural activity and behavior. We
applied patterned microstimulation to the dlPFC of two male rhesus macaques implanted with multielectrode arrays by electrically
stimulating different electrodes in the array while they performed a memory-guided saccade task. We found that the microstimula-
tion perturbations affected spatial working memory-related signals in individual dlPFC neurons. However, task performance
remained largely unaffected. These apparently contradictory observations could be understood by examining different dimensions
of the dlPFC population activity. In dimensions where working memory-related signals naturally evolved over time, microstimula-
tion impacted neural activity. In contrast, in dimensions containing working memory-related signals that were stable over time,
microstimulation minimally impacted neural activity. This dissociation could explain how working memory-related information
may be stably maintained in dlPFC despite the activity changes induced by microstimulation. Thus, working memory processes
are robust to a variety of activity perturbations in the dlPFC.
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Significance Statement

Memory-guided behavior is remarkably robust to sensory perturbations, such as distractors. The dorsolateral prefrontal cor-
tex (dlPFC) is believed to underlie this robustness, given that it stably maintains working memory-related information in the
presence of distractors. Here, we sought to understand the extent to which dlPFC circuits can robustly maintain working
memory information during memory-guided behavior. We found that behavior was robust to electrical microstimulation per-
turbations in dlPFC and working memory signals were stably maintained in dlPFC despite widespread changes in the neural
activity caused by the perturbations. Our findings indicate that working memory is robust to direct activity perturbations in
the dlPFC, an ability that may be due to the processes that mediate similar robustness in the face of distractors.

Introduction
When animals are engaged in delayed response tasks that require
the maintenance and control of sensory-related information to
guide future actions, the brain must store this information in
working memory and protect it from interference from other
external and internal signals (Katsuki and Constantinidis, 2012;
Lorenc et al., 2021; Wang, 2021). For example, in tasks that
require remembering the location of a visual stimulus, the brain
must maintain this information and avoid confounding it
with other incoming visual signals, such as information about
the location of a distracting visual stimulus (Katsuki and
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Constantinidis, 2012; Suzuki and Gottlieb, 2013). The mecha-
nism that grants working memory robustness to such distur-
bances is not well understood (Lorenc et al., 2021; Wang, 2021).

Delay period activity in the dorsolateral prefrontal cortex
(dlPFC) has been linked toworkingmemory-related computations
(Fuster and Alexander, 1971; Goldman-Rakic, 1995). These signals
may represent the content of working memory or ongoing atten-
tional and executive control processes (Lebedev et al., 2004;
Sreenivasan et al., 2014; Lara and Wallis, 2015) and are central
to perform working memory tasks (Bauer and Fuster, 1976;
Funahashi et al., 1993; Buckley et al., 2009). The rich and hetero-
geneous nature of delay period activity in dlPFC has motivated
different models of working memory maintenance, including
persistent activity (Wang, 2001; Constantinidis et al., 2018),
dynamic representations (Druckmann and Chklovskii, 2012;
Lundqvist et al., 2018), and activity-silent mechanisms (Mongillo
et al., 2008; Stokes, 2015).

To guide behavior, working memory information must be
maintained in the presence of perturbations such as distractors.
Some theories propose that PFC can robustly and stably maintain
working memory information in the presence of other evolving
signals by dissociating dynamic and persistent working memory
representations (Druckmann and Chklovskii, 2012; Murray
et al., 2017). This dissociation might protect working memory
information from interference from other incoming sensory
inputs which might act as distractors (Parthasarathy et al.,
2019). Many studies have shown that working memory behavior
is robust to perturbations from sensory distractors (Katsuki and
Constantinidis, 2012; Suzuki and Gottlieb, 2013; Parthasarathy
et al., 2017; Cavanagh et al., 2018). Delay period activity in
PFC is affected by distractors, but working memory-related sig-
nals are found to be largely preserved in the neural population
activity, which aligns with behavior (Parthasarathy et al., 2017;
Cavanagh et al., 2018).

Previous studies have sought to directly perturb delay period
activity in dlPFC to influence memory-guided behavior.
Long-lasting activity manipulations, for example, by microstimu-
lating dlPFC throughout the entire delay period (Opris et al.,
2005a) or pharmacologically inactivating dlPFC (Sawaguchi and
Iba, 2001), affect memory-guided behavior. However, transient
optogenetic inactivation of PFC minimally impacts memory-
guided behavior in monkeys (Mendoza-Halliday et al., 2023).
Relatedly, transient optogenetic inactivation of premotor cortex
in mice has no impact on prepared movements (Li et al., 2016;
Inagaki et al., 2019). These studies also found that task-relevant
signals in the delay period activity were not affected or quickly
recovered from such transient manipulations.

Here, we tested whether dlPFC can robustly maintain
memory-guided behavior under a diverse set of electrical micro-
stimulation perturbations. We implanted monkeys with multi-
electrode arrays in the dlPFC, which allowed us to transiently
stimulate the area with a variety of microstimulation spatial pat-
terns while they performed a memory-guided saccade task. We
then simultaneously recorded the effect of microstimulation on
dozens of neurons in the dlPFC. We found that patterned micro-
stimulation broadly affected dlPFC neural population activity
and caused strong changes in working memory-related signals.
However, the monkeys’ behavior was minimally impacted.
These observations could be reconciled when characterizing
the effect of microstimulation at the population level.
Microstimulation impacted activity in dimensions that reflected
the natural time course of working memory representations.
However, microstimulation minimally impacted dimensions

that contained stable working memory signals, and activity in
these dimensions quickly recovered from the perturbation. Our
findings indicate that working memory signals in dlPFC are
robust to a wide range of microstimulation perturbations, mak-
ing memory-guided behavior robust to direct perturbations of
brain activity.

Materials and Methods
Subjects and surgical procedures. We implanted a 96-electrode

“Utah” Array (Blackrock Microsystems) in the dlPFC of two adult,
male rhesus macaques (Macaca mulatta) using sterile surgical tech-
niques under isoflurane anesthesia. We implanted one array in the left
8Ar for Monkey W and dual arrays in the left and right 8Ar for
Monkey S (on the prearcuate gyrus, immediately anterior to the arcuate
sulcus). The head was immobilized for recordings with a titanium head-
post attached to the skull with titanium screws, implanted in a separate
procedure prior to the array implants. Experimental procedures were
approved by the Institutional Animal Care and Use Committee
(IACUC) of Carnegie Mellon University and complied with guidelines
set forth in the National Institute of Health’s Guide for the Care and
Use of Laboratory Animals.

Behavioral task. In each experimental session, the monkeys per-
formed a memory-guided saccade task. On each trial, the monkeys
first fixated on a dot at the center of the screen. After establishing fixation
(for 100 ms, Monkey W; for 200 ms, Monkey S), one of four peripheral
targets (45, 135, 225, 315°) appeared on the screen for a brief period of
time (100 ms, Monkey W; 200 ms, Monkey S). This was followed by a
delay period, after which the center dot turned off (go cue) and the mon-
keys performed a saccade to the remembered target location to receive a
liquid reward. In MonkeyW, the delay period was either 1.25 or 1.55 s in
duration (with probabilities 0.8 and 0.2). In Monkey S, it was 1.5 or 2 s in
duration (with probabilities 0.5 and 0.5). The delay had different lengths
so that themonkeys could not anticipate the go cue timing with certainty.
Upon initiation of the saccade, the monkey’s eye position had to reach
the peripheral target location within 200 ms and maintain gaze within
2.1° (Monkey W) or 2.4° (Monkey S) of the target center for 150 ms to
receive a liquid reward. Stimuli were displayed on a 21′ ′ cathode ray
tube monitor with a resolution of 1024 × 768 pixels and a refresh rate
of 100 Hz at a viewing distance of 59 cm. Stimuli were generated using
custom software written in MATLAB (MathWorks) with the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner
et al., 2007). Eye position was tracked monocularly using an infrared
system at 1,000 Hz resolution (EyeLink 1000, SR Research).

Microstimulation experiments. We electrically microstimulated
dlPFC on a subset of the trials in each session while the monkeys per-
formed the memory-guided saccade task. On the rest of the trials, the
monkey performed the task without microstimulation, which served as
a control. On each trial, we stimulated on different electrodes of the array
using single electrodes in Monkey W and pairs of electrodes simulta-
neously in Monkey S. In both cases, stimulation was monopolar. The
array pedestal served as the ground, located a few centimeters from the
implanted array. By choosing different electrodes, we changed the spatial
location of the stimulation on each trial, so we refer to each stimulation
condition as a different “microstimulation pattern.” In each session, we
stimulated with three (Monkey W) or four (Monkey S) different micro-
stimulation patterns. We chose each pattern at random, but in some ses-
sions we repeated some of the patterns used in previous days. Across
sessions, we applied a total of 21 unique microstimulation patterns in
Monkey W and four unique microstimulation patterns in Monkey
S. Each session was organized in blocks. In each block, the experimental
system performed for each trial a pseudorandomized selection of the
different microstimulation conditions (three or four microstimulation
patterns and no microstimulation) and the target angle conditions
(four target angles). We ran several blocks per session to ensure sufficient
amounts of trials were collected under each target angle andmicrostimu-
lation condition (∼20 trials for each target angle and microstimulation
condition combination in Monkey W and 30 trials in Monkey S). We
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refer to the set of trials collected under eachmicrostimulation pattern as a
“microstimulation experiment.” This includes trials across all target
angle conditions. We performed 30 microstimulation experiments over
the course of 10 sessions in Monkey W (three microstimulation patterns
per session, four target angle conditions) and four microstimulation
experiments within one session inMonkey S (four microstimulation pat-
terns, four target angle conditions).

Microstimulation parameters. We used a Grapevine system and
xippmex software to control microstimulation delivered using nano2 +
stim headstages (Ripple). The microstimulation consisted of a 150 ms
pulse train of 0.25 ms biphasic square pulses, with a frequency of
350 Hz and current of 50 or 125 μA per stimulated electrode. We kept
these parameter values fixed for all sessions. The stimulation parameters
were chosen based on previous microstimulation studies in dlPFC
(Wegener et al., 2008), and we set the current amplitude low enough
not to induce any eye movements. InMonkeyW, we stimulated on single
electrodes with lower currents (50 μA) because larger currents led to a
substantial increase in trials in which fixation was aborted (though not
consistent saccades). We stimulated using the array implanted in the
left dlPFC and measured the effect of microstimulation on the same
array. The microstimulation was applied during the delay period at
500 ms after peripheral target offset. Even though the monkey could pre-
dict the time of the microstimulation, we stimulated at a different loca-
tion in the array (or did not stimulate) randomly on each trial. In
Monkey S, we stimulated only using the right dlPFC array and measured
the effect on both the right and the left dlPFC arrays. We stimulated with
higher currents in this monkey, using pairs of electrodes each at 125 μA.
The reason for this was to induce sufficient activity modulation on the
contralateral array. We could evoke saccades with some electrode pairs
at microstimulation currents >100 μA per electrode. In this monkey,
we randomized the stimulation onset time (500, 600, or 700 ms after
peripheral target offset).

Neural recordings. Electrophysiological recordings were performed
with a Grapevine acquisition system (Ripple). Extracellular activity was
recorded from the array, bandpass filtered (0.3–7,500 Hz), digitized at
30 kHz, and amplified by the system. Waveforms that exceeded a thresh-
old were saved and stored for offline waveform classification. Thresholds
were set by taking a multiple (4−5) of the root mean squared noise of
the voltage measured on each electrode. Waveforms were automatically
classified as either noise or spikes using an artificial neural network (Issar
et al., 2020). All spiking waveforms which survived this classification on a
given electrode were grouped together and treated as multiunit activity.

Data preprocessing. We excluded electrodes that in a given
session had low spiking activity (firing rate <1 sp/s) and high Fano
factors (>8). To compute those criteria, we used activity during
no-microstimulation trials. We also removed electrodes with a high per-
centage of coincident spikes, which is an indication that they could be elec-
trically shorted (pairs with >20% coincident spiking within all 0.5 ms
windows over the entire session; we removed one electrode only from
each electrically shorted pair). In Monkey W, we included all electrodes
from the left dlPFC array that passed the criteria (50–70 electrodes per ses-
sion). In Monkey S, we pooled the electrodes across the left and the right
dlPFC arrays that passed the criteria (50 electrodes in the left array and 37
electrodes in the right array).We combined recordings across hemispheres
because the recordings were from matched regions of cortex across
the hemispheres and individual electrodes in each hemisphere showed
microstimulation effects. Analysis of each hemisphere separately
showed qualitatively similar results. Spike counts were binned in
nonoverlapping 50 ms windows. In our analysis of both microstimulation
and no-microstimulation experiments, we focus on the period −300 ms
before to 750 ms after microstimulation onset. To avoid microstimulation
artifacts, we did not analyze activity frommicrostimulation onset to 50 ms
after microstimulation offset. Given that the delay period could have
different lengths on each trial, the end of our analysis period (which we
mark as tend in our analyses) did not always correspond to the end of
the delay period (at go cue). However, since the delay times were random-
ized, the monkeys would not know whether the end of the delay period

would occur by the time the 750 msmarkwas reached. InMonkey S, given
that we introduced variability in the microstimulation onset times, the
period from microstimulation offset to go cue was shorter than 750 ms
in some trials. This resulted in less trials contributing to some analyses
for certain time periods after microstimulation, but we had a minimum
of 16 trials per time step.

Single-unit analysis. We computed a measure of target angle selectiv-
ity to estimate the tuning strength of activity measured from each individ-
ual electrode (referred to as a “neural unit”) at various times during the
delay period (Figs. 1C,D, 2A,C). It was computed as the difference between
the maximum and minimum firing rate across the four target angle con-
ditions at a given point in time (e.g., at tpost). This measure can account for
relative changes in tuning strength between target angle conditions, but it
is not sensitive to changes in direction preference. We chose this measure
given that the most prominent effect of microstimulation involved strong
changes inmodulation strength.We did not observe systematic changes in
direction preference with microstimulation across units, although we did
observe changes in direction preference in some units.

To estimate the prevalence of microstimulation-induced early excita-
tion, early inhibition, and rebound excitation effects in the neural popu-
lation, we used the following procedure. For early excitation and
inhibition, we computed the percentage of units whose firing rates
were significantly higher/lower than in no-microstimulation conditions
for at least two consecutive time bins following microstimulation offset
(when most units show significant modulation; Fig. 2B). For rebound
excitation effects, we calculated the percentage of units in each microsti-
mulation experiment that exhibited early inhibition followed by rebound
excitation.We considered that a unit presented rebound excitation if, fol-
lowing inhibition, it exhibited a significant increase in firing rates com-
pared with no-microstimulation conditions for at least two consecutive
time bins at any point later in the trial. We labeled a unit as experiencing
early excitation, early inhibition, or rebound excitation if such
microstimulation-induced activity pattern was detected in at least one
of the four target angle conditions. To test for significant changes in
firing rates induced by microstimulation, we used a two-tailed paired
Wilcoxon rank sum test at a 5% significance level.

Microstimulation electrode tuning analysis. To test whether beha-
vioral performance and classification accuracy could be influenced by
the spatial tuning of the stimulation site, we first estimated the spatial tun-
ing of each stimulation site using a vector average. We computed this vec-
tor average based on the neural responses to the four target angle
conditions measured at the stimulation site (by averaging across
no-microstimulation trials of each target angle condition, considering a
200 ms in the middle of the delay period, when microstimulation would
be delivered in microstimulation trials). We excluded from the spatial tun-
ing calculation stimulation electrodes that did not pass our data prepro-
cessing criteria (see above, Data preprocessing). In the case of having
two stimulation sites (Monkey S), we computed the vector average inde-
pendently for each site and took the average of the two vectors. We then
estimated the angle between the spatial tuning vector of the stimulation
site and the vector representing the target direction presented to the mon-
key on a given trial. Next, we recomputed the behavioral metrics (preci-
sion, RT and fraction of misses; see below, Behavioral analysis) for each
target angle (averaged across trials of a given target angle condition).
We then computed the change in behavioral metric induced by microsti-
mulation (the difference between the quantities along the horizontal and
vertical axes in Fig. 3B–D, but estimated per target angle). We did the
same to compute changes in classification accuracy induced by microsti-
mulation (Fig. 4B; see below, Classification analysis). Finally, we tested
whether there was a statistically significant correlation (Pearson’s correla-
tion) between the change in behavioral metric or classification accuracy
and the estimated angular distance (between the vector representing the
spatial tuning of the stimulated site and the vector representing the target
angle presented to the monkey).

Behavioral analysis. Saccade precision was estimated as the distance
between the saccade endpoint to the target (in degrees of visual angle;
Fig. 3B). Reaction times were computed as the time between go cue
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(i.e., fixation dot offset) and the time the monkey’s eye crossed the
boundary of the virtual fixation window (Monkey W, 1.4° in diameter
around the fixation point; Monkey S, 2.7°; Fig. 3C). To compute the frac-
tion of target misses [target misses / (target misses + correct trials);
Fig. 3D], we considered all trials in which the monkey maintained
fixation throughout the delay until the go cue. We excluded fixation
breaks where the monkey left the fixation window before the go cue.
In correct trials, the monkey reached the target window and maintained
their eyes within that window for 150 ms. All other trials constituted
“target misses,” which included cases where monkeys initiated a saccade
toward the target location but failed to reach the target window (which
was the vast majority of the errors), as well as a very small number of
cases where the monkey failed to initiate a saccade or performed a sac-
cade toward an incorrect location. The monkeys were able to correctly
report the memorized target location in this task equally well with and
without microstimulation. Because of this, we focused primarily on ana-
lyzing neural activity from correct trials.

Classification analysis. We trained a Poisson Naive Bayes classifier to
predict target angle identity on single trials at different time points during
the delay period (Fig. 4). We trained the classifier separately for micro-
stimulation and no-microstimulation experiments. A different classifier
was trained at each time point during the delay period for each experi-
ment. We used leave-one-trial-out cross-validation (LOOCV) to train
and test the classifier and used activity from all units. To calculate confi-
dence intervals for LOOCV classification accuracies in Figure 4A, we fol-
lowed the Bayesian approach taken in Sadtler et al. (2015). We modeled
the LOOCV binary classification results for each trial as a Bernoulli pro-
cess with probability p (indicating the probability of correct classifica-
tion). Since p was unknown, we set a uniform prior distribution on p
between 0 and 1. Given this prior distribution and the distribution of
observations (i.e., the binary string of classification results across trials),
the posterior distribution on p could be computed, which is a beta distri-
bution. Figure 4A shows the mean and the 95% confidence interval of the
posterior distribution on p, estimated independently for each time point
on each microstimulation condition.

To predict target angle identity based on activity within the memory
subspace alone, we used a different classification procedure. We used
fivefold cross-validation to estimate the memory subspace using both
microstimulation and no-microstimulation trials (see below, Population
analysis). On each fold, we projected the activity of no-microstimulation
trials into the identified memory subspace and computed class means
across trials and time for each target angle condition. Next, we projected
the activity of held-out microstimulation trials and classified each trial
based on the Euclidean distance to the closest class mean. Importantly,
the held-out microstimulation trials had neither been used to estimate
the memory subspace nor to compute the class means. Even though class
means were computed from no-microstimulation trials, and that the
means were based on averages across time, we could accurately and stably
classify microstimulation trials at various times during the delay period
(see Results, dlPFC’s neural activity was minimally impacted by microsti-
mulation in a memory subspace of the neural population activity).

Population analysis. We used two different dimensionality reduction
methods, factor analysis (FA) and demixed PCA (dPCA), to estimate
different subspaces of the neural population activity. FA is a statistical
method whose objective is to find the “dominant” dimensions that cap-
ture the greatest shared variance among the neural units. We sought to
estimate the dominant dimensions of the neural activity under regular
task conditions, so we fit FA to no-microstimulation trials exclusively.
In each session, we fit FA to the binned spike counts (50 ms bins)
from each unit during the delay period in all no-microstimulation trials
(including all target angle conditions). The dimensionality of the “dom-
inant subspace” (4D) was estimated by computing the optimal dimen-
sionality separately for each session based on cross-validated data
likelihoods, and taking the rounded average of the estimates across all
sessions. Low-dimensional activity was inferred by the model based on
posterior mean estimates (Santhanam et al., 2009).

To find the “memory subspace,” we used demixed dPCA (Kobak
et al., 2016). dPCA’s objective is to find dimensions of the neural activity

that are predominantly related to specific behavioral and task variables.
We used dPCA to find memory dimensions that maximized target angle
variance and minimized the effects of microstimulation, and also
that contained target angle signals that were stable over time. To do
this, the dPCA model was fit to both microstimulation and no-microsti-
mulation trials, and different subspaces were found that “demixed” target
angle, microstimulation, and time-related signals in the population, as
well as signals due to their interaction (Fig. 6).We refer to the target angle
dimensions as the “memory subspace.”We fitted dPCA to the firing rates
from each unit estimated in 50 ms bins during the delay period, obtained
by averaging across trials of a given target angle and microstimulation
condition (with no temporal smoothing). We set the dimensionality of
the memory subspace to be 4D to match the dimensionality of the dom-
inant subspace. This was necessary to be able to fairly compare activity
across the two subspaces. We used fivefold cross-validation to estimate
the memory dimensions. We confirmed that the four memory dimen-
sions explained a large percentage (70%) of the target angle variance
in the trial-averaged neural activity of held-out trials across sessions.
This subspace contained only a small fraction of time-related and
stimulation-related variance, and thus, target angle signals in this sub-
space were largely stable over time and were minimally influenced by
microstimulation.

The distance metric in Figure 7 was computed separately for each tar-
get angle and microstimulation pattern and at each time point. First, we
calculated the difference between the mean activity across trials in micro-
stimulation and no-microstimulation conditions along each dimension
in the subspace (four dimensions). Second, we standardized the differ-
ences by the 95% confidence interval of the activity across trials in
no-microstimulation conditions along each dimension. Third, we com-
puted the vector norm of the differences across all dimensions. In this
way, we could compare distances across sessions andmonkeys. This met-
ric was computed based on held-out microstimulation trials that were
not used in the estimation of the subspaces.

Statistical tests. To test whether microstimulation and no-microstimu-
lation activity were statistically different, we used a two-tailed two-sample
Wilcoxon rank sum test at a 5% significance level (Fig. 2A). In Figure 2B,
we applied this test considering activity across all four target angle condi-
tions. To test for significance ofmicrostimulation-induced decreases in tun-
ing strength (Fig. 2C), we used a one-tailed two-sample t test. To test for
significance of microstimulation-induced changes in saccade precision
(Fig. 3B) and reaction times (Fig. 3C), we used a two-tailed two-sample t
test. To test for microstimulation-induced changes in target misses
(Fig. 3D) and classification accuracies (Fig. 4B), we used a two-tailed two-
sample Wilcoxon rank sum test. To assess whether we could classify above
chance, we used the binomial test at a 5% significance level to compare the
binary string used to compute the classification accuracy across trials (a
value between zero and one) against a 0.25 chance level probability (since
there are four target angle conditions). To assess whether a given microsti-
mulation experiment induced a significant increase or decrease in classifica-
tion probabilities with respect to the no-microstimulation condition
(Fig. 4B), we used a binomial test at a 5% significance level to compare
the binary string used to compute the classification accuracy across trials
in the microstimulation condition against the classification accuracy
obtained in the no-microstimulation condition. To test for the overall sign-
ificance of linear regression models (Figs. 3B–D, 4B), we used an F test. To
compare microstimulation and no-microstimulation activity within the
dominant and memory subspaces (Fig. 7B), we used a multivariate two-
sample test at a 5% significance level based on the statistical energy of the
samples (Aslan and Zech, 2005), which compares the two-sample distribu-
tions in a multidimensional space.

Results
We designed an experimental protocol using electrical microsti-
mulation to probe delay period activity in dlPFC during working
memory. We implanted two monkeys with multielectrode arrays
in dlPFC, area 8Ar (Fig. 1A), and applied different microstimula-
tion (uStim) patterns while they performed a memory-guided
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saccade task (Fig. 1B). We used microstimulation patterns below
the threshold that evoked saccades, consisting of either single
electrodes or pairs of electrodes at different spatial locations in
the array (Fig. 1A; see Materials and Methods). In area 8Ar,
the current thresholds required to evoke saccades tend to be
higher than the nearby frontal eye fields (Bruce et al., 1985),
though subthreshold stimulation can still impact behavior
(Opris et al., 2005a). We focused on area 8Ar in the dlPFC since
it is implicated in spatial working memory and contains rich and
heterogeneous signals related to the transformation of sensory
inputs to oculomotor actions in memory-guided saccade tasks
(Funahashi et al., 1989; Opris et al., 2005a; Leavitt et al., 2018;
Khanna et al., 2020).

At the beginning of the task, a target was briefly shown at
one out of four possible spatial locations (Fig. 1B; Materials and
Methods). This was followed by a variable delay period (1.5–2 s;
from “target off” to “fixation off” in Fig. 1B), after which the animal
reported the location of the target with a saccadic eyemovement to
the remembered location. We stimulated during the delay period
of the task when only a fixation spot was present on the screen and
the animal had to hold in memory the location of the presented
target. On each trial, we stimulated with a different microstimula-
tion pattern (Fig. 1A), with 3–4 patterns selected for each experi-
mental session (see Materials and Methods). Interleaved with the

microstimulation trials, we also ran trials where no microstimula-
tion was applied.We consider a “microstimulation experiment” as
the collection of trials collected under a given microstimulation
pattern within a session, which includes trials for all target angle
conditions (see Materials and Methods). Within a session, we per-
formedmultiplemicrostimulation experiments. Similarly, we con-
sider a “no-microstimulation experiment” as the collection of trials
collected with no microstimulation in a given session, for all target
angle conditions.

Recordings from different electrodes in the array revealed
delay period activity that was tuned to the different spatial loca-
tions (Fig. 1C, example unit), as previously reported in this area
(Funahashi et al., 1989; Leavitt et al., 2018; Khanna et al., 2020).
Some of these signals were persistent throughout the delay
(Fig. 1C, target 45 activity), a canonical feature of delay period
activity in the prefrontal cortex (Fuster and Alexander, 1971;
Constantinidis et al., 2018). Other neural responses were
dynamic (Fig. 1C, target 135 activity), consistent with more
recent descriptions of working memory signals in PFC
(Murray et al., 2017; Lundqvist et al., 2018; Khanna et al.,
2020; Wang, 2021). Across units and sessions, tuning strength
(a measure of selectivity to different targets; see Materials and
Methods) ranged from a few spikes per second (sp/s) to over
30 sp/s (Fig. 1D). Thus, the dlPFC neural population contained

Figure 1. Multielectrode electrical microstimulation to probe dlPFC delay period activity during working memory. A, Electrical microstimulation (uStim) protocol. A Utah array was implanted
in the dlPFC, area 8Ar. Subthreshold stimulation was applied to either individual electrodes or pairs of electrodes in the array, creating a variety of spatial microstimulation patterns (see Materials
and Methods). Neural population activity was simultaneously recorded from all electrodes in the array after microstimulation. B, Memory-guided saccade task. After the monkey acquired fixation,
a target was briefly presented (for 100 ms) at one of four possible spatial locations. This was followed by a variable delay period (1.25–2 s, see Materials and Methods), after which the go cue
(fixation off) signaled the monkey to saccade to the remembered target location. Microstimulation was applied during the delay period, using 3–4 different spatial patterns on each session (see
Materials and Methods). tpre, 50 ms before uStim onset; tpost, 50 ms after uStim offset; tend, end of delay period (time of go cue). C, Trial-averaged activity (PSTHs) of one representative unit for
each of the four target angle conditions. Shown are firing rates (FR) computed from no-microstimulation trials (n= 22) in an example session. This unit is spatially tuned during the delay period–
activity is higher for the 315° target than for the other targets. Tuning strength at tpost = 15 spikes per second (sp/s), computed as max FR (target 315°)–min FR (target 225°). Vertical lines mark
the trial epochs indicated in panel B. In no-microstimulation trials, tpost marks the same time as in microstimulation trials, but no stimulation was delivered in this case. Trials are aligned to the
time at which microstimulation would be delivered during microstimulation trials (see Materials and Methods). PSTHs have been smoothed for visualization with a Gaussian filter with a standard
deviation of 40 ms. Monkey W, session 20220810, unit 30. D, Tuning strengths across all units at tpost (Monkey W, n= 10 sessions; Monkey S, n= 1 session). Triangles indicate mean tuning
strength across all units and sessions (7 ± 6 sp/s, mean ± SD, Monkey W; 7 ± 6 sp/s, Monkey S).
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working memory-related signals with target angle location infor-
mation of the type needed to solve the task.

Microstimulation broadly affected dlPFC delay period activity
during working memory
Having identified working memory-related signals in the dlPFC
population during the delay period, we sought to understand
how different microstimulation perturbations impacted these
signals in individual neural units. For this, we measured the
effect of microstimulation on the activity across all recorded units
in the array and quantified the impact on tuning strength.

We found that microstimulation disrupted working
memory-related signals in dlPFC. Neural activity was strongly
modulated by microstimulation, and this modulation induced
changes in tuning strength, even on correct trials (Fig. 2A, exam-
ple units). We observed that microstimulation often suppressed
activity (Fig. 2A, top panel, no microstimulation; bottom panel,
microstimulation). This suppression was observed in all target
angle conditions for many units, resulting in reductions of tuning
strength (e.g., from 15 sp/s to 0 sp/s at microstimulation offset,
tpost; Fig. 2A, top vs bottom left panels). In some cases, microsti-
mulation also caused increases in activity for some conditions
(Fig. 2A, top vs bottom right panels) and concomitant increases
of tuning strength (e.g., from 15 sp/s to 40 sp/s at tpost; Fig. 2A,
top vs bottom right panels).

The microstimulation effect on neural activity was widespread
across the dlPFC population, with over 50% of the recorded units
significantly modulated for one or more of the four target angle

conditions immediately after microstimulation offset (at tpost,
Fig. 2B; MonkeyW: 58± 16% of units, mean± SD, n=30microsti-
mulation experiments; Monkey S: 50± 7% of units, mean± SD,
n=4 microstimulation experiments). The most common effect
of microstimulation was to suppress activity (with 26± 12% of
units significantly suppressed right after microstimulation offset,
mean± SD, n=34 microstimulation experiments; see Materials
and Methods). Few units were excited after microstimulation
offset (4± 3% of units, mean± SD, n= 34 microstimulation exper-
iments) or exhibited inhibition followed by rebound excitation
(4± 3% of units, mean± SD, n=34microstimulation experiments;
Kumaravelu and Grill, 2024), as seen in example unit 1
(Fig. 2A, left panels). Some units remained modulated by the
end of the delay period (at tend; Fig. 2B; Monkey W: 13± 5%,
mean± SD, Monkey S: 14± 3%, mean± SD). This indicates that
activity did not always recover from the microstimulation pertur-
bation by the time the monkeys were instructed to perform
the saccade.

Next, we sought to quantify the impact of microstimulation on
working memory-related signals in units that were significantly
modulated by microstimulation. In many units, the microstimula-
tion perturbation caused strong changes in tuning strength
(Fig. 2C). The modulated units exhibited both decreases and
increases in tuning strength, but overall there was a significant
reduction in tuning strength right after microstimulation offset
(Fig. 2C, left panel). The changes in tuning strength were often sub-
stantial (>10 spikes per second). By the end of the delay period,
tuning strength remained reduced on average across units and

Figure 2. Microstimulation impacts working memory-related signals in dlPFC. A, Effect of microstimulation on neural activity and target angle tuning for two example units (left panel, same
unit as in Fig. 1C). Top, PSTHs for trials without microstimulation (no-uStim). Bottom, PSTHs for trials with microstimulation (uStim). Microstimulation can induce both decreases (left panels) or
increases (right panels) in activity. Furthermore, the tuning strength can decrease (−15 sp/s at tpost, left panels) or increase (+25 sp/s at tpost, right panels). Colored bars above the bottom panels
indicate significant microstimulation-induced activity modulation for each target angle compared with no-microstimulation activity for the same target angle (p< 0.05, two-tailed paired
Wilcoxon rank sum test, n= 22 trials per condition). In microstimulation trials, PSTHs are aligned to the time of microstimulation onset (bottom panels). In no-microstimulation trials, the
PSTHs are aligned to the time at which microstimulation would be delivered during microstimulation trials (top panels; see Materials and Methods). PSTHs have been smoothed for visualization
with a Gaussian filter with a standard deviation of 40 ms. Monkey W, session 20220810, units 30 and 56. B, Percentage of units that are significantly modulated by microstimulation at different
times during the delay period (mean ± SD across all microstimulation experiments; Monkey W, n= 30; Monkey S, n= 4; p< 0.05, two-tailed paired Wilcoxon rank sum test). C, Tuning strength
changes induced by microstimulation at tpost and tend in units significantly modulated by microstimulation. Tuning strength was predominantly reduced by microstimulation at tpost (p< 0.001,
Monkey W; p< 0.01, Monkey S; one-tailed paired t test; all units across all microstimulation experiments). Triangles indicate mean tuning strength across all units and sessions for each monkey.
By tend, tuning strength remained reduced on average across units and experiments for Monkey S, but not for Monkey W (p= 0.35, Monkey W; p< 0.001, Monkey S; one-tailed paired t test),
although some units remained affected in monkey W.
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experiments for one of the monkeys (Fig. 2C, right panel), though
some units remained affected in both monkeys. Thus, we found
that microstimulation broadly impacted activity across the dlPFC
neural population and produced strong and long-lasting changes
in tuning strength, affecting working memory-related signals that
may be crucial for the task.

Microstimulation minimally impacted memory-guided
behavior
Having found that there was a pronounced effect of microstimula-
tion on neural activity (Fig. 2), we next sought to determine
whether microstimulation impacted working memory behavior.
We asked whether microstimulation had an impact on the
eye movements to remembered targets. We observed that saccade
trajectories were qualitatively similar in microstimulation versus
no-microstimulation experiments (Fig. 3A). However, since
microstimulation can have subtle impacts on behavior (Opris
et al., 2005a, b; Murphey and Maunsell, 2008), we quantified the
impact of microstimulation on several eye movement metrics.

First, the precision of saccades (distance of the saccade end-
point to the presented target) was not impacted by microstimula-
tion (Fig. 3B). Across all microstimulation experiments in both
animals, we found no significant difference in saccade precision
between microstimulation and no-microstimulation experiments.

Second, we asked whether microstimulation had an impact on
the readiness of the animals to report the remembered target
location by examining the saccadic reaction time (RT; Fig. 3C).

The overall RT across experiments was ∼3 ms faster in the
no-microstimulation versus microstimulation experiments,
which was small compared with the typical range of RTs
within a given experiment (no-microstimulation, 181 ± 7 ms;
microstimulation, 184 ± 10 ms; mean ± SD). Nonetheless, this
difference was statistically significant. This small but significant
difference could indicate that the microstimulation had a slight
tendency to disrupt the memory signal or the saccadic prepara-
tion (Opris et al., 2005a; Churchland and Shenoy, 2007).

Third, microstimulation did not increase the rate of errors
(Fig. 3D). We considered target misses, which applied to cases
where monkeys failed to report the correct target location after
go cue presentation (see Materials and Methods). This included
cases where monkeys initiated a saccade toward the target loca-
tion but failed to reach the target window (which was the vast
majority of the errors), as well as a small number of cases where
the monkey failed to initiate a saccade or performed a saccade
toward an incorrect location.We found no statistically significant
difference in the fraction of target misses in microstimulation
versus no-microstimulation trials (Fig. 3D).

Finally, we considered the possibility that the impact of micro-
stimulation on performance could depend on the spatial tuning of
the stimulation site. In particular, microstimulation could have a
stronger impact in cases where the spatial tuning of the stimulation
site matched the target location presented on a given trial. Overall,
we found no clear relationship between the spatial tuning of the
stimulation site and the changes in behavior (see Materials and

Figure 3. Microstimulation in dlPFC minimally impacts memory-guided behavior. A, Saccade trajectories in microstimulation (uStim) and no-microstimulation (no-uStim) trials for an example
session of each monkey. Monkey W, session 20220801; Monkey S, session 20210311. Trajectories are shown from go cue to target acquisition, for all target angle conditions (trials per condition,
n= 22, Monkey W; n= 33, Monkey S). Trajectories have been smoothed for visualization with a Gaussian filter with a standard deviation of 2 ms. B, Mean saccade precision in microstimulation
versus no-microstimulation trials, measured as the trial-averaged distance from the saccade endpoint to the target. Distances on microstimulation trials are not significantly different from
distances on no-microstimulation trials (p= 0.1, two-tailed paired t test; all microstimulation experiments across both monkeys, n= 34). C, Mean reaction time (RT) on microstimulation versus
no-microstimulation trials. RTs on microstimulation trials are significantly higher than on no-microstimulation trials (p< 0.01, two-tailed paired t test; n= 34), but only by 3 ms on average.
D, Fraction of target misses (see Materials and Methods) on microstimulation versus no-microstimulation trials. The fraction of target misses on microstimulation trials is not significantly different
than on no-microstimulation trials (p= 0.44, two-tailed paired Wilcoxon rank sum test; n= 34). In panels B–D, there was a significant linear relationship between the behavioral metrics
measured in microstimulation versus no-microstimulation trials (p< 0.001, F test). Each individual square/diamond indicates a different microstimulation experiment (which includes all trials
for a given microstimulation pattern within a session, averaged across all target angle conditions). The squares/diamonds appear organized in columns because each microstimulation experiment
within a session was compared against the same no-microstimulation experiment of that session.
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Methods). However, we found a small but significant effect on sac-
cade precision. In particular, microstimulation seemed to slightly
increase saccade precision (albeit by a very small amount, <0.3°)
when the spatial tuning of the stimulated site was close to the target
direction presented (Pearson’s correlation = 0.3, p=0.02). Thus,
the observed microstimulation-induced neural activity changes
had minimal consequences for the behavioral performance of
the monkeys.

dlPFC preserved working memory-related information after
microstimulation
How can we reconcile the pronounced microstimulation effects
on neural activity (Fig. 2) with the little or no impact of microsti-
mulation on behavior (Fig. 3)? One possible explanation is that
the area we are perturbing, despite containing signals relevant
to the task, is not causally implicated in the generation of the
behavior. However, the large body of literature involving lesions,
cooling, and inactivation in the dlPFC points at a critical and nec-
essary role of this region in this type of working memory beha-
vior (Bauer and Fuster, 1976; Funahashi et al., 1993; Buckley
et al., 2009). An alternative explanation is that, similar to what
has been previously reported with sensory distractors
(Parthasarathy et al., 2017; Cavanagh et al., 2018), the induced

neural changes from microstimulation do not entirely disrupt
working memory information.

To test this, we analyzed the dlPFC neural population activity
to determine if working memory-related information was pre-
served in the population after microstimulation. To extract this
information from the neural population, we trained target angle
classifiers using delay period activity separately for microstimula-
tion and no-microstimulation experiments. Furthermore, a sepa-
rate classifier was trained at each time step and used neural
activity from all units (see Materials and Methods). In this way,
we could assess whether microstimulation might have reduced
or eliminated the target angle information present in the dlPFC
population. We found that we could classify well above chance
and with similar accuracy in both microstimulation and
no-microstimulation experiments (Fig. 4A, example session with
three different microstimulation experiments). Importantly, we
could classify similarly well throughout the entire delay period.
Across all experiments we performed, classification accuracy
was not significantly different in microstimulation versus
no-microstimulation experiments (Fig. 4B, shown at tpre, tpost,
and tend). There was variability in classification accuracy across
microstimulation experiments (individual squares and diamonds),
but in all cases we could classify above chance (dashed lines), even

Figure 4. Working memory-related information in dlPFC is preserved after microstimulation. A, Cross-validated target angle classification accuracy for microstimulation (uStim) and
no-microstimulation (no-uStim) experiments. Example session with three microstimulation experiments (colored lines) and one no-microstimulation experiment (gray line). A separate classifier
was trained on each time step for each experiment. Classification was well above chance (dashed line, chance probability: 0.25) throughout the delay period (indicated by colored bars; p< 0.05,
binomial test), even at tpost. Classification accuracies were similar in microstimulation and no-microstimulation experiments. Shading indicates 95% confidence interval (see Materials and
Methods). Lines have been smoothed for visualization with a Gaussian filter with a standard deviation of 40 ms. Monkey W, session 20220802. B, Classification accuracies for all microstimulation
experiments at different time points during the delay period. Classification accuracy was not significantly different in microstimulation versus no-microstimulation experiments (left to right
panels for tpre, tpost, and tend; p= 0.1, p= 0.11 and p= 0.77, two-tailed paired Wilcoxon rank sum test; n= 34). Classification accuracy difference (no-microstimulation - microstimulation)
averaged across all stimulation patterns: tpre =−2.5%, tpost = 2.3%, and tend = 0.6%. In all cases, classification was above chance (dashed lines), even at tpost (middle panel). There was
a significant linear relationship between the accuracies estimated in microstimulation versus no-microstimulation trials at each of the three time points (p< 0.05, F test). Black symbols indicate
microstimulation patterns that exhibit significant changes in classification accuracy with respect to no-microstimulation conditions (p< 0.05, binomial test). Gray symbols indicate no significant
changes. One exception is that, for the symbols corresponding to the example session shown in panel A, the symbols are colored by the uStim pattern (3 colored symbols in each panel). To
indicate significance for the colored symbols, we use a black or gray circle around the symbol to indicate significant or not significant changes, respectively. The purple square in the left panel
overlaps with the green square and is therefore not visible.

8 • J. Neurosci., September 10, 2025 • 45(37):e2197242025 Soldado-Magraner et al. • Robustness of PFC to Microstimulation



immediately after microstimulation (at tpost, middle panel). The
variability in classification accuracy could not be accounted for
based on the spatial tuning of the stimulated sites (see Materials
and Methods). This analysis demonstrates that dlPFC robustly
encodes workingmemory-related information after microstimula-
tion. The presence of working memory-related signals in the neu-
ral population activity may explain why behavior is not disrupted
by perturbations that have strong effects on the activity of individ-
ual units.

dlPFC’s neural activity was minimally impacted by
microstimulation in a memory subspace of the neural
population activity
Having found that working memory information is preserved in
the dlPFC population after microstimulation, we next sought to
find which dimensions of the population activity were perturbed
by microstimulation. We considered two subspaces. First, we
applied FA to extract the dimensions of the activity that captured
the greatest shared variance among the neurons during
no-microstimulation conditions (Fig. 5A, the “dominant sub-
space”; see Materials and Methods). Second, we used demixed
PCA (dPCA; Kobak et al., 2016) to specifically look for dimen-
sions of the activity that were not affected by microstimulation

and which could contain stable working memory-related signals
during the delay (Fig. 5B, the “memory subspace”; see Materials
and Methods). The existence of these dimensions might explain
the robustness of behavior, since working memory-related sig-
nals could be stably read out throughout the delay period
(Parthasarathy et al., 2019).

The dominant subspace captured two prominent features of
the population activity: working memory tuning and the time
evolution of responses (Fig. 5A, middle panel). These dimensions
together captured the dominant dimensions of covariation
among the units and not necessarily variance due to specific
task variables (such as target angle and time in the trial; see
Materials and Methods). However, target angle tuning, as well
as changes in activity over time, tend to be shared among neu-
rons. This shared variance is precisely what FA seeks to capture.
This is why we observed target angle tuning in this subspace. In
particular, in no-microstimulation experiments, the activity
occupied different locations in the space depending on target
angle condition, reflecting target tuning. Additionally, neural
activity during the delay period evolved from its initial state,
moving from one location (at tpre) to a different location (at tend).
This explains why the dominant subspace contained working
memory-related signals that evolved over time.

Figure 5. Working memory representations in dominant and memory subspaces of dlPFC population activity. A, Middle panel, trial-averaged neural trajectories in the dominant subspace during
example no-microstimulation trials (gray lines) for all target angle conditions. Top and bottom left panels, trial-averaged neural trajectories in the dominant subspace during example microstimulation
(uStim, yellow lines) and no-microstimulation (no-uStim, gray lines) trials, for two example target angle conditions (45 and 315°). For no-microstimulation trials, trajectories are shown from tpre to
tend. For microstimulation trials, trajectories are shown from tpost to tend. Data were excluded from tpre to tpost due to microstimulation artifacts. The change in activity induced by microstimulation from
tpre to tpost is indicated by yellow dashed arrows. Inset at the bottom right corner shows activity at tpre and tpost during microstimulation trials for all target angle conditions. 95% confidence intervals
(CI) across all trials (n= 22) are shown at tpre and tend. Microstimulation strongly modulates activity in the dominant subspace (yellow dashed arrows are long), and the activity does not always recover
to its natural state by tend (distance between microstimulation and no-microstimulation activity distributions at tend). B, Trial-averaged neural trajectories in the memory subspace. Same conventions as
in panel A. Microstimulation modulation is weak in this subspace (yellow dashed arrows are short), and the activity remains in the same location throughout the delay period. The X markers in panels
A and B indicate the location in state space corresponding to 0 spike counts across all units. In panels A and B, we show population activity in the two leading dimensions of the dominant and the
memory subspaces. Trajectories in panels A and B have been smoothed with a Gaussian filter with a standard deviation of 60 ms. Monkey W, session 20220810.
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The memory subspace, on the contrary, captured working
memory tuning that was stable over time (Fig. 5B, middle panel).
The dPCA objective explicitly decorrelated (or “demixed”) dimen-
sions with target angle variance from dimensions with microsti-
mulation variance, as well as from dimensions with time-related
variance (see Materials and Methods). The memory subspace
was defined by the top dPCA target angle-related dimensions,
which captured ∼30% of the total variance of the trial-averaged
activity (Fig. 6A, red bars; example session). Variance related to
microstimulation and the passage of time was primarily captured
by other dPCA dimensions (Fig. 6A, yellow and gray bars, respec-
tively). The memory dimensions reflected target angle-related sig-
nals that were stable over time (Fig. 6B, left panel, first memory
dimension; Fig. 5B, middle panel, memory dimensions 1 and 2).
The other dPCA dimensions captured signals related to the pas-
sage of time (Fig. 6B, middle panel, first time dimension) and
the effect of microstimulation (Fig. 6B, right panel, first microsti-
mulation dimension).

We found that microstimulation strongly impacted activity in
the dominant subspace (Fig. 5A, top and bottom left panels, tar-
get angles 45 and 315°; bottom right panel, all target angles). It
need not be the case that the activity along the dominant dimen-
sions would be modulated by the microstimulation, since these
dimensions were found using no-microstimulation trials. The
effect of microstimulation could be visualized as a push of the
neural activity along specific directions (dashed yellow arrows)
and away from its natural time course (gray trajectories,
no-microstimulation). At microstimulation offset (tpost), the
activity relaxed toward the end location of the trajectories under
no-microstimulation conditions (yellow trajectories; tend in
no-microstimulation). In this dominant subspace, the effect of
microstimulation was evident (dashed yellow arrows), and the
activity did not always recover to its natural state by the end of
the trial (top left panel, recovery, versus bottom left panel, incom-
plete recovery; tend locations). These population-level effects
match the observations made at the individual unit level, where
we found strong microstimulation modulation at tpost and a per-
sistent modulatory effect until the end of the trial for a subset of
the units (Fig. 2). The dominant subspace captured ∼50% of the
target angle variance of the trial-averaged activity in held-out
microstimulation trials (Monkey W: 50 ± 13%, mean with 95%
CI, n= 10 sessions; Monkey S: 53%, n= 1), between 5–20% of

microstimulation variance (Monkey W: 19 ± 10%; Monkey S:
6%) and 25–40% of time-related variance (Monkey W: 44 ±
16%; Monkey S: 25%).

Contrary to what was found in the dominant subspace
(Fig. 5A), the activity in thememory subspace remained in roughly
the same location throughout the entire delay period, in both
microstimulation and no-microstimulation experiments
(Fig. 5B). This location depended on the target angle condition
(top vs bottom right panels, angles 45 and 315°; bottom left panel,
all angles), indicating preserved target tuning over time.
Modulation between tpre and tpost was small (length of dashed
arrows) and the activity recovered to its natural state by the end
of the delay period (tend, no-microstimulation). The memory
subspace captured ∼70% of the target angle variance of the
trial-averaged activity in held-out microstimulation trials
(Monkey W: 68± 8%, mean with 95% CI, n=10 sessions;
Monkey S: 68%, n=1; Materials and Methods), only ∼3% of
microstimulation variance (Monkey W: 4 ± 2%; Monkey S: 2%),
and 2% of time-related variance (Monkey W: 4 ± 2%; Monkey S:
1%). The small amount of time-related and microstimulation-
related variance confirms that the memory subspace contained
stable working memory information throughout the delay that
was minimally impacted by microstimulation.

Consistently across microstimulation experiments, popula-
tion activity was strongly modulated by microstimulation
in the dominant subspace, whereas it was minimally impacted
by microstimulation in the memory subspace (Fig. 7). To see
this, we quantified the distance between microstimulation
and no-microstimulation activity at various times during the
delay period. Activity after microstimulation deviated from
no-microstimulation activity in the dominant subspace, particu-
larly at tpost (Fig. 7A, green, same example experiment as in Fig. 5;
Fig. 7B, top panels, green, mean with 95% CI across all experi-
ments). This indicated that microstimulation pushed activity
away from its natural state. After this push, the activity did not
always recover by the end of the trial (Fig. 7B, bottom panels,
green, % of experiments with significant activity modulation
due to microstimulation in the dominant subspace; Monkey
W, at tpost: 73%, at tend: 15%, n= 120 microstimulation and
target angle conditions; Monkey S, at tpost: 100%, at tend: 19%,
n = 16). In contrast, activity in the memory subspace remained
minimally impacted by microstimulation consistently across

Figure 6. Memory subspace estimation using dPCA. A, Percentage of variance of the trial-averaged neural population activity captured by each dPCA dimension in an example session (Monkey
W, session 20220810). The dPCA model was fit to find dimensions that primarily captured target angle, microstimulation or time-related variance, as well as variance due to their interaction (red,
yellow, gray, and green colors, respectively). The top four dPCA target angle-related dimensions defined the memory subspace (dPCA dimensions 1, 5, 10, and 12). The memory dimensions
captured ∼30% of the total variance of the trial-averaged activity (inset, red portion of pie chart). B, Trial-averaged neural activity projected onto the first target angle, time, and microstimula-
tion dPCs (left to right panels). These dimensions corresponded in this case to the top three dPCA dimensions, which capture most of the variance of the trial-averaged neural activity (panel A,
large rectangle; 14.9%, 10.4%, and 7.5% of the variance). Each trace represents the trial-averaged neural activity of one target angle and microstimulation condition (each panel contains 16
traces in total, given 4 target angle conditions and 4 microstimulation conditions). In the left panel, the traces are colored based on target angle condition. In the right panel, they are colored
based on microstimulation condition.
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microstimulation experiments (Fig. 7A, purple, same example
experiment as in Fig. 5; Fig. 7B, top panels, purple, mean with
95% CI across all experiments), and the modulation was largely
absent by the end of the trial (Fig. 7B, bottom panels, purple: % of
experiments with significant activity modulation due to microsti-
mulation in the memory subspace; MonkeyW, 34% at tpost, 4% at
tend, n= 120; Monkey S, 0% at tpost, 0% at tend, n = 16). This might
explain the robustness of behavior after microstimulation, since
working memory-related signals could be stably read out with
the same decoder throughout the delay period.

To test this possibility, we attempted to extract working
memory-related information from this memory subspace before
and after microstimulation. Using a static classification method
based on no-microstimulation activity from the memory sub-
space alone (see Materials and Methods), we could stably and
accurately read out target angle information throughout

the delay period during microstimulation trials (classification
accuracy: Monkey W, tpre: 56 ± 2%, tpost: 46 ± 3%, tend: 52 ± 2%,
mean with 95% CI, n= 30 microstimulation experiments;
Monkey S, tpre: 57 ± 5%, tpost: 37 ± 3%, tend: 39 ± 2%, mean with
95% CI, n= 4; above chance classification). It was also possible
to read out working memory-related information in the domi-
nant subspace with similar accuracy. This is because the domi-
nant and memory subspaces partially overlapped, and as a
consequence both subspaces contained signals related to working
memory (minimum subspace angle = 60 ± 3°, mean ± SD, n= 55
sessions and cross-validation folds, Monkey W; 63 ± 2°, n= 5,
Monkey S; defined as the smallest angle between the two 4D sub-
spaces in high-d space). Importantly, classification accuracies
obtained with the memory subspace-based static classification
method were similar to those obtained using classifiers with
time-varying parameters and which relied on all dimensions of

Figure 7. Microstimulation minimally impacts activity in the memory subspace. A, For an example microstimulation experiment, distance between microstimulation and no-microstimulation
trajectories throughout the delay period in the dominant (green lines) and memory (purple lines) subspaces. Distances correspond to the trajectories shown in Figure 5 for target angles 45° (left
panel) and 315° (right panel). Distances are normalized to the 95% confidence interval of the no-microstimulation trials at each time step (see Materials and Methods). Colored bars above panels
indicate significant microstimulation-induced activity modulation in the dominant (green) and memory (purple) subspaces. For target angle 45°, activity in the dominant subspace recovers by
tend (distance is small). For target angle 315°, activity in the dominant subspace does not fully recover by tend (distance is large). Monkey W, session 20220810. B, Top panels, Mean distance
between microstimulation and no-microstimulation trajectories across all microstimulation experiments in the dominant (green lines) and memory (purple lines) subspaces. Error bars indicate
95% CI across all experiments (Monkey W, n= 120 microstimulation and target angle conditions; Monkey S, n= 16). Bottom panels, Percent of microstimulation experiments with significant
microstimulation-induced activity modulation in the dominant (green lines) and memory (purple lines) subspaces (p< 0.05, two-tailed two-sample multivariate test). Activity in the dominant
subspace is significantly modulated by microstimulation after microstimulation offset in many experiments, and in some experiments it remains modulated by tend. In contrast, activity in the
memory subspace quickly recovers from the perturbation in most experiments. In panel A, the quantifications were computed based on neural activity in the two leading dimensions of the
dominant and the memory subspaces (to match the examples shown in Fig. 5). The quantifications in panel B were computed using all four dimensions for each of the subspaces.
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the data (Fig. 4). This meant that working memory-related sig-
nals could be stably read out with the same decoder throughout
the delay period, making this information readily available to
downstream areas (Parthasarathy et al., 2019).

In summary, we found that dynamic and stable working
memory representations coexist in dlPFC and that microstimu-
lation differentially impacts them. In dimensions where working
memory signals naturally evolved over time, microstimulation
strongly modulated neural activity. In contrast, in dimensions
containing working memory signals that were stable over time,
microstimulation minimally impacted neural activity, and work-
ing memory information could be stably read out throughout the
delay period.

Discussion
Here, we studied working memory computations by directly per-
turbing delay period activity in the dlPFC using electrical micro-
stimulation. We implanted monkeys with multielectrode arrays
in dlPFC, which allowed us to stimulate with a variety of spatial
microstimulation patterns while monitoring the effect on the
recorded neural population. We found that microstimulation
broadly affected the activity of individual neurons in dlPFC,
including changes to the tuning strength of individual neurons
that displayed working memory-related activity. However, we
found minimal impact on the ability of the animals to correctly
perform the task. This apparent contradiction was reconciled
at the population level, where we found that working memory
information was preserved in dlPFC after microstimulation
and that the information could be stably read out from a specific
“memory subspace” of the neural population activity. Our
findings indicate that working memory exhibits robustness to
microstimulation perturbations in the dlPFC.

PFC might be endowed with circuit properties that grant
working memory signals stability to diverse activity perturba-
tions. For example, a previous study also found a stable memory
subspace that was not affected by perturbations from sensory

distractors (Parthasarathy et al., 2019). Cognitive-related signals
that are not disrupted by external stimuli or contextual events
have also been found in PFC during executive control functions
other than working memory, such as categorical reasoning
(Freedman et al., 2003; Cromer et al., 2011), rule-based decision-
making (Mante et al., 2013; Siegel et al., 2015), and selective
attention (Snyder et al., 2021). This feature might be an intrinsic
and general property of high order areas such as PFC, which is
required to form and maintain stable cognitive states to guide
behavior (Snyder et al., 2021).

Working memory information could be robustly and stably
maintained within PFC in the presence of other evolving signals
by representing stable and dynamic information in different
subspaces of the neural population activity (Druckmann and
Chklovskii, 2012; Murray et al., 2017). We found such subspace
dissociation of stable and dynamic working memory signals in
the dlPFC population (Fig. 8A, signals in memory vs dominant
subspaces). Importantly, while the “stable” memory subspace
was minimally affected by microstimulation, the “dynamic” dom-
inant subspace was strongly modulated by microstimulation
(Fig. 8B). The separation of stable and dynamic variables in differ-
ent subspaces of dlPFC’s neural activity might underlie working
memory robustness to sensory perturbations (Parthasarathy
et al., 2019), as well as to microstimulation perturbations.
However, the dominant and memory subspaces overlapped along
some dimensions (Fig. 8), which indicates that the two subspaces
shared some signals. This could reflect the interaction of time-
varying attentional and motor preparation processes with stable
working memory representations (Parthasarathy et al., 2019).
Alternative subspace dissociation mechanisms involve completely
segregating different signals in orthogonal subspaces. This has
been proposed in the motor cortex as a mechanism to separate
preparatory activity from movement activity so that movements
are not prematurely generated during motor planning (Kaufman
et al., 2014; Elsayed et al., 2016). Related orthogonal mechanisms
might be in place to prevent cognitive and arousal-related signals

Figure 8. Population-level working memory representations in dlPFC for robustness to perturbations. A, Organization of the dominant and memory subspaces in dlPFC’s population activity
space. The dominant subspace (green) captures the time evolution of working memory-related signals, whereas the memory subspace (purple) reflects the stable component of the working
memory signals. B, Microstimulation perturbations push activity along different directions in neural population activity space. The perturbations are strongly reflected in the dominant subspace
(i.e., the perturbations have a substantial projection onto this subspace), but they are minimally reflected in the memory subspace (i.e., the perturbations are largely orthogonal to this subspace).
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from influencing motor responses (Johnston and Smith, 2024) or
value-related signals from prematurely driving choice (Yoo and
Hayden, 2020).

Several factors might have contributed to the lack of impact of
stimulation on behavior (Fig. 3). First, the time of stimulation
during the delay period might play a role. Our stimulation was
in the middle of the delay period. In PFC, stimulation during
delayed response tasks might be most effective at the beginning
of a delay period, when the memory has just been encoded and
motor preparation is minimal (Stamm, 1969). In the motor cor-
tex, the opposite is found: stimulation is more effective later in
the delay period, closer to movement execution (Churchland
and Shenoy, 2007). Second, increasing the task difficulty (e.g.,
by adding more targets or by increasing the delay duration) could
make it easier for microstimulation to impact the memory net-
work and, consequently, behavior. Third, PFC is part of a larger
network responsible for various executive control functions,
including working memory, that comprises multiple brain areas
(Fuster, 2015). The stimulation was local within this network,
which might not be enough to disrupt this large-scale and resil-
ient recurrent network (Li et al., 2016). Finally, it is also possible
that PFCmight be responsible for executive functions supporting
working memory, but not storing the memory per se (Lebedev
et al., 2004; Sreenivasan et al., 2014; Lara and Wallis, 2015;
Mackey et al., 2016). Regardless of whether the working
memory-related representations found in dlPFC reflect a mem-
ory or a process that supports working memory, our results indi-
cate that such representations are robust to microstimulation
perturbations within the dlPFC network.

Several studies that perturbed neural activity in dlPFC during
the delay period of working memory tasks were able to induce
stronger effects on behavior than the effects reported here.
These studies involved longer-lasting activity manipulations
than the type we performed, e.g., microstimulation throughout
the entire delay period (Opris et al., 2005a), large-scale lesion
(Funahashi et al., 1993), cooling (Bauer and Fuster, 1976), or
pharmacological inactivations (Sawaguchi and Iba, 2001).
Another related study that showed effects on behavior during
working memory applied microstimulation in the frontal eye
fields but also throughout the whole delay period (Opris et al.,
2005b). In visually guided tasks, brief microstimulation perturba-
tions during saccade planning have been shown to impact eye
movements when applied to the lateral PFC (Wegener et al.,
2008) and the dorsomedial PFC (Yang et al., 2008).

In contrast, recent studies that performed transient inactiva-
tions of PFC and motor areas during delayed response tasks min-
imally impacted behavior. In a working memory task, brief
optogenetic inactivation of the lateral PFC in monkeys did not
impact working memory-related signals and behavior
(Mendoza-Halliday et al., 2023). In a delayed motor task, tran-
sient optogenetic inactivation of mouse premotor cortex
(ALM) did not impact behavior (Li et al., 2016; Inagaki et al.,
2019). Similarly, in a delayed motor task, transient optogenetic
stimulation of monkey motor and premotor cortices produced
no behavioral impact, though electrical microstimulation mini-
mally influenced behavior (O’Shea et al., 2022). These studies
found that task-relevant signals during the delay period were
not affected (Mendoza-Halliday et al., 2023) or quickly recovered
(Li et al., 2016; Inagaki et al., 2019) from such transient manip-
ulations, even though activity was strongly modulated by the
stimulation. Similarly, we found task-relevant signals that were
either not affected by the microstimulation or that tended to
recover from it (Figs. 2, 5, and 7).

Taken together, this body of work points to possible explana-
tions for how robustness to perturbations is maintained in neural
circuits. One possibility is that task-relevant information is
affected by the stimulation but that compensatory mechanisms
are in place that restore this information, potentially through
redundancy (e.g., across hemispheres as in Li et al., 2016). A sec-
ond possibility is that task-relevant information is affected, but
not completely disrupted, and that the information is still acces-
sible in certain subspaces of the same neural population (Murray
et al., 2017; Parthasarathy et al., 2019). A third possibility, per-
haps related to the second, is that task-relevant information is
affected but that the dimensions in which this information
resides do not align with the dimensions of the activity that are
truly consequential for behavior (O’Shea et al., 2022). Future
work involving additional perturbations and monitoring of neu-
ral activity more broadly across cortical areas will be necessary to
resolve these potential explanations.

A way by which the brain may retain robustness in the face of
perturbation is through an attractor network. Attractors are robust
to brief and modest perturbations, such as noise, sensory distrac-
tors, or direct activity manipulations (Wang, 2021). There are var-
ious attractor networks that might underlie the maintenance of
working memory-related information in dlPFC and that could
implement the possibilities discussed above. First, attractor net-
works can be instantiated by recurrent dynamics supported by
specific patterns of network connectivity (Compte et al., 2000; Li
et al., 2016; Murray et al., 2017; Inagaki et al., 2019;
Parthasarathy et al., 2019; Zhou et al., 2023; Stroud et al., 2024).
Second, attractor networks can incorporate an “activity-silent”
mechanism (Mongillo et al., 2008; Stokes, 2015) via short-term
synaptic plasticity to maintain a short-term memory even in the
absence of changes in neural activity (Barbosa et al., 2020).
Synaptic weights might be less prone to interference from sensory
distractors (Miller et al., 2018; but see Wang, 2021), so the same
plasticity-based mechanism could mediate the robustness to
microstimulation perturbations. Third, attractor networks can
exhibit oscillatory activity (Compte et al., 2000), which has been
observed during workingmemory (Pesaran et al., 2002) andmight
contribute in a frequency-specific manner to gating of sensory
information (Miller et al., 2018). This mechanism might mediate
the suppression of distractors (Bonnefond and Jensen, 2012) and
electrical microstimulation.

The work presented here aimed to understand the response
of PFC to microstimulation perturbations and found that work-
ing memory signals were robust to such perturbations. An
important goal for future work is to design perturbations that
can selectively impact working memory. One possible approach
is to design stimulation experiments to specifically impact
targeted neurons and behavior (Moore and Fallah, 2004).
Another approach is to optimize stimulation patterns to produce
customized effects on neural populations and behavior (Tafazoli
et al., 2020; Nejatbakhsh et al., 2023; Minai et al., 2024).
Understanding the ways in which populations of neurons main-
tain robust cognitive states, along with the development of tools
to customize perturbations of neural populations to achieve
specific targeted states, is one of the important goals of modern
systems neuroscience.

Data and Code Availability
The data that support the findings of this study are publicly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.15640851. The
code to reproduce the analysis is openly available in KiltHub at
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https://doi.org/10.1184/R1/29293772.v1. All versions of the code,
including new releases, can be found in GitHub at https://github.
com/jsoldadomagraner/PFC_uStim.
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