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Supplementary Figure 1 Spatial receptive fields for the V1-V4-awake recordings. Lines

indicate 60% contour lines of a 2-dimensional Gaussian fit to the receptive fields.

Receptive fields were fitted to unsorted multi-unit activity recorded on each channel.
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Supplementary Figure 2 Population correlation results are consistent across recording

sessions. In all panels, each trace corresponds to one experimental session. (a) Same

conventions as Fig. 3a. (b) Same conventions as Fig. 3b, split into three panels for visual

clarity. (c) Same conventions as Fig. 4a. (d) Same conventions as Fig. 4b, split into three

panels for visual clarity.
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Supplementary Figure 3 Isolating feedforward peaks using a jitter-corrected population

correlation function. (a) If a feedforward peak is caused by precise spiking coordination

across the two areas, it should still be present after the slow-timescale component of the

population correlation function is removed. To remove the slow-timescale component,

thereby isolating fast-timescale features in the early evoked activity, we computed a

jitter-corrected population correlation function

1

. We first computed a jittered population

correlation function (Jittered PCF; 25 ms jitter window), as described in ref. 1. We then

obtained a jitter-corrected PCF by subtracting the jittered PCF from the PCF based on

residual activity (Raw PCF). (b) We computed the peak height by finding the maximum

value of the jitter-corrected PCF, as well as the corresponding time delay. In this session, a

clear peak can be observed at 3 ms. Results across all recording sessions are shown in

Fig. 3e. (c-f) Population correlation functions for the 4 other recording sessions. Left

panels show the Raw PCF (deeper red) and the Jittered PCF (lighter red). Right panels

show the jitter-corrected PCF. Note that in two recording sessions the central peak was

flanked by secondary peaks. These occurred at different delays for the sessions showing

this structure: roughly a 10 ms delay in (a) and 25 ms in (c). There are several possible

reasons for this structure, including transient (shared) locking of some neurons to the

refresh of the display (100 Hz)

2

and modulation by a weak gamma rhythm (30-80 Hz)

induced by the moderate sized, high contrast gratings used to drive responses in V1 and

V2

3,4

. In previous work, we have shown that large sinusoidal gratings induce a robust

gamma rhythm in these networks

3

. In the experiments of this manuscript, we chose

grating size to be sufficient to drive the sampled V1 and V2 neurons. Depending on the

scatter of the receptive fields, the size used was sometimes sufficient to have been capable

of inducing weak gamma fluctuations

5

. For further assessment of oscillatory interactions

between V1 and V2, see Supplementary Fig. 10.
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Supplementary Figure 4 Feedforward peak is absent, and feedback-dominated

interactions are not evident between subpopulations within V1 or V2. To test whether the

effects in Fig. 3 were specific to inter-areal interactions, we randomly divided the neurons

in each area into two subpopulations and computed population correlation functions

between the subpopulations for each area. (a) V1-V1 zero-delay population correlation

increases throughout the trial, and is higher for spontaneous activity than for evoked

activity. Solid line shows average across all recording sessions. Shading indicates S.E.M.

(b) V1-V1 population correlation functions for an example session (taken as the average

across 10 random divisions into two V1 subpopulations). Same conventions as in Fig. 3b.

(c) V2-V2 zero-delay population correlation increases throughout the trial, and is higher

for spontaneous activity than for evoked activity. Solid line shows average across all

recording sessions. Shading indicates S.E.M. (d) V2-V2 population correlation function for
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an example session (taken as the average across 10 random divisions into two V2

subpopulations). Same conventions as in Fig. 3b. (e) There are two key features of

inter-areal interactions revealed in Fig. 3 which are not present for within-area interactions.

First, the feedforward peaks of the population correlation functions for within-area

interactions are centered at 0 ms delay (see panels b and d). This is in contrast to the

across-area (V1-V2) case, where there is a feedforward peak shortly after stimulus onset

(Fig. 3b,e). Second, within-area interactions (V1-V1, left panel; V2-V2, right panel) were

neither feedforward- nor feedback-dominated during spontaneous activity (average

spontaneous activity feedforward ratio, computed in the -80 to 80 ms delay range:

0.002 ± 0.004 SEM for V1-V1; �0.007 ± 0.003 SEM for V2-V2; t-test for spontaneous

activity feedforward ratio, p = 0.71 for V1-V1; p = 0.09 for V2-V2. This is in contrast to the

across-area (V1-V2) case, where interactions were feedback-dominated during

spontaneous activity (Fig. 3d). Note that the feedforward ratio is slightly positive for the

early evoked period, although the population correlation functions peak at 0 ms time

delay throughout the whole trial. This reflects the slightly greater area under the right half

compared to the left half of the population correlation function (panels b and d), likely

due to the strong change in correlations at stimulus onset (panels a and c). This effect

occurs on a slow timescale and motivates our use of jitter-corrected responses reported in

the main text (Fig. 3e). Same conventions as in Fig. 3d.
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Supplementary Figure 5 Interactions between subpopulations within V1 or V4 recorded

in awake animals were neither feedforward- nor feedback-dominated. To test whether the

effects in Fig. 4 were specific to inter-areal interactions, we randomly divided the neurons

in each area into two subpopulations and computed population correlation functions

between the subpopulations for each area. (a) V1-V1 zero-delay population correlation is

constant throughout the trial. Shading indicates S.E.M. (b) V1-V1 population correlation

functions for an example session (taken as the average across 25 random divisions into

two V1 subpopulations). Same conventions as in Fig. 4b. (c) V4-V4 zero-delay population

correlation is constant throughout the trial. Solid line shows average across all recording

sessions. Shading indicates S.E.M. (d) V4-V4 population correlation functions for an

example session (taken as the average across 25 random divisions into two V4

subpopulations). Same conventions as in Fig. 4b. (e) There are two key features of
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inter-areal interactions revealed in Fig. 4 which are not present for within-area interactions.

First, the feedforward-dominated interaction shortly after stimulus onset (Fig. 4b,d) is

absent here, and the correlation functions are centered at 0 ms delay (see panels b and d).

Second, the transition from feedforward- to feedback-dominated interactions in the late

evoked period (Fig. 4d) is also absent (average late evoked feedforward ratio, computed in

the -50 to 50 ms delay range: 0.027 ± 0.008 SEM for V1-V1; 0.031 ± 0.011 SEM for V4-V4;

one-sided paired Wilcoxon signed-rank test for difference between early evoked and late

evoked activity across all 5 recording sessions, p = 0.41 for V1-V1; p = 0.97 for V4-V4).

Same conventions as in Fig. 4d.
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Supplementary Figure 6 Ensuring that changes in activity patterns most related across

areas cannot be ascribed to changes in the within-area population covariance structure. (a)

We generated V1-V2 surrogate data that had approximately the same within-area

covariance structure as the recorded data for each epoch, but for which the inter-areal

interaction structure was held fixed (see Methods and Supplementary Note). For this

synthetic data, our analysis identified a stable interaction structure (right, compare to left

reproduced from Fig. 6d which is based on recorded activity). Same conventions as in

Fig. 6d. (b) The same was true for the V1-V4 interactions (right, compare to left reproduced

from Fig. 6e which is based on recorded activity). Same conventions as in Fig. 6e.
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Supplementary Figure 7 Changes in interaction structure are robust to the time-scale

considered. To assess the timescales of the correlated activity across areas, we repeated the

analysis of Fig. 6 while varying the size of the spike count bins and the duration of the

temporal windows analyzed on each trial. When the spike count bins are large (e.g., one

bin per trial), the analysis emphasizes the slow timescale correlations across areas. In

contrast, when the spike count bins are small (multiple bins per trial), the analysis focuses

on fast timescale correlations. The number of bins per trial is equal to the duration of the

temporal window divided by the spike count bin size. The approach of assessing

timescales by varying the spike count bin width has been used previously to characterize

10



the timescale of pairwise correlations

1,6,7

. (a-d) We found the results shown in Fig. 6 are

robust to the spike count bin size and the temporal window duration. All panels follow

the same conventions and analysis settings as in Fig. 6d, with the exception of the spike

count bin size and duration of the temporal window during which bins are aggregated. In

Fig. 6, we used 100 ms spike count bins and a 100 ms temporal window (1 bin per trial).
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Supplementary Figure 8 Feedforward canonical dimensions capture little correlation

during the feedback-dominated period. We asked whether the canonical dimensions

identified during the feedforward-dominated period remain active during the

feedback-dominated period. In Fig. 6, we showed that feedforward dimensions only

capture a fraction of inter-area correlations in the feedback period (using normalized

correlation values). It is possible that they still account for a large absolute correlation

value, but lower than that for the dimensions identified during the feedback period. The

analysis shown here indicates that that is not the case: the amount of inter-areal

correlations captured by dimensions fit during the feedforward dominated period drops

off sharply during the feedback-dominated period. This is true for both the (a) V1-V2 and

(b) V1-V4 recordings. Panels (a) and (b) follow the same conventions as Fig. 6d and Fig. 6e,

respectively, but show raw canonical correlation instead of normalized correlation. The

results are slightly different from those shown in Fig. 3a and Fig. 3b due to the different

spike count bin width and temporal window duration used in those analyses. As in Fig 6,

the correlation values here are cross-validated.
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Supplementary Figure 9 The same neurons are involved in both feedforward and

feedback interactions. (a) One possibility is that the change in interaction structure we

observed in Fig. 6 results from some neurons being exclusively involved in feedforward

interactions, and other neurons being exclusively involved in feedback interactions. If this

were the case, we would find that the canonical weights for some neurons would be large

during period 1 and small during period 2, and those for other neurons would be large

during period 2 and small during period 1. For each neuron, we can plot its absolute

canonical weight during one period versus its absolute canonical weight during another

period (each dot corresponds to one neuron). The weights are normalized such that the

canonical dimensions have norm 1. (b) For the anesthetized V1 populations, most neurons

are involved in both feedforward (early evoked) and feedback (spontaneous) interactions.

This is seen by the lack clustering of neurons along the axes, in contrast to the scenario

illustrated panel (a). The same was true for (c) the anesthetized V2 populations, (d) awake

V1 populations, and (e) awake V4 populations.
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Supplementary Figure 10

Much previous work on inter-areal signaling has been performed using local field

potentials (LFPs)

8–13

. Unlike spiking activity, LFPs are not propagated between areas.

Nevertheless, LFPs provide some measure of population activity, and analyzing the

relationship between LFPs recorded in different brain areas has been used to infer the

communication between areas. Of particular interest in the context of this study, recent

work has suggested that feedforward and feedback signaling are reflected in different

frequency bands of the LFP – gamma (30-80 Hz) and alpha/beta, respectively

10,13,14

. To

understand the relationship between our population spike-based measurements and this

prior work, we analyzed the local field potentials which we had recorded simultaneously

with the spiking activity.

LFP data were obtained by low-pass filtering (0.5-200 Hz or 0.3-250 Hz) the raw voltage

signal on each electrode and digitizing at 1 kHZ. Notch filters were used on an

electrode-by-electrode basis to remove line noise. Trials with artifacts were excluded from

further analysis, using the criteria of ref. 15. We also removed the trial averaged

event-related potential so that this component of the signal would not dominate the low

frequency components of analysis

13

. Both coherence and spectral Granger causality were

computed between all V1-V2 electrode pairs, in the same 5 recording sessions which

yielded the spiking data analyzed in the main text (n=3220 pairs). For both coherence and
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Granger analysis we defined three 512 ms response epochs: early evoked, beginning 50 ms

after stimulus onset (a period that encompasses the early evoked period used for spiking

data); late evoked, beginning 512 ms before stimulus offset (a period that encompasses the

late evoked period used for spiking data); and spontaneous, beginning 512 ms before

visual stimulus onset (encompassing the spontaneous epoch used for spiking data).

Coherence was calculated using the multi- taper method (3 tapers) of the Chronux

toolbox

16

. Spectral Granger causality was estimated using the MVGC toolbox

17

. In a

subset of the data, we varied model order systematically and found an order of 8 (i.e., 8

samples, or 8 ms) yielded the best performance on average; we therefore used this order

for all V1-V2 electrode pairs. Our results did not vary significantly when using other

values, up to 50. We did not analyze LFPs in the V1-V4 recordings because the brief

stimulus presentation yielded poor frequency resolution for the different response epochs.

(a) We first assessed V1-V2 LFP coherence in the early evoked, late evoked, and

spontaneous epochs. Coherence between V1 and V2 LFPs displayed two prominent peaks:

one centered at 9 Hz (in the alpha range) and another at 43 Hz (in the gamma range). The

gamma band coherence was strongest in the early evoked period, weaker in the late

evoked period, and absent in the spontaneous epoch. If one assumes that gamma

coherence is indicative of feedforward signaling, then this pattern of results is consistent

with our spike-based analyses which also suggested a gradual weakening of feedforward

signaling during evoked activity and little evidence of feedforward signaling during

spontaneous activity. In the alpha frequency range, the LFP coherence was also strongest

in the early evoked period and weakest during spontaneous activity. If alpha coherence is

indicative of feedback signaling, this is different from the signaling indicated by

population spiking activity. Specifically, our spike-based analyses would suggest that

alpha coherence should be strongest, not weakest, during the spontaneous epoch.
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(b,c) We next turned to spectral Granger causality analysis. We fit Granger models

predicting V2 LFPs using V1 LFPs (the feedforward direction; panel b) and predicting V1

LFPs using V2 LFPs (the feedback direction; panel c). In the feedforward models, Granger

influence was highest in the gamma frequencies and, in that range, most prominent

during early evoked period and weakest during spontaneous activity. There was no

Granger influence peak in the alpha or beta bands for feedforward V1-V2 models. Under

the proposal that gamma band activity is related to feedforward signaling, these results

are consistent with our analysis of population spiking activity, in which feedforward

signaling was most evident in the early evoked period and least evident during

spontaneous activity. In feedback models, the Granger influence resembled that evident in

the feedforward model, but with lower influence values. That gamma influence is stronger

in the feedforward than feedback model is consistent with prior work (see below). But the

absence of an alpha or beta peak in the feedback direction is unexpected, given the

directionality of inter-areal signaling suggested by our spiking data.

In summary, LFP-based analysis yielded both similarities and differences with the

inferences drawn from population spike-based analysis. There is good qualitative

agreement between the strength of feedforward signaling suggested by spiking activity

and by coherence and Granger analyses of gamma- band LFP activity. In epochs when

spiking activity suggested stronger feedforward signaling, both coherence and Granger

feedforward influence in the gamma band were elevated. However, the strong feedback

signaling evident in spiking activity – particularly during spontaneous activity – was not

consistently evident in alpha or beta components of the LFP. Granger analysis in the

feedback direction did not reveal a peak in these frequencies. We did observe a peak in the

alpha range in coherence – and during spontaneous activity coherence was strongest at

alpha frequencies – but coherence was stronger still during evoked activity.
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Our LFP results are broadly consistent with previous studies of inter-areal LFP coherence

and Granger influence in macaque visual cortex. For instance, previous V1-V2

14

and

V1-V4

10,14,18

studies have found elevated coherence in alpha/beta and gamma frequency

ranges. Granger models consistently reveal strong influence (relative to other frequencies)

in gamma frequencies, in the feedforward direction (e.g., V1-V4 in ref. 14 and ref. 18; and

V1-V2 in ref. 14). Influence in the gamma range is weaker in feedback models

10,14,18

, as we

also observe in our LFP data. Some studies have found Granger influence to be elevated in

the alpha/beta band as well, particularly in feedback models

10,14,13

. But ref. 18, like us, did

not find a strong alpha/beta component (their Figure 3).

Detailed comparisons across studies are complicated by differences in recordings

methodology (LFP recorded using Utah arrays and tetrodes in specific targeted cortical

layers in our case, compared to surface ECoG recordings in ref. 14 and ref. 18, and

laminar probe recordings in ref. 10), pre-processing (e.g. whether the signal is referenced

to the activity at nearby recordings, as in the cited ECoG studies), and details of the

analysis (the MVGC toolbox in our case and ref. 10, compared to nonparametric spectral

matrix factorization in ref. 14 and ref. 18). In this regard, the results presented here are not

meant as an exhaustive comparison to this prior work.
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Supplementary Figure 11 A communication subspace is evident when using Canonical

Correlation Analysis (CCA) to characterize inter-areal interactions. We previously

reported that the interaction between V1 and V2 was low dimensional (termed a

communication subspace) using Reduced-Rank Regression (RRR)

19

. RRR is closely related

to Canonical Correlation Analysis (CCA), which we employed in this work (for a review,

see ref. 20). One might wonder whether CCA also identifies a communication subspace

between V1 and V2. We repeated the analysis in our previous work, using the same data

that was analyzed there

19

, but using CCA instead of RRR to relate the activity across areas.

To determine the number of dimensions involved in inter-areal interactions, we first

identified the number of canonical dimensions that yielded the highest cross-validated

data likelihood for a probabilistic CCA (pCCA) model. We then fit a pCCA model with the

corresponding dimensionality using all trials, and computed the associated inter-areal

covariance matrix. Finally, we used Singular Value Decomposition (SVD) to determine the

smallest number of dimensions that captured 95% of the inter-areal covariance, and used

that number as our estimate of the number inter-areal dimensions.

As in our previous work

19

, we found that fewer dimensions were required to characterize

inter-areal interactions (V1-V2; red triangle on vertical axis) than within-area interactions

(V1-V1; blue triangle on vertical axis). In contrast to Fig. 3, where we identified a single

19



significant canonical pair for each epoch and time delay, here we identify around 3

dimensions of inter-areal interaction. This is largely due to the larger binning windows

used here (100 ms vs. 1 ms in Fig. 3). Importantly, the lower number of dimensions

required to account for inter-areal interactions, compared to within-area interactions, was

not a result of lower dimensional activity in the V2 population, as the population activity

dimensionality was higher in V2 than in the held-out V1 populations (compare blue and

red triangles on horizontal axis). Moreover, the number of predictive dimensions

identified by RRR was highly correlated with the number of canonical dimensions

identified by CCA (Pearson correlation coefficient r2 = 0.89 across all datasets; not shown).

Open circles corresponds to each dataset, solid circles denote mean across datasets for

each recording session. Triangles denote mean across all recording sessions.
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Supplementary Note

Characterizing changes in the interaction structure

What constitutes a change in the interaction structure? In other words, how can we

evaluate whether or not different activity patterns are involved in inter-areal interactions

during different trial epochs? Using Canonical Correlation Analysis (CCA, see Methods)

to characterize inter-areal interactions, one might wonder whether changes in the

canonical dimensions across two epochs are a good indication of a change in the

interaction structure. Here, we show that directly levering the canonical dimensions to test

for changes in the interaction structure can be misleading, and propose an alternative

approach based on the probabilistic CCA (pCCA) model

21

.

Suppose we identify q pairs of canonical dimensions, and represent them as the columns

of matrices A

q

and B

q

, which have dimensions p
x

⇥ q and p
y

⇥ q, respectively, where p
x

and p
y

are the number of recorded neurons in each of the two areas. The column space of

each matrix defines a subspace in each area within which activity is most correlated across

areas. If one seeks to compare the canonical dimensions identified during two trial epochs,

one possibility is to compare the column spaces of matrices A

q

and B

q

for two different

epochs.

There is, however, a potential problem with using this approach to ask whether there was

a meaningful change in the inter-areal interaction structure. We can illustrate this issue by

considering data generated from a pCCA model. pCCA is defined by the following

equations:

1



z ⇠ N (0, I
q

) (1)

x|z ⇠ N (W

x

z, 
x

) (2)

y|z ⇠ N (W

y

z, 
y

) (3)

where z is a q ⇥ 1 latent variable, x and y correspond to the neuronal activity recorded in

each of two cortical areas, with dimensionalities p
x

⇥ 1 and p
y

⇥ 1, respectively, p
x

and p
y

are the number of neurons recorded in each area, and q  min(p
x

, p
y

). The identity matrix

I

q

has dimensions q ⇥ q. The mapping matrices W

x

and W

y

have dimensions p
x

⇥ q and

p
y

⇥ q, respectively. The covariance matrices 

x

and 

y

have dimensions p
x

⇥ p
x

and

p
y

⇥ p
y

, respectively. We assume, without loss of generality, that x and y are mean-centered.

CCA and pCCA return the same correlation values, so both methods result in the same

population correlation functions. The advantage of pCCA here is that it provides us with a

more complete description of the fitted model and its underlying assumptions.

According to pCCA’s graphical model (Supplementary Fig. 12a), we can describe the

observed activity in each area as having an “across-area” component and a “within-area”

component. The across-area component emerges via the linear mapping between the

shared latent variable z and each observed variable, x and y. This mapping is defined by

the matrices W

x

and W

y

. The within-area components are defined to be Gaussian with

unconstrained covariance matrices 

x

and 

y

.

The relationship between the column spaces of the matrices A

q

and B

q

computed by

classical CCA and the parameters of the pCCA model is given by:

2



¯

A

q

= ⌃

�1
xx

W

x

(4)

=

�
W

x

W

x

T

+ 

x

��1
W

x

(5)

¯

B

q

= ⌃

�1
yy

W

y

(6)

=

�
W

y

W

y

T

+ 

y

��1
W

y

(7)

where

¯

A

q

and

¯

B

q

have the same column space as A

q

and B

q

, respectively (see the

“Relationship between CCA and pCCA” section below). This shows that the subspaces

spanned by the canonical dimensions in each area depend on the within-area noise

parameters 

x

and 

y

. Thus, changes to the within-area components lead to changes in

the subspaces spanned by the canonical dimensions, even if the across-area components

remain fixed. Measuring changes in the interaction structure by measuring to what extent

the subspaces spanned by the canonical dimensions differ would thus lead us to conclude

that across-area interaction structure had changed, even though only the within-area

components were altered.

We can gain further intuition into the pCCA model by inspecting the joint covariance

matrix (Supplementary Fig. 12b) The covariance for each area, ⌃

xx

(⌃

yy

), is composed of

an across-area component, W

x

W

x

T

(resp. W

y

W

y

T

) and within-area component, 

x

(resp.

 

y

). Supplementary Figure 12c illustrates this covariance decomposition for one of the

areas (ellipses represent each covariance component). For the across area covariance,

however, we have ⌃

xy

= W

x

W

y

T

= ⌃

T

yx

. Thus, the across-area covariance structure is

solely determined by the linear mapping matrices W

x

and W

y

.

Given that the across-area component in the pCCA model is solely determined by the

mapping matrices W

x

and W

y

, we can quantify changes in the interaction structure by

comparing those matrices for different trial epochs. We will take this approach, and use a

3



pCCA model to estimate the W

x

and W

y

matrices, and in turn use changes in these

matrices to detect changes in the interaction structure. We need to first define how to

measure differences between the W

x

and W

y

matrices estimated at different times during

the trial. As mentioned above, W

x

and W

y

are underdetermined, so an element by

element comparison (e.g., the Frobenius norm of the difference between two W

x

matrices

fit at different epochs in the trial) is not suitable. We defined our difference metric to be

based on differences between the column spaces of W

x

and W

y

, i.e., our measure of how

much the interaction structure changes across different epochs is only sensitive to changes

in the subspaces spanned by the dimensions along which activity is related across areas.

To be conservative, we will not consider scaling and affine transformations of these

dimensions (which do not change the subspace spanned by these dimensions) as changes

to the interaction structure, although they might reflect interesting changes for other

analysis goals.

Specifically, we will measure differences between the column spaces of W

x

and W

y

by

comparing the inter-area correlation these subspaces account for. To compare the

interaction structure identified during two epochs in the trial, indexed by t and t0, we first

fit a pCCA model at each epoch, yielding parameters ✓t = {Wt

x

,Wt

y

, t

x

, t

y

} and

✓t
0
= {Wt

0
x

,Wt

0
y

, t

0
x

, t

0
y

}. We then ask: given the observed (sample) within-area

covariance matrices at time t0, ⌃t

0
xx

and ⌃

t

0
yy

, how correlated would the activity across areas

be if instead of the estimated matrices W

t

0
x

and W

t

0
y

, the interaction was instead described

by matrices W

t

x

and W

t

y

? More specifically, how much do across-area correlations change

if we replace the column space of W

t

0
x

and W

t

0
y

by the column space of W

t

x

and W

t

y

? We

can use equations 4 and 6 to compute the subspace spanned by the canonical dimensions

4



induced by W

t

x

and W

t

y

(see the “Relationship between CCA and pCCA” section below):

¯

A

t

0
,t

q

= ⌃

t

0

xx

�1
W

t

x

(8)

¯

B

t

0
,t

q

= ⌃

t

0

yy

�1
W

t

y

(9)

and measure the amount of across-area correlation captured by

¯

A

t

0
,t

q

and

¯

B

t

0
,t

q

. We then

compare that amount of across-area correlation to the correlation that would have resulted

from using W

t

x

and W

t

y

(i.e., the across-area correlation captured by

¯

A

t

0
,t

0
q

and

¯

B

t

0
,t

0
q

). The

results of this analysis are shown in Fig. 6. Note that both

¯

A

t

0
,t

q

and

¯

A

t

0
,t

0
q

(resp.

¯

B

t

0
,t

q

and

¯

B

t

0
,t

0
q

) are computed using the same covariance matrix ⌃

t

0
xx

(resp. ⌃

t

0
yy

). Thus, any

differences between

¯

A

t

0
,t

q

and

¯

A

t

0
,t

0
q

(resp.

¯

B

t

0
,t

q

and

¯

B

t

0
,t

0
q

) are the result of differences

between W

t

x

and W

t

0
x

(resp. W

t

y

and W

t

0
y

). Specifically, differences between the column

spaces of

¯

A

t

0
,t

q

and

¯

A

t

0
,t

0
q

(resp.

¯

B

t

0
,t

q

and

¯

B

t

0
,t

0
q

) are the result of differences between the

column spaces if W

t

x

and W

t

0
x

(resp. W

t

y

and W

t

0
y

; see “Relationship between CCA and

pCCA” section below). Supplementary Table 1 describes this process in detail.
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Supplementary Table 1: Comparing inter-area interaction structure across time

Result: Normalized correlations ⇣t
0
,t

q

for all t0 and t, and for all choices of q

Given sets of observations {Xt,Yt}
train

and {Xt,Yt}
test

, for each trial epoch t

for q = 1, ...,min(p
x

, p
y

) do

for 8t do

Fit pCCA with latent dimensionality q to the training set {Xt,Yt}
train

yielding: ✓t = {Wt

x

,Wt

y

, t

x

, t

y

}

for 8t0 do

Compute across-area correlation in the test set {Xt

0
,Yt

0}
test

:

1. Compute correlation subspaces

¯

A

t

0
,t

and

¯

B

t

0
,t

:

¯

A

t

0
,t

= ⌃

t

0
xx

�1
W

t

x

and

¯

B

t

0
,t

= ⌃

t

0
yy

�1
W

t

y

where ⌃

t

0
xx

and ⌃

t

0
yy

are computed using {Xt

0
,Yt

0}
test

2. Project the {Xt

0
,Yt

0}
test

onto

¯

A

t

0
,t

and

¯

B

t

0
,t

:

ˆ

X

t

0
= X

t

0
¯

A

t

0
,t

and

ˆ

Y

t

0
= Y

t

0
¯

B

t

0
,t

3. Apply CCA to { ˆXt

0
, ˆYt

0} and sum all q canonical correlations,

obtaining rt
0
,t

q

end

end

for 8t, t0 do

Compute normalized correlations ⇣t
0
,t

q

= rt
0
,t

q

/rt
0
,t

0
q

end

end

Supplementary Table 1 describes a simple train/test split, but it is easy to generalize this

procedure to run within a k-fold cross-validation scheme (and then average the

6



normalized correlations across test folds). In the current study, we employed 10-fold

cross-validation.

Fixed interaction structure control

The analysis described in Supplementary Table 1 was designed to be sensitive only to the

column spaces of the W

x

and W

y

matrices. To empirically test that our analysis is

insensitive to changes in the remaining pCCA model parameters (i.e., that the changes

reported in Fig. 6 are solely due to changes to W

x

and W

y

), we devised a control based on

the following intuition: if we analyze data where the across-area component is held fixed

while the within-area component changes, our method (if it works as we expect it to)

should indicate that there is no change in interaction between areas. In other words, if we

keep the column spaces constant across epochs, we should find that all normalized

correlations will be close to 1 (i.e., we identify the same column spaces throughout the

trial). To carry out this control analysis, we generated surrogate data that was as similar as

possible to the observed activity (in terms of the first and second order statistics, number

of trials and number of observed neurons), but with fixed column spaces for the mapping

matrices W

x

and W

y

.

To achieve this, we first fit a pCCA model to the recorded neural activity, across all epochs,

obtaining matrices W

x

and W

y

. We then choose matrices

ˆ

 

t

x

and

ˆ

 

t

y

for each epoch such

that W

x

W

x

T

+

ˆ

 

t

x

⇡ ⌃t

xx

and W

y

W

y

T

+

ˆ

 

t

y

⇡ ⌃t

yy

for each epoch t. Note that W

x

and

W

y

are the same for all epochs. Supplementary Figure 13 illustrates this for two epochs t

and t0.

For

ˆ

 

t

x

= ⌃

t

xx

� W

x

W

x

T

to be a proper covariance matrix, it must be positive definite,

which is not guaranteed to be the case (similarly for

ˆ

 

t

y

). A simple way to ensure that is

7



positive definite is to scale W

x

and W

y

appropriately for each time step, as this operation

does not change their column spaces. Supplementary Table 2 describes the surrogate data

generation process in detail.

We found that fixing the column spaces of the W

x

and W

y

in this way led pCCA to

identify fixed columns spaces across all epochs (Supplementary Fig. 6), indicating the

results in Fig. 6 are not driven by changes in the within-area components but rather by

changes in the inter-areal interaction structure.
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Supplementary Table 2: Creating surrogate data with a fixed interaction structure

Result: Surrogate data { ˆXt, ˆYt}, for each epoch t and for all choices of q

Given the sets of observations, {Xt,Yt}, for each trial epoch t

for q = 1, ...,min(p
x

, p
y

) do

Fit pCCA with latent dim. q jointly to all sets of observations,

yielding W

x

and W

y

for 8t do

1. Fit pCCA with latent dim. q to {Xt,Yt}, yielding ✓t = {Wt

x

,Wt

y

, t

x

, t

y

}

2. Compute minimum within-area variances �
min

2
x

and �
min

2
y

, given by the

smallest eigenvalues of 

t

x

and 

t

y

, respectively

3. Compute across-area variance ratio, defined as the total across-area

variance divided by the total variance in each area

1

:

⌫t

x

= trace

⇣
W

t

x

W

t

x

T

⌘
/ trace

⇣
W

t

x

W

t

x

T

+ 

t

x

⌘
and

⌫t

y

= trace

⇣
W

t

y

W

t

y

T

⌘
/ trace

⇣
W

t

y

W

t

y

T

+ 

t

y

⌘

4. Scale W

x

and W

y

such that the across-area variance ratios for epoch t

are ⌫
x

and ⌫
y

, i.e., choose ↵t

x

and ↵t

y

such that:

trace

⇣
↵t

x

2
W

x

W

x

T

⌘
/ trace

⇣
↵t

x

2
W

x

W

x

T

+ 

t

x

⌘
= ⌫t

x

and

trace

⇣
↵t

y

2
W

y

W

y

T

⌘
/ trace

⇣
↵t

y

2
W

y

W

y

T

+ 

t

y

⌘
= ⌫t

y

5. Compute

ˆ

 

t

x

= ⌃

t

xx

� ↵t

x

2
W

x

W

x

T

and

ˆ

 

t

y

= ⌃

t

yy

� ↵t

y

2
W

y

W

y

T

6. Using the eigenvalue decompositions of

ˆ

 

t

x

and

ˆ

 

t

y

, set their minimum

variance to �
min

2
x

and �
min

2
y

, respectively

2

7. Generate surrogate data { ˆXt, ˆYt} from a pCCA model with parameters

✓t = {↵t

x

2
W

x

,↵t

y

2
W

y

, ˆ t

x

, ˆ t

y

}, with the same number of samples as in

the entire set of observations, {Xt,Yt}

end

end

2

The scale of the estimated mapping matrices is underdetermined (see “Relationship between CCA and

pCCA” section below), so this ratio is underdetermined as well. As an example, scaling W
x

by c and W
y

by 1/c (thereby changing ⌫
x

and ⌫
y

) results in an equivalent model, from a data likelihood perspective

(provided 
x

and 
y

remain positive definite). Although we found that keeping the ratio fixed led to good

approximations to the covariance matrices ⌃t

xx

and ⌃t

yy

, this ratio should not be over-interpreted.

2

This step is required to ensure that  ̂t

x

and  ̂t

y

are positive definite matrices.
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Relationship between CCA and pCCA

The correspondence between the classical formulation and the probabilistic variant of

CCA was developed by Bach and Jordan

21

. Specifically, they showed that any maximum

likelihood solution derived using the probabilistic model (equations 1-3) corresponds to

the same set of canonical dimensions identified using classical CCA. In other words, the

data likelihood function for pCCA has infinitely many global optima, where all local

optima are also global optima, and all global optima correspond to the same set of

canonical dimensions. In particular, if we define the top q canonical dimensions identified

for each area by classical CCA as A

q

(a p
x

⇥ q matrix) and B

q

(a p
y

⇥ q matrix), the

relationship between the canonical dimensions and the linear mapping matrices from

pCCA is given by:

W

x

= ⌃

xx

A

q

M

x

(10)

W

y

= ⌃

yy

B

q

M

y

(11)

where M

x

and M

y

are arbitrary q ⇥ q matrices such that M

x

M

y

T

= P

q

and the spectral

norms of M

x

and M

y

are smaller than one. P

q

is a diagonal matrix containing the first q

canonical correlations. As an example, M

x

= M

y

= P

1/2
q

satisfies these constraints. Any

suitable choice of M

x

and M

y

corresponds to a global maximum of the data likelihood.

The link between CCA and pCCA is similar to that between PCA and pPCA, and the

derivation of this connection largely follows that originally developed for PCA and

pPCA

22,23

.

In particular, the fact that M

x

and M

y

are underdetermined means that W

x

and W

y

are

not uniquely defined when fitting pCCA, i.e., there are many choices of W

x

and W

y

that

result in the same canonical dimensions, and maximizing the data likelihood can return

10



any such choices. Importantly, these W

x

(resp. W

y

) matrices all have the same column

space, i.e., multiplication by M

x

(resp. M

y

) does not change the column space of W

x

(resp.

W

y

).

Given two matrices W

x

and W

y

found by maximizing the data likelihood, we cannot

directly compute A

q

and B

q

from these matrices alone, since we don’t know which M

x

and M

y

the particular solution we found corresponds to. However, since all the consistent

W

x

(resp. W

y

) matrices have the same column space, we can find the column spaces of A

q

and B

q

by computing matrices

¯

A

q

and

¯

B

q

(equations 4 and 6), as the column space of

¯

A

q

(resp.

¯

B

q

) is the same as the column space of A

q

(resp. B

q

) (see Lemma 1 below). Note that

the column space of A

q

(resp. B

q

) is the subspace of x (resp. y) spanned by the canonical

dimensions found by classical CCA. The relationship above indicates that the subspace

spanned by the canonical dimensions in A

q

(resp. B

q

) depends on the column space of

W

x

(resp. W

y

) and on ⌃

xx

(resp. ⌃

yy

). In particular, if ⌃

xx

(resp. ⌃

yy

) is held fixed, the

column space of A

q

(resp. B

q

) is solely determined by the column space of W

x

(resp. W

y

;

see Lemma 2 below). This observation forms the basis for Supplementary Table 1, where

we ask how well a pCCA model fit to epoch t (yielding W

t

x

and W

t

y

) captures correlations

at epoch t0.

Lemma 1.

¯

A

q

(

¯

B

q

) and A

q

(resp. B

q

) have the same column space.

Proof. We will show that

¯

A

q

and A

q

have the same column space. The proof for

¯

B

q

and B

q

is identical. Starting with equation 10:

W

x

= ⌃

xx

A

q

M

x

,⌃�1
xx

W

x

= A

q

M

x

, ¯

A

q

= A

q

M

x

11



where we used the fact that ⌃

xx

is a square positive definite matrix. So long as M

x

is a full

rank matrix (i.e., the first q canonical correlations are non-zero),

¯

A

q

= A

q

M

x

and A

q

have

the same column space.

Lemma 2. If⌃

xx

(⌃

yy

) is held fixed, the column space of A

q

(resp. B

q

) is solely determined by the

column space of W

x

(resp. W

y

).

Proof. We will show that the column space of A

q

depends solely on the column space of

W

x

if ⌃

xx

is held fixed. The proof for B

q

is identical. Using the compact singular value

decomposition W

x

= UDV

T

, and inserting it into equation 10:

⌃

xx

A

q

M

x

= W

x

,⌃
xx

A

q

M

x

= UDV

T

,A

q

M

x

= ⌃

�1
xx

UDV

T

,A

q

M

x

VD

�1
= ⌃

�1
xx

U

where we used the fact that ⌃

xx

is a square positive definite matrix. As long as M

x

is a full

rank matrix (i.e., the first q canonical correlations are non-zero), M

x

VD

�1
is a square full

rank matrix, and thus A

q

M

x

VD

�1
and A

q

have the same column space. So as long as ⌃

xx

is held fixed, the column space of A

q

only depends on U, which is a basis for the column

space of W

x

. In other words, if we change W

x

, only the changes to U (its column space),

and not changes to D or V, affect the column space of A

q

.
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Supplementary Figure 12 Probabilistic canonical correlation analysis (pCCA) (a) pCCA’s

probabilistic graphical model. (b) Summary of the relationship between the data

covariance matrices and the pCCA model parameters. (c) Graphical representation of the

covariance decomposition under a pCCA model for one of the two populations. Red

ellipse represents the across-area component; blue ellipse represents the within-area

component; pink ellipse represents the total covariance in this area.
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Supplementary Figure 13 Changing the total covariance in one of the areas while

keeping the across-area component fixed. Same conventions as in Supplementary Fig. 12c.
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