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Distinct population codes for attention in the
absence and presence of visual stimulation
Adam C. Snyder 1,2,3, Byron M. Yu 1,3,4 & Matthew A. Smith 2,3,5

Visual neurons respond more vigorously to an attended stimulus than an unattended one.

How the brain prepares for response gain in anticipation of that stimulus is not well

understood. One prominent proposal is that anticipation is characterized by gain-like mod-

ulations of spontaneous activity similar to gains in stimulus responses. Here we test an

alternative idea: anticipation is characterized by a mixture of both increases and decreases of

spontaneous firing rates. Such a strategy would be adaptive as it supports a simple linear

scheme for disentangling internal, modulatory signals from external, sensory inputs. We

recorded populations of V4 neurons in monkeys performing an attention task, and found that

attention states are signaled by different mixtures of neurons across the population in the

presence or absence of a stimulus. Our findings support a move from a stimulation-invariant

account of anticipation towards a richer view of attentional modulation in a diverse neuronal

population.
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The ability to select goal-relevant information from the
environment while ignoring distractions is essential to
successful daily living. Much of the research into the

neurophysiological underpinnings of this important cognitive
function, known as selective attention, has focused on modula-
tions of stimulus processing. However, attention states are not
established instantaneously: they take hundreds of milliseconds to
be prepared prior to the arrival of an anticipated stimulus1,2. The
state of anticipation can then be maintained, notwithstanding
occasional lapses, until the expected event3–5. We sought to
understand how the brain organizes spiking activity to best detect
and respond to anticipated sensory stimuli.

The canonical attention effect in visual cortex is that neurons
fire more vigorously to an attended stimulus compared to an
unattended stimulus6, and it has been hypothesized that such
response gain mechanisms (or, more properly, a normalized
response gain7,8) might underlie behavioral advantages of atten-
tion by amplifying the representation of the relevant
information9,10. However, such response gains typically appear
after 150 to 300 ms following stimulus onset6,11,12, which is likely
too sluggish to fully account for behavioral improvements. Thus,
we focused on the neural correlates of attention during earlier
time-points, in particular the spontaneous neural activity pre-
ceding an anticipated stimulus.

The current prevailing view of anticipatory attention preceding
stimulus onset is that it is characterized by the same gain-based
mechanisms used to describe attentional modulations of
stimulus-evoked responses13–17. However, evidence for this
stimulation-invariant interpretation of attention has been
inconsistent. Some studies have reported slight increases in
average baseline firing rates with attention13–16,18, but others have
not19–25. Moreover, the reported gains in baseline firing rates are
far weaker than corresponding baseline attention effects mea-
sured with functional magnetic resonance imaging (fMRI)26,27

and electroencephalography/magnetoencephalography (EEG/
MEG)28, suggesting that baseline gains in average firing rates may
be just the tip of the iceberg.

From first principles, there are reasons to suppose that the
neural correlates of attention states might be qualitatively dif-
ferent in the absence, versus presence, of sensory stimulation.
Primarily, it would be adaptive not to confuse the internal
attention signal with a spurious representation of a stimulus.
Consider a simplified example: a hypothetical downstream brain
area that determines stimulus strength as a weighted sum of
activity across the neural population of interest. For a sensory
population these weights would by definition be predominantly
positive. If anticipatory attention were simply to increase the
spontaneous firing rates of all neurons, as with a stimulation-
invariant gain model, then that gain would change the value of
the readout for the downstream area, potentially leading to
confusing the anticipatory state change as the appearance of a
weakly effective stimulus.

As an alternative to a stimulation-invariant gain model, we
supposed a mixture of firing rate modulations including both
suppression and facilitation would provide a better strategy for
anticipatory attention. Then, the average attention-related fir-
ing rate increase across our population of interest would be
minimal, and the downstream area would be less likely to
confuse this state change for a stimulus. In this framework,
effects of anticipatory attention would be explicitly obscured
by averaging across neurons in a population, but could
be uncovered by a separate readout consisting of a different
mixture of neural responses where some neurons take on
negative weights. This would support a straightforward linear
decoding scheme for effectively disentangling internal and
external signals.

To test the idea that a mixture of suppression and facilitation
characterizes anticipatory attention, we recorded neural popula-
tions in visual cortical area V4 of monkeys performing a spatial
attention task. The population patterns of attentional firing rate
modulations we observed prior to stimulus onset were funda-
mentally different than the patterns we saw during stimulus
processing. Moreover, the distinct features of anticipatory states
were predictive of the subjects’ behavioral performance. These
results defy an interpretation of anticipatory attention based on a
stimulation-invariant gain modulation, and indicate the need to
reconceptualize the neurophysiological mechanisms underlying
the dynamic allocation of attention.

Results
Behavioral effects of attention. We trained two adult male
rhesus macaque monkeys (Macaca mulatta) to perform a
demanding orientation change-detection task (Fig. 1a) in which
one of two stimulus locations was block-cued to be more likely to
change (the valid target location). The subjects were more accu-
rate (Fig. 1b) and faster (Fig. 1b, insets) at detecting orientation
changes at the valid target location compared to the invalid target
location, confirming that the subjects selectively attended to the
valid location. Our goal was to characterize the changes in V4
neural activity that underlie these behavioral effects.

As an alternative to a stimulation-invariant gain model, we
reasoned that a mixture of suppression and facilitation would
provide a better strategy for anticipatory attention in the absence
of a stimulus. Our analysis approach was twofold: first, we
examined the overall spiking response by averaging across the
neurons in the population and found that this signal differ-
entiated attention states late after stimulus onset (200–400ms; the
post-stimulus interval), but did not differentiate attention states
pre-stimulus (−200 to 0 ms); second, we employed a population-
level analysis that allowed for a trial-by-trial estimate of attention
involving both increases and decreases in firing rate across the
population, which revealed reliable differentiation of anticipatory
attention states.

Slow-latency modulations of population average firing rates. A
typical finding is that spatial attention leads to an average gain of
firing rates in V4 of 5–30% for attended compared to unattended
stimuli that manifests >150 ms after stimulus onset6. Also, typi-
cally, little to no modulation is seen during anticipatory periods
after attention cues have been given but no imperative stimulus
has yet appeared20,24,29,30. When we analyzed the average
population response, we replicated this combination of results
characteristic of the literature (Fig. 2). Firing rates were sig-
nificantly greater in response to stimuli when the attention cue
had been presented in the receptive field (RF) area of the popu-
lation compared to when the attention cue had been presented in
the opposite hemifield. However, the time-course of this mod-
ulation was relatively slow: the difference was statistically
detectable starting at 233 ms, which was slower than the average
median saccadic response time for the task (mean ± SD: 199.5 ±
9.1 ms for Monkey W; 173.2 ± 4.0 ms for Monkey P; Fig. 2 inset).
Even recognizing that the timing of statistical significance varies
due to assumed significance level and other factors, such a slow
time course of attention effects presents a conundrum because the
neural effects of attention must strictly precede the behavioral
benefits. Moreover, the saccadic response time is undoubtedly an
overestimate of the subjects’ true decision times: monkeys’ stop-
signal reaction times (an estimate of internal decision processes)
have been measured to be about 110 ms in a task where the
average saccadic reaction times are greater than 250 ms31,32.
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If the latency of the population average response is too late to
underlie the behavioral improvements attributed to attention,
then we reasoned that a neural signature of attention may be
present in the particular pattern of modulations across the
population at behaviorally relevant time points. In other words,
the anticipatory effects of attention might not be evident in the
population average because at early time points neurons that have
consistent decreases of firing rate with attention offset neurons
that have consistent increases. Importantly, this means that
individual neurons would flip their effects—that is, be suppressed
by attention in baseline (leading to minimal population average
effects) and enhanced after the stimulus (leading to the canonical
gain-like effects). If it was indeed the case that individual neurons
changed the direction of their attention modulation between
unstimulated and stimulated states, this would present a

particular difficulty for stimulation-invariant models of antici-
patory attention, since an invariant gain mechanism would not
support suppression at one moment to switch to facilitation later.
Even incorporating a divisive normalization mechanism so that
the relative magnitude of gain factors could vary across neurons
in a population depending on the total amount of activity would
not account for a change of the direction of the attention effect,
since normalization simply re-scales the effect sizes but does not
change their sign. Thus, we next asked whether there were clear
examples of neurons suppressed by attention during the pre-
stimulus period that were enhanced by attention during stimulus
processing.

Comparing attention modulations with and without a stimu-
lus. Since we found that simply averaging across the population
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was inadequate to distinguish attention states at early time points,
we next took a closer look at the effects of attention on individual
neurons. We found many examples of neurons that were clearly
suppressed by attention pre-stimulus, but facilitated during the
stimulus response (Fig. 3; see Supplementary Figure 1 for the
grand-averaged peristimulus spike time histogram (PSTH) for the
subset of neurons with this pattern of effects). Because the
direction of the effect changed for these neurons between the two
time periods of interest, these observations are difficult to
reconcile with a stimulation-invariant gain mechanism even by
incorporating normalization in the model. This suggests that
there is a meaningful and consistent qualitative shift in the
representation of the attention state over time from the pre-
stimulus anticipatory period to the stimulus response.

When we examined the distribution of attention effects during
the pre-stimulus period over our entire sample, we saw an even
split of attentional enhancement and suppression (Fig. 4a, b).
Because of this balance, no net effect of attention was evident in
the population average response during this anticipatory period
(Fig. 2). In contrast, the distribution of attention effects during
stimulus processing favored enhancement (Fig. 4b, c), thereby
leading to clear enhancement effects in the population average
(Fig. 2), consistent with the previous literature. Specifically, the
mean increase in sustained, stimulus-evoked firing rate was 9.2%
(Fig. 4c), comparable to the findings of Cohen and Maunsell23,
who found gains of 8–10% using a very similar task. Of the 499
neurons with significant attention effects during both time
periods of interest, 95 (19%) of them changed the direction of
their attention modulation between the unstimulated and
stimulated states. It was not the case that attention effects were
completely unrelated between pre-stimulus and post-stimulus
time periods; however, there was a positive correlation between
attention effects measured during the two time periods of interest
across the population (Fig. 4b; Pearson’s r= 0.46, n= 2591 units,
p < 0.001). This observation suggests that at least some of the pre-
stimulus attention state is consistent with a gain-like shift at the
level of the population, in line with prior reports13–17, but our

emphasis here was to ask what additional insights might be
gained by considering how population patterns of attentional
modulation were dissimilar between the stimulated and unsti-
mulated states.

To summarize, we found many individual neurons that showed
classical attention-related enhancement of visual responses yet
were suppressed by attention in the absence of a stimulus. The
mere existence of these neurons indicates that a stimulation-
invariant gain mechanism is inadequate to fully characterize
anticipatory attention. In order to test the degree to which these
novel neural findings have behavioral consequence, we next
isolated those aspects of pre-stimulus attention effects that
expressly differed from what was seen during stimulus processing,
and tested how those novel patterns of modulation related to
behavioral performance. This enabled us to assess whether the
features of anticipatory attention states that eluded a fixed-gain
explanation were behaviorally relevant.

Pre-stimulus population activity predicts task performance. To
measure the relationships between population activity patterns
and behavior, we identified attention axes to quantify the atten-
tion state of the population on a moment-to-moment basis
(Fig. 5). This approach was previously developed by Cohen and
Maunsell33 to link the strength of attentional modulation on
sensory responses in visual cortex to the probability of detecting a
subsequent target. Our goal was to test the degree to which
unique pre-stimulus activity patterns predict behavior beyond
what was already shown possible using stimulus-evoked activity.

An attention axis is a particular vector in the population
activity space, which is an n-dimensional space where each
coordinate axis represents the firing rate of one neuron (Fig. 5
provides an example for n= 2). Every point in this space
corresponds to a particular set of firing rates across the
population. The line connecting the two points in this space
corresponding to the trial-averaged set of firing rates for the
population observed during the two attention conditions in our
task is an attention axis33,34. The projection of the population
activity onto the attention axis at any given time provides a scalar
value reflecting how similar that population activity is to the trial
average when the cue was in the RF location or when the cue was
away from the RF. These single-trial estimates of attention state
can then be used to predict trial-to-trial variability in behavior.
For example, if the attention axis projection is meaningfully
related to behavior, then the value of the projection before missed
targets (which were not used to define the axis) should be reliably
shifted away from the value of the projection before correctly
detected targets. In contrast, if the attention axis was not
meaningful for behavior then the projections would not differ
between hits and misses.

We first found the post-stimulus attention axis using the
pattern of population activity during the sustained response to the
stimulus from 200 to 400 ms following stimulus onset, and then
defined a separate, pre-stimulus attention axis using the pattern
of population activity during the 200 ms immediately preceding
target onset (Fig. 5a). By “separate”, we mean that the pre-
stimulus attention axis was constrained to be orthogonal to the
post-stimulus attention axis (which was held fixed). This is a
crucial constraint for the interpretability of our results. By
requiring the second attention axis found to be orthogonal to the
first, we explicitly ruled out the possibility that similarity of the
projections on the two attention axes is due merely to their
overlap in the population activity space. Rather, similar projec-
tions on the two orthogonal attention axes would only result if
more than one direction of variation in the population activity
space was actually meaningful for behavior, which would be
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inconsistent with a stimulation-invariant gain mechanism. The
orthogonalization step thus demonstrates that the population
pattern of anticipatory attentional modulation is different from
the pattern of attentional modulation during stimulus processing,
but should not be taken to suggest that the two patterns are
precisely orthogonal.

To determine how population activity related to behavior, we
examined the neural population activity during the response to
the sample stimuli that immediately preceded targets, as well as
during the inter-stimulus interval that immediately preceded
targets (Fig. 6a). The essential prediction is that on trials for
which the subject ultimately correctly detected a target in the RF,
the projection of population activity in response to that stimulus
onto the post-stimulus attention axis should have been near +1
(indicating attention to the RF by our convention), and when the
subject ultimately missed a target in the RF, the attention axis
projection prior to the target onset should have been closer to −1
(indicating attention to the non-RF location; Fig. 6b). We also
predicted that the same pattern of results would be seen when
spontaneous population activity preceding target onset was

projected on the orthogonal pre-stimulus attention axis (Fig. 6c).
Because we used cross-validation when determining attention
axis projections (see Methods), these results were not guaranteed.
We indeed found that the average projections on both attention
axes were relatively shifted towards +1 when the RF target was
detected, and were relatively shifted towards −1 when the RF
target was missed (Fig. 6d). The corresponding pattern was seen
for targets out of the RF with the signs reversed, albeit less
consistently (Fig. 6e). This latter result is surprising, because it
indicates that the V4 neurons accessed by our array in only one
hemisphere carried information about the attention state with
respect to ipsilateral locations. This could be consistent with a
competition for processing resources between the hemispheres
(i.e., attention to the RF implies withdrawal of resources for
ipsilateral space35). Alternatively, our procedure to find the
attention axis for targets in ipsilateral space may tap into non-
spatially specific attentional processes, such as arousal. The
difference in the average attention axis projection preceding
detected versus missed targets in the RF was statistically
significant for both subjects for both time periods (one-tailed
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repeated-measures t-tests: pre-stimulus, Monkey P: N= 24 ses-
sions, p= 0.002, Monkey W: N= 23 sessions, p= 0.002; post-
stimulus, Monkey P: p < 0.001, Monkey W: p < 0.001). The trend
was similar for targets out of the RF, albeit not significant for
Monkey P during the pre-stimulus interval (pre-stimulus,
Monkey P: p= 0.083 not significant (n.s.), Monkey W: p=
0.039; post-stimulus, Monkey P: p= 0.007, Monkey W: p=
0.014). These results show that, at a coarse scale, the attention axis
positions that we observed were related to task performance.

The previous analysis revealed that the average attention axis
projections differed within a session depending on whether the
subject detected or missed the target. We next asked whether
attention axis projections explained variation in detection
performance from moment-to-moment within each session. For
this, we partitioned the full set of trials from each session into
25 subsets of trials based on the projection of population activity
during each time period of interest onto the corresponding
attention axis (i.e., pre-stimulus activity onto the pre-stimulus
attention axis and post-stimulus activity onto the post-stimulus
attention axis) and calculated the relative hit rate within each
subset of trials (Fig. 7). We found that detection performance was
best when the projection onto both attention axes was consistent
with attention towards the target location and was worst when the

projection onto both attention axes was consistent with attention
away from the target location (Fig. 7a, b). The pattern of results
was similar when we used the discriminability index (d’) as a
behavioral metric instead of hit rate (Supplementary Figure 2).
Because we constrained the pre-stimulus attention axis to be
orthogonal to the post-stimulus attention axis, this result is
inconsistent with a stimulation-invariant gain mechanism. To
further illustrate this, we applied our analysis to a simulated
dataset in which attention effects were modeled as a stimulation-
invariant gain and showed that our analysis does not find a
spurious result if orthogonalization is performed (Supplementary
Figure 3). Importantly, when we averaged over post-stimulus
attention axis projections from the real data to control for that
factor, we found that the pre-stimulus attention axis projections
continued to explain detection performance for targets in the RF
(Fig. 7c, orange). We measured the Spearman’s rank correlation
between attention axis quintile and hit rate for each session, and
found that this relationship was significant for each subject for
targets in the RF for both the post-stimulus (Monkey P: mean
ρ= 0.34, one-sample two-tailed t-test: t23= 5.95, p < 0.001;
Monkey W: mean ρ= 0.20, t22= 4.27, p < 0.001) and pre-
stimulus (Monkey P: mean ρ= 0.24, t23= 3.92, p < 0.001;
Monkey W: mean ρ= 0.15, t22= 2.78, p= 0.011) attention axes,
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indicating that each attention axis conveys information about
subsequent behavioral performance. Moreover, for RF targets the
strength of the relationship between attention axis quintile and
detection performance did not differ between the two time
periods (repeated-measures t-test: Monkey P: t23=−1.41, p=
0.171; Monkey W: t22=−0.73, p= 0.47), suggesting that both
attention axes have comparable predictive power about the
subjects’ detection performance for RF targets. In contrast, for
targets out of the RF (Fig. 7d), we did not find a consistent
significant relationship between the projection on either attention
axis and target detection performance (post-stimulus: Monkey P:
p= 0.004, Monkey W: p= 0.171; pre-stimulus: Monkey P: p=
0.230; Monkey W: p= 0.961). Taken together, these results show
that attention states estimated in the presence and absence of a
stimulus use distinct patterns of population activity to convey
comparable predictive information about the subjects’ detection
performance for targets at the RF on a moment-to-moment basis.

Pre-stimulus activity predicts early visual responses. We set out
to determine how attention shapes neural activity to prepare for
an upcoming stimulus, having observed that the relatively slow

time course of modulation on evoked responses seems too late to
fully account for behavioral benefits (Fig. 2). Reasoning that a key
contributor to task performance is the state of readiness pre-
ceding the appearance of an anticipated stimulus, we scrutinized
the population activity during the pre-stimulus period. We found
that a substantial portion of anticipatory attentional modulations
were captured by population activity patterns orthogonal to the
gain-like modulations seen during stimulus processing, and that
these changes added information about subsequent behavioral
performance (Figs. 3–7). However, anticipation, while an
important antecedent to attentive perception, cannot by itself
explain the perceptual improvements of attention, since there is
not yet any stimulus to perceive. In a sense, if the gain-like
modulations seen in population average responses to a stimulus
come too late, anticipatory modulations come too early. If
attention modulates neural activity at the time most relevant for
behavior, it would make sense that key effects would be focused
on the earliest spiking response to a stimulus, when visual neu-
rons convey the most information36,37.

We therefore assessed how different attention signals measured
from the population affected the V4 population activity at
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different times during the response to a stimulus. The key
prediction is that if anticipatory attention is important for target
detection, then anticipatory attention states should be particularly
informative about the earliest part of the sensory response, rather
than the later part after a decision has already been made. To test
this, we used the attention axis projections described above to
estimate the attention state on each trial. Then we asked how
much trial-to-trial variance in population stimulus responses
were explained by those attention estimates. In particular, we
were interested in identifying the time during the response at
which any such relationship would be strongest. Because we
predicted the population activity pattern and not the overall spike
rate averaged across the population, and because we used a
continuously variable estimate of attention state rather than a
binary division between the two cue conditions, this analysis did
not have to show the same time course as the attention
modulation of the PSTH (Fig. 2).

We began this analysis by using the post-stimulus attention
state to predict the population response to the subsequent
stimulus, and we found the strongest predictions around 300 ms
after the stimulus onset (Fig. 8, brown). This time course is
consistent with the PSTH results (Fig. 2), although we noticed
that prediction of the early-latency V4 responses (~50 ms after

stimulus onset; Fig. 8, brown) was improved by these trial-by-trial
attention estimates compared to averaging trials over an entire
block for each attention condition. Critically, we found we could
account for yet more variability in stimulus responses by
including the pre-stimulus attention state as a predictor (Fig. 8,
orange). Our aim was to compare the timing of when each
estimate of attention state provided the most reliable information
about subsequent stimulus responses, rather than the absolute
strength of that information. In line with our guiding thesis, the
additional predictive power of the pre-stimulus attention state
peaked early in the visual response, around 71 ms (Fig. 8, orange).
This suggests the unique features of population activity patterns
during anticipatory attention reflect mechanisms enabling a
robust sensory response on the rapid timescales that support
brisk and accurate discrimination.

To summarize, we found that pre-stimulus attention states are
characterized by patterns of population activity modulations that
are fundamentally different from the patterns that characterize
attention effects during stimulus processing. Those distinct
features of pre-stimulus attention states add unique predictive
power about the neural population’s response to visual stimula-
tion on behaviorally relevant timescales, and also add unique
information about behavioral task performance.
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Discussion
We found that pre-stimulus anticipatory attention states were
captured by patterns of V4 population activity distinct from those
that characterized the effects of attention during stimulus pro-
cessing. This computational framework utilizing different pat-
terns of population activity between stimulated and unstimulated
states has advantages over the current prevailing view that
anticipatory attention is primarily characterized by baseline gains
akin to those seen in response to a stimulus; chiefly, an improved
ability for a linear decoder to disentangle internal and external
signals from the total population activity. This finding requires
reconceptualization of the neural mechanisms underlying the
dynamic allocation of attention.

Some previous studies have reported an increase in the average
spontaneous firing rate of visual neurons with attention13–16,18

which we did not replicate. There are many potential explana-
tions for this discrepancy, such as differences in the nature of the
task, the nature of the stimulus to be anticipated (which, in our
case, could not be optimized to best drive all the cells in our
sample), and the criteria for including neurons in the analysis. In
particular, we analyzed the attention effects of every cell that we
successfully recorded, whereas for other studies it has been
common to exclude neurons that are not visually responsive or

not attentionally modulated, and this may have impacted the
interpretation of the pre-stimulus attention effects. For one
example, Lee et al.15 restricted their analysis to neurons with at
least a 10% attention-related gain in stimulus-evoked responses,
and then found that those cells also showed baseline increases.
Because there is some direct relationship between pre-stimulus
and post-stimulus attention effects (Fig. 4b), conditional selection
of neurons based on post-stimulus increases would tend to favor
pre-stimulus increases as well. In contrast, our analysis of the
entire sample found pre-stimulus attention effects to be roughly
evenly divided between increases and decreases.

Although baseline shifts in population average spiking activity
are typically slight when they are found, quite large baseline shift
effects have been observed in the fMRI blood-oxygen-level
dependent (BOLD) signal with attention26,27. Even larger
anticipatory effects have been seen on the amplitude of alpha-
band oscillations of the EEG28. Both BOLD signals and EEG
signals have been linked more closely to post-synaptic mechan-
isms than to firing rates38,39, and hence it is reasonable to suppose
that a balanced mixture of anticipatory hyperpolarizations and
depolarizations at the level of individual neurons could lead to
large BOLD and EEG effects while having relatively little effect on
the overall amount of spiking. Combined with the current results,
these observations indicate that attention changes the state of
neural populations in ways that are (1) metabolically demanding,
(2) impact circuit dynamics in the form of oscillations in the field
potentials, which likely reflect the input to the sensory area39, and
(3) have relatively little effect on the total amount of spontaneous
spiking activity across the population which, in a classically
sensory area, could be interpreted as sensory representation. This
trio of properties is consistent with our interpretation that
attention sets the state of the sensory neural population to be
poised to respond, without unduly contaminating the sensory
representations of that population.

The idea that top-down attention signals simply impose a
stimulation-invariant gain-like amplification on the neural
population specialized for processing the attended information is
inconsistent with our results. The most extreme violation of this
model is that we found individual neurons for which the direction
of the attention effect changed from suppressive to facilitatory
between anticipatory and stimulus processing time periods.
While divisive normalization models can account for a striking
diversity of attention effects across a population during stimulus
responses8, this fundamental change between unstimulated and
stimulated states cannot be reconciled with such a model. Rather,
we propose that top-down attention signals push the population
activity into a mode that supports the amplification of sensory
representations once a stimulus is presented, but which remains
distinct from the patterns of activity that characterize sensory
representations until a stimulus appears.

It is well appreciated that the neurons in a cortical area have
diverse functional roles. Research classifying neurons based on
their primary neurotransmitter and morphological properties has
revealed that modulatory influences can depend on the state of
ongoing activity40,41. Thus, cell class diversity in the population
could provide one potential explanation for the diversity of
attention effects between the stimulated and unstimulated states.
Even within a single class of cells, distinct functional roles for
neurons can be conferred based on network topology. For
example, neurons within V4 vary in the degree of their coupling
to the local population, and neurons with weak population cou-
pling are modulated more by sensory factors than neurons with
strong population coupling42. We used a simple computational
model with two neurons to test whether differential population
coupling could provide another potential explanation for the
results we observed. One model neuron’s firing rate depended
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stimulus responses occurs during the initial transient response. First, we
performed a linear regression of the population visual response at each
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when comparing population averages between task block conditions
(Fig. 2), although the predictive power of the post-stimulus attention axis
peaked around 300ms (brown arrow). In contrast, the unique contribution
of the pre-stimulus attention axis peaked early during the visual response,
at 71 ms (orange arrow). The dashed line at VAF= 0.001 represents the
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only on stimulus drive and an attention gain factor, reflecting
weak population coupling; the other model neuron’s firing rate
depended only on the rate of the first neuron, reflecting strong
population coupling (Supplementary Figure 4). This minimal
model was sufficient to replicate the qualitative pattern of results
between the stimulated and unstimulated states, and illustrates
that differential influence by local or distant inputs could provide
a mechanism for diverse manifestations of attention modulation
in a population.

Another important source of diversity across neurons is tuning
to stimulus properties. Because our task involved discriminating a
change in orientation, feature-based attentional strategies could
have impacted how the responses of neurons were modulated.
For example, neurons preferring orientations at, or near, the
orientation of the stimulus at the attended location might exhibit
greater enhancement with attention than neurons preferring
orientations quite different from that of the attended stimulus43.
Such interactions between spatial and feature-based attention
during stimulus responses have been the subject of substantial
previous research44–49. Our results indicate that sensory context
(i.e., anticipatory vs. stimulus processing states) is another
important contributor to diversity in population effects of
attention. One drawback of our study design, which used sample
stimuli of only two orientations, is that we did not have a com-
pendium of stimuli sufficiently varied to assay how anticipatory
attention states interact with stimulus features. Moreover, because
the direction and magnitude of the orientation change was
unpredictable for our task, a feature-based attentional strategy
may have been less fruitful than if a predictable orientation
change was used. A future study utilizing a richer stimulus set
could help to address this important question regarding antici-
patory attention states in neural populations.

Our finding that anticipatory attention utilizes population
activity patterns distinct from those that best characterize atten-
tion during stimulus processing is reminiscent of recent work in
the motor domain, where motor preparation has been shown to
use patterns of population activity that are strikingly different
from the patterns of population activity observed during motor
execution50–52. Such parallelism between motor preparation and
sensory anticipation suggests the intriguing possibility that the
use of different population activity patterns for maintaining
separability between internal, modulatory signals in a brain area
and the functional output representations of that area (i.e., motor
commands or sensory representations) is a conserved computa-
tional strategy across the cerebral cortex.

Importantly, we saw that our estimates of the anticipatory
attention state accounted for variation in task performance, and
that the strength of that relationship was similar to that seen
between post-stimulus attention effects and behavior (Fig. 7c).
This observation is also inconsistent with a unitary attention
mechanism that spans across pre-stimulus and post-stimulus
periods. Our observations are consistent, however, with the recent
report from Sani et al.29, who found that pre-stimulus baseline
increases were not strongly predictive of post-stimulus attentional
modulations of stimulus responses, suggesting that pre-stimulus
and post-stimulus effects may be separate manifestations of a
latent attentional state yet may not be mechanistically linked.

One question that remains following our study concerns the
important transition between anticipatory states and the earliest
moments of the sensory response that are essential to rapid and
accurate target detection. We supposed that the strength of the
population response during the initial onset transient was an
important component of this process, and found that anticipatory
states were related to the strength of the population onset tran-
sient response to non-target stimuli (Fig. 8). However, to directly
determine which aspects of the population sensory response link

anticipation to target detection, it would be necessary to analyze
the sensory responses to target stimuli. Because the total number
of stimuli that can be presented in an experimental session is
limited, there is an inherent tradeoff in the design of attention
experiments between the number of non-target and target stimuli
shown. In this study, we favored inclusion of non-target stimuli,
at the expense of fewer targets. The advantage was that we had
many presentations of physically identical stimuli uncontami-
nated by motor responses, but the drawback was that we had too
few presentations of any given target stimulus to directly examine
which features of population responses were essential for target
detection. Future work utilizing a different proportion of target
stimuli would help to answer this important question.

Overall, our findings, which incorporate the heterogeneity of
neuronal responses across the population and over time within a
trial, support a move from considering attention as operating
through a simple, stimulation-invariant gain-based mechanism
towards a richer view of attentional modulation in a diverse
neuronal population.

Methods
Ethical oversight. Experimental procedures were approved by the Institutional
Animal Care and Use Committee of the University of Pittsburgh and were per-
formed in accordance with the United States National Research Council’s Guide
for the Care and Use of Laboratory Animals53.

Subjects. We used two adult male rhesus macaques (Macaca mulatta) for this
study. Surgeries were performed in aseptic conditions under isoflurane anesthesia.
Opiate analgesics were used to minimize pain and discomfort perioperatively. A
titanium head post was attached to the skull with titanium screws to immobilize
the head during experiments. After each subject was trained to perform the spatial
attention task, we implanted a 100-electrode Utah array (Blackrock Microsystems)
in V4. We implanted in right V4 for monkey P and in left V4 for monkey W.

Microelectrode array recordings. Signals from the arrays were band-pass filtered
(0.3–7500 Hz), digitized at 30 kHz, and amplified by a Grapevine system (Ripple).
Signals crossing a threshold (periodically adjusted using a multiple of the root-
mean-squared noise) were stored for offline analysis. Each waveform segment
consisted of 52 samples (1.73 ms). We first performed a semi-supervised sorting
procedure to separate putative action potential waveforms from noise. This entailed
principal component analysis followed by either an automatic fuzzy c-means
clustering algorithm54 or an automated clustering algorithm based on maximum
likelihood estimation of Gaussian mixture distribution parameters (custom func-
tions for MATLAB; The MathWorks, Natick, MA). The automated clustering step
was followed by manual refinement using custom MATLAB software55, taking into
account waveform shapes and interspike interval distributions. These initial sorting
steps yielded 93.2 ± 8.9 (mean ± SD) candidate units per session for monkey P and
61.9 ± 27.4 candidate units per session for monkey W. We likely recorded a mix-
ture of single units and multiunit activity, though for simplicity we refer to all units
as “neurons”. If we quantified recording isolation using signal-to-noise ratios
(SNRs) for each unit (defined as the average action potential waveform amplitude
divided by the standard deviation of the waveform noise) and restricted our ana-
lysis to only units with SNR >3 (to eliminate likely multiunit activity; 29.0 ± 7.5
units per session for monkey P, 11.2 ± 5.6 units per session for monkey W), the
results were not substantively different from the analysis performed using all
candidate units (Supplementary Figure 5). Thus, we included all of the single- and
multiunit activity from each session (as previous researchers using a similar
approach have done33,34). To avoid potential confounds due to our blocked design,
we excluded neurons that were not recorded stably throughout a session. These
were identified by dividing all the recorded data for a session into 10 equally sized
blocks, measuring the average firing rate of each neuron within each block, and
then calculating the coefficient of variation (CV) of each unit’s average firing rate
over the blocks. Units with a CV greater than 1 were deemed to be unstable and
were excluded. We also excluded neurons with an average firing rate less than
1 spike per second measured over the entire session. These exclusion criteria
yielded 76.6 ± 11.4 (mean ± SD) units per session from monkey P and 32.7 ± 17.8
(mean ± SD) units per session from monkey W. The arrays were chronically
implanted and likely recorded some neurons over more than one recording session
(although we estimated that a substantial proportion of our sample changed each
day; Supplementary Figure 6), but we calculated our results within each recording
session and treated each session as an independent sample for the analysis.

RF mapping. Prior to beginning the visual change-detection experiment, we
mapped the RFs of the spiking neurons recorded on the V4 arrays by presenting
small (~1°) sinusoidal gratings at four orientations positioned one at a time in a
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grid of positions covering the likely RF area per the anatomical location of the
implant. We subsequently used Gabor stimuli scaled and positioned to roughly
cover the aggregate RF area. For monkey P this was 7.02° full-width at half-
maximum (FWHM) centered 7.02° below and 7.02° to the left of fixation, and for
monkey W this was 4.70° FWHM centered 2.35° below and 4.70° to the right of
fixation. We next measured tuning curves by presenting gratings at the RF area
with four orientations and a variety of spatial and temporal frequencies. For each
subject we used full-contrast Gabor stimuli with a temporal and spatial frequency
that evoked a robust response from the population overall (i.e., our stimulus was
not optimized for any single neuron). For monkey P this was 0.85 cycles/° and 8
cycles/s. For monkey W this was 0.85 cycles/° and 7 cycles/s. For the task, we
presented a Gabor stimulus at the estimated RF location, at the mirror-symmetric
location in the opposite hemifield, or at both locations simultaneously.

Visual change-detection task. Subjects maintained central fixation as sequences
of Gabor stimuli were presented in one or both of the visual hemifields, and were
rewarded with water or juice for detecting a change in orientation of one of the
stimuli in the sequence (the target) and making a saccade to that stimulus (Fig. 1).
The probable target location was block-randomized such that 90% of the targets
would occur in one hemifield until the subject made 80 correct detections in that
block (including cue trials, described below), at which point the probable target
location was changed to the opposite hemifield.

The fixation point was a 0.6° yellow dot at the center of a flat-screen cathode ray
tube monitor positioned 36 cm from the subjects’ eyes. The background of the
display was 50% gray. We measured monitor luminance gamma functions by
photometer and linearized the relationship between input voltage and output
luminance using lookup tables. We tracked the gaze of the subjects using an
infrared eye tracking system (EyeLink 1000; SR Research, Ottawa, Ontario). Gaze
was monitored online by the experimental control software to ensure fixation
within ~1° of the central fixation point throughout each trial. We excluded from
analysis data segments during which a subject’s gaze left the fixation window.

After fixating for a randomly chosen duration of 300 to 500 ms (uniformly
distributed), a visual stimulus was presented for 400 ms, or until the subjects’ gaze
left the fixation window, whichever came first. For the initial trials within a block, a
Gabor stimulus was presented only in the hemifield that was chosen to have a high
probability of target occurrence for the block. These cue trials were to alert the
subjects to a change in the probable target location and were excluded from the
analysis. The initial cue location was counterbalanced across recording sessions.
Once a subject correctly detected five orientation changes during the cue trials,
bilateral Gabor stimuli were presented for the remainder of the block.

Each trial consisted of a sequence of 400 ms stimulus presentations separated by
300–500 ms inter-stimulus intervals (uniformly distributed). Stimulus sequences
continued until the subject made an eye movement (data during saccades were
excluded from analysis), or a target was presented but the subject did not respond
to it within 700 ms (i.e., a miss). For the first presentation in a sequence, the
orientation of the stimulus at the cued location was randomly chosen to be 45 or
135° and the orientation of the stimulus in the opposite hemifield, if present, was
orthogonal to this. Subsequent stimulus presentations in the sequence each had a
fixed probability (uniform hazard function; Supplementary Figure 7) of containing
a target (30% for monkey P, 40% for monkey W), i.e., a change in orientation of
one of the Gabor stimuli compared to the preceding stimulus presentations in the
trial. Within a block, 90% of targets (randomly chosen) occurred in one hemifield
(valid targets) and 10% of targets occurred in the opposite hemifield (invalid
targets). For valid targets, the orientation change was randomly chosen to be 1, 3, 6,
or 15° in either the clockwise or anti-clockwise direction (monkey P: 11.49 ± 3.14
(mean ± SD, across sessions) valid targets of each orientation at each location;
monkey W: 14.56 ± 4.75 valid targets of each orientation at each location). For
invalid targets, the orientation change was always the near-threshold value of 3°,
clockwise or anti-clockwise (because invalid targets occur infrequently, we
restricted the number of orientation change magnitudes for this condition in order
to derive a reasonable estimate of the target detection rate). We analyzed trials
including either valid or invalid targets, but excluded from analysis all neural data
from the time of target onset through the end of the trial.

Monkey R completed 24 sessions of the experiment; monkey P completed
25 sessions. One session for each subject was subsequently excluded from analysis
because of recording equipment failure.

Peristimulus spike time histograms. From the continuous recording, we
extracted data segments from 300 ms prior to stimulus onset to 300 ms following
stimulus offset (1 s total segment duration) and counted spikes for each neural unit
in 1 ms bins. For the calculation of PSTHs, we smoothed spike trains with a causal
half-Gaussian function with σ= 20 ms prior to averaging across trials. To nor-
malize PSTHs for each neuron, we subtracted the baseline firing rate (−100 to 0 ms
relative to stimulus onset) and then divided by the absolute value of the most
extreme average difference from baseline during the presentation of non-target
stimuli, collapsed over all orientations and cue conditions. Because we normalized
responses to the maximum deviation from baseline when calculating the
population-averaged PSTH, we excluded neural units that did not have a sig-
nificant visual response (specifically those for which no 50 ms interval during the
stimulus had a firing rate different from baseline, as determined by a t-test with α

= 0.05, two-tailed, uncorrected for multiple comparisons). For monkey P, 4.8 ± 1.6
(mean ± SD) units were excluded per session; for monkey W, 1.8 ± 1.6 units were
excluded per session. We only excluded these units from the grand-averaged PSTH;
visually non-responsive cells were included in the attention axis analyses described
below. When testing grand-averaged PSTHs for a difference between attention
conditions using t-tests (Fig. 2), we confirmed firing rate distributions did not
violate a normality assumption using Lilliefors’ test.

Attention axes. The concept of an attention axis in the population activity space
has previously been used to quantify attention states on a single-trial basis during
stimulus processing33,34. Here we extended this concept by also identifying a
unique attention axis during pre-stimulus, preparatory activity.

The population activity space is an n-dimensional space in which each
coordinate axis represents the firing rate of one neuron (Fig. 5 shows an example
for n= 2). Each point in the space corresponds to a particular set of firing rates
across the neurons in the population. An attention axis is the line connecting the
two points in this space that correspond to the trial-averaged set of firing rates
observed during each of the two attention conditions in our task (i.e., cue in RF vs.
cue away from RF). Once an attention axis is identified, the set of firing rates across
the population observed at any given time can be projected onto that axis, resulting
in a scalar value that reflects how similar the pattern of population activity is to the
trial average during the cue-in-RF condition or the cue-away-from-RF condition.

To define the attention axes, we analyzed population responses immediately
preceding validly cued and correctly detected targets (i.e., hits), reasoning that these
intervals were most likely to have been attended due to the favorable behavioral
outcome. To ensure no data were ever used to simultaneously define an attention
axis and determine the position of the population activity along that same axis, we
used cross-validation. Specifically, we found the attention axes using half of the
trials, selected randomly, and then projected the population activity of the held-out
trials onto the axes identified. We iterated this procedure 1000 times, randomly
selecting a new held-out trial set each iteration, and then averaged the attention
axis projections over cross-validation folds. Because the magnitude of the attention
axis projections depends on task-irrelevant factors such as the number of neurons
in the sample, when attention axis projections were compared across sessions (i.e.,
Fig. 6d, e), we normalized the projections of all trials within each cross-validation
fold so that the average projection of the trials from the cue-in-RF condition used
to define the axes (i.e., excluding the held-out trials) had a value of +1 and the
average projection of the trials from the cue-away-from-RF condition used to
define the axes had a value of −1. Note that because we used cross-validation, the
average attention axis projections for validly cued hit trials reported are not
guaranteed to be ±1 (Fig. 6). When performing statistical tests on attention axis
projections, we confirmed that distributions did not violate an assumption of
normality using Lilliefors’ test.

We defined attention axes using population activity during two epochs: (1) a
pre-stimulus attention axis defined using the responses during the 200 ms
immediately preceding target onset, and (2) a post-stimulus attention axis defined
using the responses from 200 to 400 ms following the onset of the stimulus that
preceded the target. We always projected data onto the axis defined during the
corresponding time period of interest (i.e., pre-stimulus data onto the pre-stimulus
attention axis and post-stimulus data onto the post-stimulus attention axis).
Critically, our guiding prediction was that the population pattern of attention
modulations during anticipation is qualitatively distinct from the pattern seen after
stimulus onset. To test this, it is necessary to rule out the potential interpretation
that the pattern of firing rate modulations that distinguishes pre-stimulus attention
states is just a scaled version of the pattern of firing rate modulations that
distinguishes post-stimulus attention states. Thus, after we identified both attention
axes (and prior to projecting population firing rates onto those axes) we
orthogonalized the pre-stimulus axis with respect to the post-stimulus attention
axis using the MATLAB “QR” function on the basis spanned by the two attention
axes (Fig. 5; although there is trivially only one axis orthogonal to the post-stimulus
attention axis when N= 2, as in Fig. 5, in general there are infinitely many
orthogonal axes when N > 2, so finding the best orthogonal pre-stimulus attention
axis is not trivial). For reference, the average angle between attention axes prior to
orthogonalization was 74.3 ± 15.5° (mean ± SD) for monkey P, and 79.5 ± 17.9° for
monkey W. Because the pre-stimulus attention axis was constrained to be
orthogonal to the post-stimulus attention axis, it necessarily reflects a distinct
population pattern of firing rate modulations from that observed during the
stimulus response. To further illustrate this point, we performed our analysis on a
surrogate dataset in which attention modulations were generated from a model
reflecting a stimulation-invariant gain mechanism, and found that our approach
did not lead us to find a spurious pre-stimulus attention effect in that case
(Supplementary Figure 3).

Correlation between attention axis projection and behavior. To quantify the
strength of the relationship between attention axis projections and behavior within
a session, we binned the projections on each axis during intervals that preceded
targets into quintiles, yielding 25 bins total across both axes, and calculated the hit
rate in each bin (Fig. 7). Then, for each session we measured the Spearman's rank
correlation between bin index and hit rate for each axis. For statistical analysis of
the resulting rank correlation coefficients, we first applied the variance-stabilizing
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Fisher's r-to-z transformation. We confirmed that the distributions of the z-
transformed correlation coefficients did not violate an assumption of normality
using Lilliefors’ test. Then, we tested the distribution of rank correlation coefficients
for each subject against a null hypothesis of zero correlation using a one-sample,
two-tailed Student’s t-test with α= 0.05. We tested for differences in the strength of
the rank correlations between the two attention axes with a repeated-measures,
two-tailed Student’s t-test with α= 0.05. After calculating the mean of the r-to-z-
transformed rank correlation coefficients, we applied the inverse z-to-r transform
on the mean value for reporting purposes.

Two-step linear regression analysis. To quantify how well attention axis projec-
tions at a given time predicted the strength of the population response to a stimulus at
a later time, we performed a two-step ordinary least squares linear regression analysis.
We used a two-step approach to conservatively estimate the unique contribution of
our novel pre-stimulus attention axis after we had accounted for as much variance as
possible using the post-stimulus attention axis projection, which reflected attention
effects that were already well established in the literature.

We derived population stimulus responses using the following method. First, we
extracted spiking responses from 100 ms prior to the onset of each stimulus until
200 ms after stimulus offset. We smoothed the spike trains for each neuron with a
causal half-Gaussian window with a standard deviation of 20 ms. We then
summarized the strength of the population response to each stimulus as a one-
dimensional time series by projecting the smoothed population activity from each
stimulus presentation onto a stimulus response axis in the population activity
space. We defined the stimulus response axis as the line in the population activity
space that connected the trial-averaged baseline activity (over the −100 to 0 ms
relative to stimulus onset) to the point where the trial-averaged population activity
was furthest from the baseline level (the high-dimensional analog of the peak of the
onset transient).

We restricted our analysis to stimuli that satisfied two conditions: (1) they must
have been a sample stimulus (not a target), since eye movements to targets would
contaminate the sensory response, and (2) they must have been preceded by
another sample stimulus on the same trial, since the first stimulus in a trial
sequence is preceded by an eye movement to achieve central fixation that could
contaminate the neural activity. We define rti as the one-dimensional population
response at time t (1 ms bins) to the ith of n stimuli to be predicted, and aposti and
aprei are the attention axis projections measured during the stimulus response or
inter-stimulus interval, respectively, that preceded the ith stimulus to be predicted.
We performed our analysis time-point by time-point, with rt a mean-centered 1 × n
vector of population stimulus responses at time t, and apost and apre 1 × n vectors of
attention axis projections. We first found a scalar regression coefficient at each
time-point, β̂postt , to predict stimulus responses from post-stimulus attention axis
projections:

β̂postt ¼ argmin
βpostt

rt � apostβpostt

�
�

�
�
2

ð1Þ

The proportion of variance accounted for (VAF) in the population stimulus
response by this model (Fig. 8, brown) is given by:

VAFpostt ¼ 1�
rt � apostβ̂postt

�
�
�

�
�
�

2

r2t

ð2Þ

For the second step of the regression analysis, we asked whether we could
account for residual error from the first regression step, ηt ¼ rt � apostβ̂postt , using
the pre-stimulus attention axis projection as a predictor variable:

β̂pret ¼ argmin
βpret

ηt � apreβpret

�
�

�
�2 ð3Þ

The proportion of residual variance in the population stimulus response
accounted for by this second model (Fig. 8, orange) is given by:

VAFpret ¼ 1�
ηt � apre ^βpret

�
�
�

�
�
�

2

ηt
�
�

�
�
2

ð4Þ

To test for statistical significance of the proportions of VAF, we compared our
results to the results of a control analysis in which the order of the attention axis
projections was randomly shuffled within each session. If both the predicted and
predictor variables of a regression analysis are Gaussian-distributed and statistically
independent, the expected proportion of VAF is 1/(n−1), where n is the number of
observations which would be stimulus presentations in our case56. We found that
the result of our shuffled analysis was very close to this theoretical value and did
not depend on time during the visual response, suggesting that our data were in
line with the assumptions of the theoretical null hypothesis value for VAF. We
averaged the results of the shuffled control analysis over time and over sessions,

yielding VAFnull ¼ 0:001. We then tested our observed VAFpost and VAFpre at each
time-point for a difference from VAFnull using a one-sample t-test with α= 0.05
and N= 47 sessions (distributions were normal by Lilliefors’ test). We corrected for
multiple comparisons by requiring a minimum run length of consecutive
significant time points. This correction relies on the fact that increasing numbers of
consecutive significant t-scores become increasingly unlikely under the null
hypothesis. The run length threshold was determined with a simulation using the
autocorrelation of the VAF time series (since adjacent samples are not entirely
independent) to determine the minimum run length such that the false discovery
rate for finding a single effect over all time points under the null hypothesis was the
desired 5%57,58, which in this case we found to be 20 samples.

Data availability
Analysis computer code and data for this project are available from the authors upon
request.
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