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Feedforward and feedback interactions between
visual cortical areas use different population
activity patterns
João D. Semedo1✉, Anna I. Jasper2, Amin Zandvakili2, Aravind Krishna 2, Amir Aschner2,

Christian K. Machens 3,7✉, Adam Kohn2,4,5,7✉ & Byron M. Yu 1,6,7✉

Brain function relies on the coordination of activity across multiple, recurrently connected

brain areas. For instance, sensory information encoded in early sensory areas is relayed to,

and further processed by, higher cortical areas and then fed back. However, the way in which

feedforward and feedback signaling interact with one another is incompletely understood.

Here we investigate this question by leveraging simultaneous neuronal population recordings

in early and midlevel visual areas (V1–V2 and V1–V4). Using a dimensionality reduction

approach, we find that population interactions are feedforward-dominated shortly after sti-

mulus onset and feedback-dominated during spontaneous activity. The population activity

patterns most correlated across areas were distinct during feedforward- and feedback-

dominated periods. These results suggest that feedforward and feedback signaling rely on

separate “channels”, which allows feedback signals to not directly affect activity that is fed

forward.
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Most brain functions rely on the coordination of activity
across multiple areas1,2. Activity does not follow a
purely feedforward path between brain areas: areas are

often reciprocally connected, and signals passed from one area to
the next are often processed and fed back3–6. Understanding
when feedforward and feedback signaling between areas is most
dominant, and how these forms of signaling interact, is crucial for
improving our understanding of computation in the brain.

Previous studies have attempted to infer feedforward or feed-
back interactions between areas. One approach for identifying
feedforward signaling is to present a stimulus and then compare
the timing of neuronal response onsets across areas7–10. Similarly,
feedback signaling can be inferred by studying time differences in
the emergence of some forms of selectivity across areas11–15.
Other studies have studied feedforward or feedback signaling by
measuring activity simultaneously in two areas, and comparing
temporal delays in pairwise spiking correlations16–21 or phase
delays in local field potentials (LFP)22–25. These studies have
suggested that feedforward signaling occurs shortly after stimulus
onset and that feedback signaling appears later. However, it is
unknown how the relative dominance of feedforward and feed-
back interactions changes during stimulus presentation and when
there is no stimulus present (i.e., spontaneous activity).

To understand inter-areal interactions more deeply, it is now
possible to record activity from large neuronal populations
simultaneously in different cortical areas, and characterize what
patterns of population activity are most related across those
areas19,26–33. This approach has led to new proposals about how
activity can be flexibly routed across brain areas (see ref. 34 for a
review). In particular, simultaneous multi-area recordings have
revealed properties of population activity patterns that are most
related across areas in the context of sensory processing29,
attention30, learning31, and motor control32,33. However, it is
unknown how these population activity patterns relate to feed-
forward or feedback signaling between areas.

Here, we leverage simultaneous recordings of neuronal
populations in early and midlevel visual areas (V1–V2 and
V1–V4) to examine the temporal dynamics of inter-areal inter-
actions, as well as the population activity patterns involved in
those interactions (Fig. 1a). By analyzing the moment-by-
moment relationship of the population activity across areas
(without trial-averaging), we found that interactions were
feedforward-dominated (V1 leading V2, and V1 leading V4)
shortly after stimulus onset and gradually became feedback-
dominated. In addition, we found that the population activity
patterns involved in feedforward signaling were distinct from
those involved in feedback signaling. This indicates that activity
patterns in V1 that most affect downstream activity during
feedforward processing are not the ones most affected by feed-
back signaling. Our results reveal both the dominant direction of
signal flow between areas on a moment-by-moment basis and
the distinct nature of population activity patterns involved in
feedforward and feedback interactions.

Results
We simultaneously recorded from neuronal populations in V1
(88 to 159 neurons; mean: 112.8 ± 12.3 SEM) and V2 (24 to 37
neurons; mean: 29.4 ± 2.4 SEM) in three anesthetized monkeys
(Fig. 1b; five recording sessions), as well as in V1 (34 to 128
neurons; mean: 66.6 ± 16.2 SEM) and V4 (12 to 84 neurons;
mean: 58.8 ± 12.4 SEM) in two awake fixating monkeys (Fig. 1c;
five recording sessions). Animals were shown drifting gratings of
different orientations (1280 ms stimulus duration for V1–V2;
200 ms for V1–V4), followed by a blank screen (1500 ms for
V1–V2; 150 ms for V1–V4). Recording sites were chosen so that

the spatial receptive fields of the V1 and V2/V4 populations
overlapped (see ref. 19 and Supplementary Fig. 1).

Temporal structure of inter-areal interactions. We first char-
acterized the temporal dynamics of the interaction between neu-
ronal population spiking responses in V1 and V2. To do so, we
asked: (1) how the interaction evolved during stimulus presenta-
tion and the subsequent period of spontaneous activity (which
together constitute a trial); and (2) how the interaction depended
on the time delay considered between the two areas. Given that
these areas are reciprocally connected, with activity flowing in
both directions, it is possible that there are periods during which
V1 leads V2 activity, and other periods where it lags behind.

To measure interactions between areas, we employed Canoni-
cal Correlation Analysis (CCA). Consider representing the
activity in two neuronal populations using two activity spaces,
one for brain each area. In each space, each coordinate axis
corresponds to the activity of a recorded neuron (Fig. 2a). Within
a given time window, the spike counts of the neurons (in the two
populations) define a point in each space. For each point in V1
activity space (Fig. 2a, left panel), there is a corresponding,
simultaneously recorded point in V2 activity space (Fig. 2a, right
panel). CCA seeks dimensions of activity in each area, such that
activity along those dimensions is maximally correlated across the
two areas (Fig. 2a, bottom panel). For this analysis, we focused on
the most correlated dimensions across the two areas (i.e., the first
canonical pair; correlations associated with the second canonical
pair were on average 60% lower and close to chance level). We
used the correlation value for the first canonical pair as a measure
of inter-areal interaction strength, which we refer to as population
correlation.

Interactions between areas likely involve time delays due to
signal conduction, as well as network processing. This implies
that the activity across areas might not be most related for
matched (simultaneous) time windows, but for time windows
shifted forward or backward in time. Thus, we used CCA to relate
activity recorded in V1 with activity in V2 at different time delays
(Fig. 2b; Methods) to produce a population correlation function
(Fig. 2c). This population correlation function can be computed
at different epochs in a trial.

We found that V1–V2 population correlations were lowest just
after stimulus onset, increased steadily during stimulus presenta-
tion, and were highest for spontaneous activity (Fig. 3a). Focusing
on the activity shortly after stimulus onset ("Early Evoked”;
160 ms after stimulus onset), population correlations were larger
for positive delays than for negative delays (red trace in Fig. 3b,
with peak correlation occuring for a lag of 3 ms), meaning V1
activity was most correlated with V2 activity occurring later in
time—consistent with a feedforward interaction. The feedforward
interaction became less evident later during the evoked activity
period (“Late Evoked”; 1120 ms after stimulus onset; yellow trace
in Fig. 3b). After stimulus offset, population correlations were
larger for negative delays, so that V2 led V1, suggesting a
feedback-dominated interaction ("Spontaneous”, purple trace in
Fig. 3b, with a broad peak centered at approximately −15 ms;
2240 ms after stimulus onset). These results were evident in each
recording session (Supplementary Fig. 2). For a more complete
characterization, we show in Fig. 3c how population correlations
vary as a function of time delay between areas (horizontal axis)
and the time relative to stimulus onset (vertical axis; note that the
population correlation functions in Fig. 3b represent horizontal
slices of this representation).

To quantify the shift from feedforward- to feedback-dominated
interactions, we calculated a feedforward ratio, defined as the
difference between the feedforward (positive delay) and feedback
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(negative delay) sides of the population correlation function,
divided by their sum. In every recording session, the V1–V2
interactions became more feedback-dominated from the early
evoked period to the spontaneous period (Fig. 3d, left; average
feedforward ratio, computed in the −80 to 80ms delay range:−
0.005 ± 0.008 SEM for late evoked activity;− 0.040 ± 0.011 SEM
for spontaneous activity). In four of the five recording sessions, this
shift occurred between the late evoked and spontaneous periods
(two-sided shuffle test, p < 10−3). In the remaining recording
session, this shift occurred between the early evoked and late
evoked periods (two-sided shuffle test, p < 10−3).

The population correlation functions contain both slow- and
fast-timescale features. To isolate the fast-timescale features,
particularly evident early in the evoked period (Fig. 3b, red), we
computed jitter-corrected population correlation functions for
responses measured after stimulus onset35,36 and computed their
peak location and height (Supplementary Fig. 3). Clear feedfor-
ward peaks will have large heights whereas the absence of a peak
will result in a small peak height with highly variable peak times
(i.e., reflecting “noise” in the correlation function). We found a
clear, early feedforward peak in all recording sessions for which
the V1 and V2 receptive fields were aligned (Fig. 3e, open circles;
average peak height: 0.008 ± 0.002 SEM; average peak delay:
2.2 ms ± 0.37 SEM).

If the effects shown in Fig. 3 truly reflect feedforward and
feedback interactions, they should display appropriate retinotopic
specificity. Feedforward connections are more retinotopically
precise than feedback connections37–41. As a result, feedforward
interactions should require retinotopic alignment, whereas feed-
back interactions might be more tolerant of retinotopic
misalignment between the neurons sampled in the two areas.
To test this prediction, we performed additional recordings for
which the spatial receptive fields of the V1 and V2 populations
were misaligned by several degrees (mean center-to-center

population spatial receptive field distance was 3.73deg for
misaligned sessions and 0.58deg for aligned sessions).

Population correlations were lower for these recordings than for
those from populations with aligned receptive fields (Fig. 3a,
dotted line). The fast time-scale correlation peaks observed shortly
after stimulus onset for aligned populations (Fig. 3e, circles) were
absent in responses from populations with misaligned receptive
fields, evident as small peak heights and inconsistent peak delays
(Fig. 3e, triangles; average peak height: 0.0025 ± 0.0001 SEM; two-
sided permutation test, p= 0.008 for difference between sessions
with aligned vs. misaligned receptive fields).

Despite the absence of a clear feedforward peak, the V1–V2
interaction for the misaligned populations also became more
feedback-dominated from the early evoked period to the
spontaneous period (Fig. 3d, right; average feedforward ratio:−
0.003 ± 0.019 SEM for late evoked activity;− 0.027 ± 0.013 SEM
for spontaneous activity). In four of the five recording sessions, this
shift occurred between the late evoked and spontaneous periods
(two-sided shuffle test, p < 10−3). In the remaining recording
session, this shift occurred between the early evoked and late
evoked periods (two-sided shuffle test, p < 10−3). Thus, the
feedforward and feedback interactions identified by CCA have
properties consistent with the underlying anatomical specificity.

To test whether the dynamics of V1–V2 interactions might
reflect in part changes in the activity within each area, rather than
the interaction between areas, we devised two controls. First, we
split each V1 and V2 population randomly into two groups, and
measured within-area correlations as we had done when
analyzing inter-areal interactions. The features described for
inter-areal interactions were absent when identical analyses were
performed on neurons recorded in the same area (Supplementary
Fig. 4). Specifically, within-area interactions showed no evidence
of a feedforward peak and were symmetric with respect to the
time lag during late evoked and spontaneous activity. Thus, the

Fig. 1 Studying feedforward and feedback interactions using neuronal population activity. a Each circle represents a neuron in each area, with the
shading representing the activity level of the neuron. The population activity patterns involved in feedforward signaling (top) might be distinct from those
involved in feedback interactions (bottom). b Schematic showing a sagittal section of occipital cortex and the recording setup for the V1–V2 recordings. We
simultaneously recorded V1 population activity using a 96-channel array and V2 population activity using a set of movable electrodes and tetrodes.
c Schematic showing an overhead view of the recording setup for the V1–V4 awake recordings. We simultaneously recorded V1 and V4 population activity
using one 96-channel and one 48-channel array in V1 and a 48-channel array in V4 in the first animal, and two 96-channel arrays in V1 and two 48-channel
array in V4 in the second animal.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28552-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1099 | https://doi.org/10.1038/s41467-022-28552-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


changes in temporal structure shown in Fig. 3 are specific to
inter-areal interactions.

Second, we tested whether the dynamics of inter-areal
interactions might be related to differences in neuronal onset
latency in the two areas, or to changes in the firing rates over time
within each population. To assess this possibility, we performed
CCA after shuffling the correspondence of trials in the two areas,
while keeping the temporal correspondence within each area
intact (see Methods). This shuffling procedure maintained the
firing rate time courses and correlation structure within each area,
but broke the trial-by-trial correspondence of activity across the
two areas. After shuffling, inter-areal correlations no longer
increased throughout the trial (Fig. 3a, light trace). Furthermore,
there was no evidence of a feedforward interaction early in the
trial, nor was there a shift to a feedback-dominated interaction
during spontaneous activity (Fig. 3b, light traces). Thus, the

dynamics of inter-areal interactions cannot be attributed to
different onset latencies or response dynamics in the two areas.

We then asked whether inter-areal interactions showed similar
dynamics in responses measured in awake animals as in the
responses measured in anesthetized animals considered thus far.
We recorded V1 and V4 population activity, in two animals
performing a passive fixation task in which drifting gratings were
presented (Methods). As with V1–V2 responses, V1–V4 popula-
tion correlation increased throughout the evoked period (Fig. 4a;
compare with Fig. 3a). Just after stimulus onset, V1–V4
interactions were feedforward-dominated (Fig. 4b, red curve;
75 ms after stimulus onset). Notably, the feedforward peak was
located at approximately 25 ms delay, longer than the delay of the
feedforward peak for the V1–V2 interaction and with a broader
profile (compare with Fig. 3b). Over time, the initial feedforward
interaction was replaced by a feedback-dominated interaction

Fig. 2 Using Canonical Correlation Analysis (CCA) to capture population interactions. a Relating activity across two neuronal populations. Each circle
represents the population activity recorded on a given trial. For each activity point observed in the V1 population (left panel; gray dots), there is a
corresponding, simultaneously recorded activity point observed in V2 (right panel, gray dots). The red axes represent the first pair of canonical dimensions,
identified using CCA. Neuronal activity projected onto the first pair of canonical dimensions (red dots) is highly correlated across the two areas (bottom
panel). b Spike counts across the recorded neurons are taken in specified time windows (gray boxes), which may either be positioned at the same time in
both areas (i.e., t1= t2) or with a delay between areas (t1≠ t2). The activity in each gray box is represented by a circle in panel (a). c The population
correlation function corresponds to the correlation between areas returned by CCA (the correlation associated with the first pair of canonical dimensions),
as a function of the time delay between areas (t2− t1).
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(Fig. 4b, yellow curve; compare with Fig. 3b; 125 ms after stimulus
onset). Figure 4c shows the V1–V4 population correlation
functions at all epochs during the trial. The shift from a
feedforward- to a feedback-dominated interaction was present for
all recording sessions (Fig. 4d; average feedforward ratio,
computed in the −50 to 50 ms delay range: 0.088 ± 0.014 SEM
for early evoked activity;− 0.038 ± 0.008 SEM for late evoked
activity; two-sided shuffle test, p < 10−3 for difference between
early evoked and late evoked activity for all 5 recording sessions).
This temporal structure was absent in interactions between
subpopulations within each cortical area (Supplementary Fig. 5),
and when we shuffled responses to remove the trial-by-trial
correspondence between areas (Fig. 4a, b, faded traces).

Population structure of inter-areal interactions. Past work has
suggested that inter-areal interactions are selective, in terms of

which population activity patterns are related across areas29,42.
That is, not all activity fluctuations in one area are reflected in the
activity of its downstream targets: some fluctuations remain pri-
vate to the source area.

Given the observed dynamics of inter-areal interactions, we
wondered whether the patterns of activity relayed across areas
might be different between feedforward- and feedback-dominated
periods. One possibility is that the patterns of activity most
related across the two areas are similar during these two periods.
Since feedback signaling is hypothesized to alter, or correct, visual
representations upstream43–45, one might expect that the
dimensions most affected by feedback are the same dimensions
that are involved in feedforward interactions. This would suggest
feedforward and feedback interactions “read from” and “write to”
the same population activity patterns, sharing the same commu-
nication channel. Alternatively, feedforward and feedback inter-
actions might unfold through separate channels involving distinct

Fig. 3 V1–V2 interaction transitions from feedforward-dominated shortly after stimulus onset to feedback-dominated during the spontaneous period.
a Inter-areal zero-delay population correlation increased throughout the trial, and was higher for spontaneous activity than for evoked activity. Zero-delay
refers to spike counts taken in the same time window in the two areas (t1= t2 in Fig. 2b). Black line shows the average across all recording sessions for
which the V1 and V2 populations have aligned receptive fields. Shading indicates S.E.M. Dotted line shows average across all recording sessions where the
V1 and V2 receptive fields are misaligned. Gray line shows average population correlation after shuffling trial correspondence between the two areas.
b Population correlation functions for an example session (red: early evoked, yellow: late evoked; purple: spontaneous). Faded lines show population
correlation functions after shuffling trial correspondence between the two areas (note that there are multiple superimposed lines). c Population
correlations at all times during the trial. The horizontal axis represents the time delay between areas (t1− t2), and the vertical axis represents time relative
to stimulus onset (t1). Horizontal lines (red, yellow, and purple) indicate epochs used in b. Dashed vertical line indicates zero-delay population correlations
shown in a. White area denotes times for which population correlations could not be computed: the V2 activity window had reached either the beginning or
the end of the trial. Same session as in b. d Feedforward ratio for different epochs of evoked and spontaneous activity. Left panel shows sessions for which
the V1 and V2 populations have aligned receptive fields; right panel shows sessions where the V1 and V2 receptive fields are misaligned. Feedforward ratio
is defined as the difference between the area under the feedforward (positive delay) and feedback (negative delay) sides of the population correlation
function, divided by their sum. Solid symbols show the average across all recording sessions, whereas open symbols correspond to each recording session.
Insets show average feedforward ratios after shuffling trial correspondence between the two areas for each recording session (horizontal lines show 1 S.D.
intervals, most of which are not visible because they are smaller than the width of the plotted symbol). e An early feedforward peak is only present in
recording sessions where the V1 and V2 populations have aligned receptive fields. Peak height is measured after performing a jitter-correction to isolate
fast timescale interactions (see Methods and Supplementary Fig. 3). Circles correspond to recording sessions for which the V1 and V2 populations have
aligned receptive fields. Triangles correspond to sessions in which the V1 and V2 receptive fields are misaligned.
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population activity patterns, and thus perhaps minimizing how
much they directly interact. This would suggest that feedback
processing affects dimensions of upstream activity that are not
directly involved in relaying visual information downstream.

To distinguish between these possibilities, we divided the trial
in epochs and measured how the canonical dimensions identified
during one epoch generalized to another. For example, we asked
whether the canonical dimensions identified during the
feedforward-dominated period (Fig. 5a) captured inter-areal
correlations during the feedback-dominated period as strongly
as the canonical dimensions identified during that feedback-
dominated period (Fig. 5b). Good generalization would imply
that the same patterns of activity were related across areas during
periods of feedforward- and feeback-dominated interactions. If,
however, the patterns of activity most related across areas
differed, the canonical dimensions found during the feedforward-

dominated periods would not capture inter-areal correlations
during the feedback-dominated periods (Fig. 5c).

We found that dimensions identified early in the evoked
activity period, when V1–V2 interactions were feedforward-
dominated, did not generalize well to later epochs (Fig. 6a;
average normalized correlation, for which a value of 1 indicates
perfect generalization: 0.56 ± 0.05 for mid evoked, 0.59 ± 0.04 for
late evoked, 0.36 ± 0.04 for spontaneous). The failure of
dimensions identified during the feedforward-dominated period
to generalize to the dimensions identified during spontaneous
activity indicates that epochs in the feedforward-dominated
period involve distinct patterns of population activity compared
to epochs in the feedback-dominated period. The generalization
was better between epochs later after stimulus onset, when the
correlation functions were more symmetric (Fig. 6b; average
normalized correlation: 0.64 ± 0.04 for early evoked, 0.94 ± 0.03

Fig. 4 V1–V4 interaction transitions from feedforward- to feedback-dominated during the evoked period. a Inter-areal zero-delay population correlation
increased throughout the evoked period. Black line shows average across all recording sessions. Shading indicates S.E.M. Gray line shows average
population correlations after shuffling trial correspondence between the two areas. b Population correlation functions for an example session, for early
(red) and late evoked (yellow) activity. Due to the short duration of the inter-stimulus period, we could not compute a population correlation function for
spontaneous activity. Faded lines show population correlation functions after shuffling trial correspondence between the two areas (note that there are
multiple superimposed lines). c Population correlations at all times during the trial. The horizontal axis represents the time delay between areas (t1− t2),
and the vertical axis represents time relative to stimulus onset (t1). Horizontal lines (red and yellow) indicate epochs used in b. The dashed vertical line
indicates zero-delay population correlations shown in a. White area denotes times for which population correlations could not be computed: the V4 activity
window had reached either the beginning or the end of the trial. Same session as in b. d Feedforward ratio for early and late evoked activity. Solid circles
show the average across all recording sessions, whereas open circles correspond to each recording session. Insets show average feedforward ratios after
shuffling trial correspondence between the two areas for each recording session (horizontal lines show 1 S.D. intervals, most of which are not visible
because they are smaller than the width of the plotted symbol).
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for mid evoked, 0.45 ± 0.03 for spontaneous), indicating that the
patterns of activity related between areas are stable for mid and
late evoked activity. Dimensions identified during epochs of
feedback-dominated interaction, during spontaneous activity,
failed to generalize to evoked activity (Fig. 6c; average normalized
correlation: 0.47 ± 0.06 for early evoked, 0.50 ± 0.03 for mid
evoked, 0.52 ± 0.02 for late evoked). These results were evident for
all recording sessions (see gray lines in Fig. 6a–c), and were all
cross-validated. Furthermore, these analyses were carefully
designed to focus exclusively on changes in the across-area
interaction structure, so as to be insensitive to changes in the
structure of population activity within each area (see Supple-
mentary Fig. 6, Methods, and Supplementary Note).

To gain a more complete picture, we assessed generalization
performance between each possible pairing of epochs for defining
canonical dimensions (Fig. 6d, vertical axis), and for testing their
relevance (horizontal axis). Each row corresponds to a set of

canonical dimensions, identified at a particular epoch, and
applied to activity at each of the other epochs. The patterns of
generalization performance mirror the changes we observed in
the temporal profile of the interaction. As the feedforward
interaction weakened after stimulus onset (Fig. 3b, compare red
and yellow curves), the patterns of activity most related across the
two areas changed as well (Fig. 6d, straight arrow, bottom left).
Furthermore, the spontaneous activity period, which was more
feedback-dominated than the evoked activity period (Fig. 3d),
involved different patterns of activity from those involved in the
evoked period (Fig. 6d, curved arrow, top right). These results
were robust to changes in binning width and temporal window
length (Supplementary Fig. 7). The poor generalization across
periods was largely due to a decrease in the correlation captured
by these dimensions at different points in the trial, not due to new
dimensions coming into play which explained large amounts of
inter-areal correlations (Supplementary Fig. 8).
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Fig. 5 Illustration of how to assess whether feedforward- and feedback-dominated interactions involve the same population activity patterns.
a Canonical dimensions identified during a feedforward-dominated period in the trial (red dimensions). These are putative “Feedforward” (FF) canonical
dimensions. Open red circles denote activity during the feedforward-dominated period. Solid red circles denote the projection onto the FF canonical
dimensions. b We can then ask whether these FF canonical dimensions generalize to a feedback-dominated period. One possibility is that the interaction
structure (defined using the canonical dimensions) remains stable across the two periods. In this case, the FF canonical dimensions (red dimensions)
capture a similar level of correlation during the feedback-dominated period as the canonical dimensions identified during this period, the putative
“Feedback” (FB) canonical dimensions (blue dimensions). As a result, the normalized correlation, the ratio of the population correlation for the FF canonical
dimensions to that for the FB canonical dimensions (both computed in a cross-validated manner; see Methods), is close to 1. Open blue circles denote
activity during the feedback-dominated period. Solid purple circles denote the projection of activity during the feedback-dominated period onto the FF
canonical dimensions. Solid blue circles denote the projection onto the FB canonical dimensions. c Alternatively, the interaction structure might change
across the two periods. In this case, the FF dimensions capture only a small fraction of the population correlation during the feedback-dominated period.
Same conventions as in b.
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We obtained similar results when analyzing V1–V4 activity.
V1–V4 interactions transitioned from a feedforward- to a
feedback-dominated interaction (Fig. 4), and the dimensions
mediating these interactions changed between these epochs as
well (Fig. 6e; the number of epochs is smaller here due to the

shorter trial duration). Specifically, the V1–V4 interaction became
feedback-dominated at the end of the evoked period (Fig. 4d,
yellow circles), and this was accompanied by poor generalization
between early and late evoked dimensions (Fig. 6e, straight arrow;
average normalized correlation for second epoch of evoked

Fig. 6 Interaction structure is distinct for the feedforward- and feedback-dominated periods. a The dimensions found by fitting CCA shortly after
stimulus onset (80ms after stimulus onset) do not generalize well to later epochs in the evoked period, and worse still during the spontaneous period.
Gray lines correspond to each of the 5 recording sessions. We report the normalized correlation, defined as the total correlation captured at the test epoch
by the dimensions fit to some other epoch over the total correlation captured by the dimensions fit the test epoch (both computed in a cross-validated
manner; see Methods). b Dimensions identified late in the evoked period (1180ms after stimulus onset) do not generalize well to early evoked epochs and
to epochs in the spontaneous period, but generalize well to mid-evoked activity. Same conventions as in a. c Dimensions identified during the spontaneous
period do not generalize well to the evoked period. Same conventions as in a. d Assessing changes in interaction structure across the entire trial. The trial
was divided into 100 ms segments, and CCA was applied separately to the activity in each time window. The top two canonical pairs associated with each
window were then used to capture inter-areal correlations in the other time windows (see Methods). Each row corresponds to the time during the trial
during which the canonical dimensions were identified. Each column corresponds to the time during the trial where the population correlation is assessed.
Each entry shows the average across all recording sessions. Straight arrow highlights the comparison of the interaction structure within the evoked period.
Curved arrow highlights the comparison of the interactions structure between the spontaneous and the evoked periods. Dashed white boxes indicate
epochs reproduced in f. e Comparing identified dimensions across epochs for the awake V1–V4 recordings. The trial was divided into 100ms segments,
and CCA was applied separately to the activity in each time window. The top canonical pair associated with each window was then used to capture inter-
areal correlations in the other time windows (see Methods). Arrow highlights the comparison of the interaction structure within the evoked period. Same
conventions as in d. f Detailed view of the V1–V2 generalization performance for the comparable epochs between the V1-V2 and V1-V4 recordings. Epochs
are indicated by the dashed white boxes in d.
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activity for V1–V4: 0.27 ± 0.02). As in the V1–V2 recordings, these
effects were evident for all recording sessions, and were all cross-
validated. In contrast, the V1–V2 interactions shifted more slowly
away from a feedforward-dominated interaction after stimulus
onset (Fig. 3d, yellow circles). Consistent with this slower
transition, V1–V2 dimensions identified soon after stimulus onset
generalized better for nearby epochs of evoked activity, compared
to V1–V4 (Fig. 6f, straight arrow; averaged normalized correlation
for second epoch of evoked activity for V1–V2: 0.62 ± 0.05).
Furthermore, the same neurons were involved in both
feedforward-dominated and feedback-dominated interactions
(Supplementary Fig. 9). In other words, we did not find evidence
for neurons specializing in only feedforward-dominated or only
feedback-dominated interactions.

Taken together, our findings suggest feedforward and feedback
inter-areal interactions involve different patterns of population
activity. In turn, this implies that the aspects of V1 population
activity that are relayed downstream are not the aspects of activity
that are most influenced by feedback. Feedforward and feedback
processing might thus occur in separate subspaces of population
activity, concurrently and through different “channels”.

Discussion
We leveraged multi-area recordings to understand the interac-
tions between neuronal population spiking responses in V1 and
downstream areas V2 and V4. We found that interactions were
feedforward-dominated (V1 leading V2, and V1 leading V4)
shortly after stimulus onset and gradually became feedback-
dominated. The interactions remained feedback-dominated with
persistent stimulus drive, as well as during spontaneous activity.
In addition, we found that the population activity patterns
involved in feedforward signaling were distinct from those
involved in feedback signaling. These findings (summarized in
Fig. 7) indicate that, when a stimulus persists, or when no sti-
mulus is presented, the role of top-down inputs from areas such
as V2 and V4 to V1 is more prominent. Furthermore, feedfor-
ward and feedback signals involve distinct axes in population
activity space. This suggests that feedforward and feedback sig-
naling rely on separate “channels”, which allows feedback signals
to not directly affect activity that is fed forward.

The transition from feedforward- to feedback-dominated
interactions during stimulus drive is broadly consistent with
inferences drawn from latency measurements. Because V2
depends on input from V146, one would expect interactions
between the areas to be feedforward-dominated immediately after
stimulus onset. Spatial contextual effects in V1, which are thought

to arise in part from feedback from higher visual areas4, are
evident 50–100 ms after response onset11,47,48, consistent with
our observation of a shift away from a feedforward-dominated
interaction immediately after response onset to a more balanced
(V1–V2) or even feedback-dominated (V1–V4) interaction later
in the response. While broadly consistent, our observations sig-
nificantly extend this prior work. In particular, while measure-
ments of onset may provide information about when feedforward
and feedback influences begin, they provide little information
about their relative influence once both have been engaged. By
using population spiking responses, we are able to see network
wide changes in the direction of signaling, as a function of
stimulus drive.

Our claim that inter-areal interactions switch between being
feedforward- or feedback-dominated was not based solely on
differences in the time lags at which inter-areal correlations were
strongest. It is also supported by our finding that the structure of
the population activity that was most correlated between areas
was distinct in these different periods. Specifically, we found that
the dimensions of population activity that were most related
across areas during feedforward signaling periods were distinct
from those that were most related during feedback periods. The
relevant activity patterns were highly reliable: during spontaneous
activity or the sustained epochs of evoked activity, the dimensions
of activity that were most correlated across areas were consistent
in time. Yet, when networks switched from feedforward to
feedback signaling (or vice-versa), the relevant activity patterns
changed abruptly.

Recent work has inferred the directionality of inter-areal sig-
naling by analyzing the local field potentials or ECoG signals
recorded simultaneously in two or more distinct cortical
areas24,49–51. This work has led to the suggestion that feedforward
signaling is carried by gamma-band (30–80 Hz) activity whereas
feedback signaling is mediated by alpha-(5–15 Hz) or beta-
(14–18 Hz) band activity24,49–51. To determine how our conclu-
sions based on population spiking responses compare to those
provided by the analysis of LFPs, we analyzed the LFPs recorded
simultaneously with our spiking activity. Our spike-based infer-
ences about feedforward signaling were also evident in the
gamma-band components of the LFP; our conclusions about
feedback signaling were less evident in the alpha- and beta-band
of the LFP (see Supplementary Fig. 10 for full comparison).
Regardless of the outcome of this comparison, we emphasize that
population spiking responses, not LFPs, are actively relayed
between areas. In addition, while analysis of LFPs may provide
information about the strength and directionality of inter-areal

V2/V4V2/V4V1

FF
FF

FB
FB

V1 V2/V4

FF
FF

FB
FB

Early evoked Spontaneous/late evoked

Fig. 7 Summary of results. During the early evoked period, interactions between areas tend to be feedforward-dominated. Later during the evoked period
and during the spontaneous period, interactions between areas become feedback-dominated. Furthermore, feedforward- and feedback-dominated
interactions involve different population activity patterns. Larger ellipses represent the set of all activity patterns one might observe in either the V1 or the
V2/V4 populations. The smaller ellipses represent the activity patterns most related across the two areas.
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signaling, it cannot provide information about which neurons are
contributing to that signaling. Thus, a full understanding of inter-
areal signaling will require determining the patterns of neuronal
population spiking responses that are relayed between areas.

In this study, we measured population correlations in activity
across areas at different time lags, and we refer to the identified
interactions as feedforward or feedback, based on the lags at
which population correlations were maximal. The feedforward
interactions that we identified from V1 to V2 are likely to reflect
direct (i.e., monosynaptic) input for the following reasons. First,
our recordings were performed in the output layers of V1 and
input layers of V219. Second, the V1–V2 feedforward peak was
sharp, and centered at a delay of 2–3 ms (cf. Fig. 3b, e), consistent
with the propagation delay between these areas52,53. Third, the
feedforward peaks identified for the V1–V2 interactions were
absent in recording from neuronal populations with poorly
aligned receptive fields (cf. Fig. 3e), consistent with specificity of
feedforward connections between these areas37,38. In contrast,
feedback interactions were less temporally precise than the
feedforward interactions, suggestive of a longer signaling loop
from V2 back to V1 that may involve polysynaptic paths or
shared feedback from more distant areas. These feedback inter-
actions were evident both in recordings from populations with
aligned or misaligned receptive fields (cf. Fig. 3d), consistent with
the broader visuotopic extent of feedback connections39–41. For
V1–V4 interactions, both the feedforward and feedback interac-
tions were relatively broad (cf. Fig. 4b), which might be explained
by the reduced laminar specificity of our recordings in V4
(chronically implanted arrays, compared to movable tetrodes
used in V2), and by a larger number of possible paths by which
activity can propagate between these two areas54,55.

In both sets of experiments (V1–V2 in anesthetized animals and
V1–V4 recordings in awake animals), we observed that interac-
tions were feedforward-dominated shortly after stimulus onset,
but this feedforward component subsided, giving way to feedback-
dominated interactions. However, there was one notable differ-
ence: V1–V2 interactions became feedback-dominated only after
the stimulus offset, whereas V1–V4 became feedback-dominated
during the late evoked period. This difference could reflect a
stronger influence of feedback signaling in the awake state, a
difference in the areas involved (V2 vs. V4), or the layers in which
the neuronal populations were recorded. That we saw a feedback-
dominated interaction at all in the anesthetized recordings might
seem surprising, since activity in higher cortical areas, and
therefore top-down inputs, might be expected to be diminished by
anesthesia. Although it is unclear whether the feedback-dominated
interaction we observed is the same as that in an awake animal, we
note that V2 is a major source of feedback to V154 and it remains
highly responsive under sufentanil anesthesia12,18,19.

Determining the population structure of inter-areal interac-
tions requires great care. In particular, it is important to ensure
that apparent changes in inter-areal interactions do not arise
solely from changes in the structure of activity within each area
(see ref. 56). For instance, a change in activity structure within one
area might cause the canonical dimensions identified to change,
even if the manner in which activity in the two areas is related is
unchanged (see Supplementary Note for an extended discussion).
To avoid such confounds, we defined interaction structure using
across-area covariance, and measured changes in this structure so
as to only reflect changes in the activity subspaces in each area
spanned by the across-area covariance. In addition, we confirmed
that our approach did not detect interaction changes when the
across-area covariance was held fixed (Supplementary Fig. 6).

In previous work, we reported that V1 interactions with V2 occur
through a communication subspace, which defines which popula-
tion activity patterns are related across areas29. The communication

subspace was identified using reduced rank regression (RRR), a
dimensionality reduction technique related to CCA but different in
its technical details (for a review, see ref. 56). Here we chose to use
CCA because it treats the population activity of each area sym-
metrically. This allows us to study feedforward and feedback
influences using the same analysis by varying the relative time lag
between areas, which we did not do in our previous study29. In
contrast, RRR treats each population differently—one area is labeled
the “source” (the independent variable in linear regression) and the
other area is labeled the “target” (the dependent variable). Although
RRR and CCA need not identify the same dimensions, we found
that a communication subspace was also evident when employing
CCA. Namely, a smaller number of canonical dimensions was
required to capture across area correlations compared to within-
area correlations (Supplementary Fig. 11).

How do our observations of feedforward and feedback inter-
actions inform our understanding of how these forms of signaling
contribute to cortical function? While the computational role of
feedforward signaling has been extensively investigated, the role
of feedback is more enigmatic. Feedback signals have been pro-
posed to improve or correct feedforward signals, e.g., by pro-
viding information about an animal’s beliefs or decisions43,57, by
providing a prediction of the sensory input (in predictive
coding)58–60, or by signaling deviations from some higher-order
“teaching” signal (in biologically plausible backpropagation)61–63.
We find that inter-areal interactions just after stimulus onset are
feedforward. This might be explained by the abrupt transition
from one visual environment to another when a stimulus sud-
denly appears. Assuming the trial structure is not learned by the
visual cortex, stimulus onset is unpredicted or unexpected;
according to predictive coding principles, such input should give
rise to potent feedforward signaling. As the stimulus persists,
inter-areal interactions become feedback-dominated. This tran-
sition might indicate that higher cortex is providing signals that
attempt to ‘explain away’ the constant, persistent visual input,
and thereby reduce responsivity in lower cortex. Interactions are
also feedback-dominated during spontaneous activity. This find-
ing is consistent with proposals that sensory representations
combine prior information from higher cortex with sensory drive
from the periphery43. In the absence of overt visual input (i.e.,
during spontaneous activity), one would expect responses to
reflect more strongly the prior, which would be evident as a top-
down dominant interaction.

Our finding that feedforward and feedback interactions involve
different patterns of population activity may offer a solution to a
central enigma in proposals of how feedback contributes to
sensory processing: feedback that is too weak may fail to properly
modify representations of the sensory stimulus, but feedback that
is too strong may contaminate the representation and lead to
hallucinations. One solution for providing robust feedback but
allowing some flexibility in how it interacts with the bottom-up
sensory representation could be to have these occupy different
dimensions of V1 population activity, as we find. The presence of
the feedback signal in a target area can then be decoupled from
the strength of its influence. This would suggest that the balance
between feedforward and feedback signaling in sensory cortex
might be achieved using the same principles used by motor cortex
to generate preparatory signals without causing muscle
contractions42, by prefrontal networks that host competing sen-
sory inputs but can flexibly switch which one drives the local
activity64, or by visual cortical areas to selectively communicate29.

Methods
Recordings and visual stimulation
Anesthetized V1–V2. Animal procedures and recording details have been described
in previous work19,36. Briefly, animals (macaca fascicularis, male, 2–3 years old)
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were anesthetized with ketamine (10 mg/kg) and maintained on isoflurane (1–2%)
during surgery. Recordings were performed under sufentanil (typically 6–18 mcg/
kg/h) anesthesia. Vecuronium bromide (150 mcg/kg/h) was used to prevent eye
movements. The duration of each experiment (which comprised multiple
recording sessions) varied from 5 to 7 days. All procedures were approved by the
IACUC of the Albert Einstein College of Medicine.

The data analyzed here are those reported in ref. 29, and a subset of recording
sessions reported in ref. 19. Activity in V1 was recorded using a 96 channel Utah
array (400 micron inter-electrode spacing, 1 mm length, inserted to a nominal
depth of 600 microns; Blackrock, UT). We recorded V2 activity using a set of
electrodes/tetrodes (interelectrode spacing 300 microns) whose depth could be
controlled independently (Thomas Recording, Germany). These electrodes were
lowered through V1, the underlying white matter, and then into V2. Within V2, we
targeted neurons in the input layers. We verified the recordings were performed in
the input layers using measurements of the depth in V2 cortex, histological
confirmation (in a subset of recordings), and correlation measurements. For
complete details see ref. 19. Voltage snippets that exceeded a user-defined threshold
were digitized and sorted offline. The sampled neurons had spatial receptive fields
within 2–4 deg of the fovea, in the lower visual field.

We measured responses evoked by drifting sinusoidal gratings (1 cyc/deg ; drift
rate of 3–6.25 Hz; 2.6–4.9 deg in diameter; full contrast, defined as Michelson
contrast, (Lmax− Lmin)/(Lmax+ Lmin), where Lmin is 0 cd/m2 and Lmax is 80 cd/m2)
at 8 different orientations (22.5 deg steps), on a calibrated CRT monitor placed
110 cm from the animal (1024 × 768 pixel resolution at a 100 Hz refresh rate;
EXPO). Each stimulus was presented 400 times for 1.28 s. Each presentation was
followed by an interval of 1.5 s during which a gray screen was presented.

We recorded neuronal activity in three animals. In two of the animals, we
recorded in two different but nearby locations in V2, providing distinct middle-
layer populations, yielding a total of five recording sessions.

Awake V1–V4. Animal procedures and methods have been reported previously in
previous work65. In brief, animals (two male, adult cynomolgus macaques) were
trained to maintain fixation on a small spot (0.2 × 0.2 deg, 80 cd/m2) on a gray
background (40 cd/m2) within a 1.08–1.4 degree diameter fixation window. Eye-
position was monitored using a video tracking system (Eyelink II, SR research, ON,
Canada) with a sampling rate of 500 Hz. Stimuli were presented on a calibrated
monitor 64 cm away from the animal (1024 × 768 resolution for monkey 1,
1400 × 1050 for monkey 2; 100 Hz refresh rate). After training, Utah arrays (0.4mm
spacing; 1mm electrode length, Blackrock, UT) were implanted in V1 and V4. For
monkey 1 we implanted one 96 channel and one 48 channel array in V1 and one 48
channel array in V4. Monkey 2 had two 96 channel arrays in V1 and two 48 channel
arrays in V4 (see Fig. 1c). We targeted the arrays to have matching retinotopic
locations in V1 and V4 by relying on anatomical markers and previous mapping
studies. Receptive fields were in the lower right visual hemifield and largely over-
lapping for V1 and V4 populations in both monkeys (Supplementary Fig. 1). All
procedures were approved by the IACUC of the Albert Einstein College of Medicine.

Extracellular voltage signals were amplified and band-pass filtered between 250
and 7.5 kHz using commercial acquisition software (Blackrock Microsystems, UT
and Grapevine, Ripple, UT). Voltage snippets that exceeded a user-defined
threshold were digitized and sorted offline.

Visual stimuli and task contingencies were presented using custom openGL
software (EXPO). We used full-contrast sinusoidal drifting gratings (spatial
frequency 2 cyc/deg; drift rate: 5 Hz). Stimulus position and diameter were chosen
to maximize visual responses. Stimulus diameter was set to 2.5 deg for monkey 1
and 7 deg for monkey 2. Each recording session involved four grating orientations,
chosen such that there were two pairs of orientations 5 deg apart, and 90 deg
between the two pairs (e.g., 0, 5, 90, 95 deg).

Trials began with the animal fixating on a small spot in the center of the screen.
After a delay of 100 ms we presented a random series of gratings (three for monkey
1, four for monkey 2). Each stimulus presentation lasted for 200 ms and was
followed by an inter-stimulus interval of 150 ms (gray screen). Animals were
positively reinforced with a liquid reward if fixation was maintained throughout the
trial. Animals performed on average 1080 ± 255 trials, resulting in
3721 ± 1081 stimulus presentations per session. We recorded neural activity for
three sessions in monkey 1 and two sessions in monkey 2.

Data preprocessing
Anesthetized V1–V2. In order to capture how moment-to-moment fluctuations in
spiking activity were related across the two areas, we subtracted the corresponding
peri-stimulus time histogram (PSTH) from each spike train, which was computed
separately for each neuron and grating orientation (after z-scoring the activity of
each neuron separately for each of the 8 grating orientations). The PSTH was
computed across the entire trial period, including the stimulus presentation period
and the subsequent inter-trial period. The resulting residual activity was then
pooled across all 8 grating orientations for each recording session. These residual
fluctuations can be interpreted as perturbations of the “signal”, or mean activity
across trials. By focusing on perturbations of the signal, we can then use linear
methods such as CCA (see below) as a local linear approximation to what is likely a
globally non-linear relationship of activity across areas29,66. For all analyses, we
excluded neurons that fired less than 0.5 spikes/s on average across all trials.

Awake V1–V4. To minimize the influence of adaptation effects, we analyzed activity
across only the second and third grating presentations, for which V1–V4 responses
were qualitatively similar (and smaller than the response to the first stimulus pre-
sentation). Activity for each neuron was z-scored separately for the second and third
grating presentations, and for each of the 4 grating orientations. As with the V1–V2
recordings, we subtracted the corresponding PSTH from each trial, which was
computed separately for each neuron and stimulus condition (i.e., combination of
grating orientations). The PSTH was computed across the entire trial period,
including the stimulus presentation period and the subsequent inter-trial period. The
resulting residual activity was then pooled across all stimulus conditions for each
recording session. We observed cross-talk between a small proportion of electrode
pairs (average across recording sessions: 1.3% ± 0.8% SEM), evident as a surfeit
(> 0.025 coincidences/spike) of precise (0.1ms) synchronous events. We addressed
this by removing one of the electrodes in each affected pair. For all analyses, we
excluded neurons that fired less than 0.5 spikes/s on average, across all trials.

Population correlation functions. When computing the population correlation
functions for the V1–V2 recordings (Fig. 3), we sought to focus on fast time-scale
interaction effects. For this reason, we counted spikes in 1 ms non-overlapping
bins. For the V1–V4 recordings (Fig. 4), due to the smaller number of trials per
recording session and the longer conduction delay between V1 and V47 we counted
spikes in non-overlapping 25 ms bins.

Interaction structure analysis. For the interaction structure analysis (Fig. 6), for
which we were interested in estimating the activity patterns most correlated across
areas in the V1–V2 recordings, we counted spikes in 100 ms non-overlapping bins.
The activity was binned starting 50 ms after stimulus onset and extending until the
end of the stimulus presentation period (1.2 s of evoked activity) and then starting
50 ms after stimulus offset and extending for 1.4 s. We used larger time bins than
for computing population correlation functions to increase the reliability of the
estimated population activity patterns, in exchange for less temporal resolution. We
also repeated this analysis while varying the spike count bin size36,67,68 and found
similar results (Supplementary Fig. 7). This implies that both slow and fast time-
scale activity are involved in the inter-areal correlations during both the evoked
and spontaneous periods. Likewise, for the V1–V4 recordings we counted spikes in
100 ms non-overlapping bins, starting 50 ms after stimulus onset and extending
until the end of the trial (covering 150 ms during stimulus presentation and 150 ms
after stimulus offset, for a total of 300 ms). Note that the second bin contains 50 ms
of stimulus presentation and 50 ms where no stimulus was presented. Because we
found that neuronal responses occurred approximately 50 ms after stimulus
changes, we consider this bin to be entirely within the evoked period.

Population correlation analysis. In order to capture population correlations
between cortical areas, we used canonical correlation analysis (CCA)69. CCA finds
pairs of dimensions, one in each area, such that the correlation between the pro-
jected activity onto these dimensions is maximally correlated:

argmax
a;b

corrðXa;YbÞ

where X is a n × px matrix containing the residual activity in the V1 population, Y
is a n × py matrix containing the residual activity in the V2 (or V4) population, n
represents the number of data points, and px and py are the number of recorded
neurons in each of the two areas, respectively. The vectors a and b have dimensions
px × 1 and py × 1, respectively defining dimensions in the population activity space
of each area. CCA can find additional pairs of dimensions, by requiring that
subsequent pairs are uncorrelated with those previously identified.

In order to measure population correlations at different epochs in the trial, and
at different time delays between the areas, we defined two windows of activity, one
in each area. Window length was 80 ms for the V1–V2 recordings (advanced in
40 ms steps), and 75 ms for the V1–V4 recordings (advanced in 5 ms steps). The
activity was then binned inside each window using 1 ms bins for the V1–V2
recordings (80 data points per window), and 25 ms for the V1–V4 recordings (3
data points per window). The reported results were robust to the specific binning
and window length chosen, over a reasonable range.

CCA was then applied to the residual activity taken from all trials within these
windows. Given two windows of activity starting at times t1 and t2 (relative to the start
of the trial), Xt1

and Yt2
, the population correlation between the two areas is given by:

Pðt1; t2Þ ¼ max
a;b

corrðXt1
a;Yt2

bÞ

Defining the time within the trial as t= t1 and the delay between the activity in the
two areas as d= t2− t1, each entry in the population correlation function is given by:

Cðt; dÞ ¼ Pðt; t þ dÞ ¼ max
a;b

corrðXta;YtþdbÞ

Given the brief spike count bins (1 ms for V1–V2 and 25 ms for V1–V4), CCA
tended to identify only one pair of dimensions with highly significant population
correlations: correlations associated with the second canonical pair were on average
60% lower than for the first pair and close to chance level. As such, we constructed
the population correlation functions using the first pair of canonical dimensions.
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We will consider longer spike count bins for the interaction structure analysis
below, where we will identify more than one canonical pair.

To control for the possibility that the trends observed in the population
correlation functions reflected changes in firing rates over time, we constructed a
shuffle distribution by eliminating the trial-by-trial correspondence across the two
areas. For each area and each time window, we shuffled the activity across trials. All
within-area statistics are thus retained, including any temporal structure resulting
from including multiple time points for each time window. We repeated this
process N= 100 times and used the resulting population correlation functions to
form null distributions, whose mean is plotted in Figs. 3a, b, d and 4a, b, d. We
then use these null distributions to derive two-sided empirical p-values for any
statistics computed from the population correlation functions (“shuffle tests”),
which we report in the main text (regarding Figs. 3d and 4d). To test for a
significant difference in peak heights in Fig. 3e we use a permutation test, where we
randomly permute the observations between the two groups ("Aligned RFs" and
“Misaligned RFs"). We then count what fraction of these permutations lead to an
absolute average difference in peak height greater than or equal to that observed in
the original groupings. With 10 recording sessions, we were able to perform an
exact test, whereby all permutations are considered.

To isolate fast-timescale features in the early evoked activity (Fig. 3e), we
computed jitter-corrected population correlation functions. To do so, we jittered
the spike times (25 ms jitter window) following the procedure in ref. 36. We then
computed population correlation functions using 1 ms binning and a window
length of 480 ms, starting 80 ms after stimulus onset, for both the residual activity
and the jittered activity. Finally, we subtracted the jittered population correlation
function from the population correlation function based on the residual activity,
obtaining the jitter-corrected population correlation function. Corrected peak
height and delay were computed by finding the maximum of the jitter-corrected
population correlation function, as well as the corresponding delay. Supplementary
Fig. 3 illustrates this process.

Comparing interaction structure across time. To determine whether the
population activity patterns involved in inter-areal interactions changed during the
trial, we leveraged the probabilistic extension of CCA (pCCA)70. pCCA is closely
related to CCA in that both methods identify the same canonical dimensions. The
advantage of pCCA is that it defines an explicit generative model, which we can
leverage for model comparison and selection (see Supplementary Note).

Note that the population correlation functions described above could have been
computed using pCCA instead of CCA, which would have yielded the same results.
We focused there on the first canonical dimension, and did not need the model
comparison and selection procedures described below. Thus, solely for clarity of
presentation, we opted to introduce the population correlation functions
using CCA.

pCCA is defined by the following generative model:

z � N ð0; IqÞ
xjz � N ðWxz;ΨxÞ
yjz � N ðWyz;ΨyÞ

where z is a q × 1 latent variable, x and y correspond to the neuronal activity
recorded in each of two cortical areas, with dimensionalities px × 1 and py × 1,
respectively, px and py are the number of neurons recorded in each area, and
q≤ minðpx ; pyÞ. The identity matrix Iq has dimensions q × q. The mapping matrices
Wx and Wy have dimensions px × q and py × q, respectively. The covariance
matrices Ψx and Ψy have dimensions px × px and py × py, respectively. We assume,
without loss of generality, that x and y are mean-centered. To fit pCCA, we first
applied CCA and used the canonical dimensions and associated canonical
correlations to compute the parameters of the pCCA model (see
Supplementary Note).

Under the pCCA model, the inter-areal covariance is fully determined by the
matrices Wx andWy (see Supplementary Note for an extended discussion of pCCA
and its relation to classical CCA). In particular, the column spaces of these matrices
define the activity patterns, in each area, along which activity covaries across the
two populations.

We used pCCA to compute the Wx and Wy matrices at different epochs and
compared these matrices, across epochs, to assess whether similar population
activity patterns were involved in the inter-areal interaction (Fig. 6). We computed
the population activity patterns related across areas (i.e., Wx and Wy) at one epoch
in the trial, and asked how much inter-areal correlation these population activity
patterns explained at a different epoch.

Specifically, we first fit a pCCA model with dimensionality q (see procedure
below for selecting q) separately for each epoch t, yielding parameters
θt ¼ fWt

x ;W
t
y ;Ψ

t
x ;Ψ

t
yg. We then asked: given the observed (sample) within-area

covariance matrices at time t, Σt
xx and Σt

yy , how correlated would the activity across
the two areas be if instead of the estimated matrices Wt

x and Wt
y , the interaction

was instead described by the matricesWt0
x andWt0

y , obtained from a different epoch
t0? In other words, how much does the across area correlation change if we
compute across-area correlations using population activity patterns defined by Wt0

x

and Wt0
y , instead of Wt

x and Wt
y? To quantify the change in correlation, we

computed normalized correlations, defined as the total correlation captured at
epoch t by the dimensions fit to epoch t0 over the total correlation captured by the
dimensions fit to epoch t (both computed in a cross-validated manner; see
Methods). Misalignment between the column spaces will lead to decreased
correlations, and low normalized correlation. On the other hand, if the mapping
matrices Wt

x (Wt
y) and Wt0

x (resp. Wt0
y ) share the same column space (i.e., if the

across-area correlations at epochs t and t0 involve the same population activity
patterns), the resulting correlations should remain the same, and normalized
correlation will close to 1. Supplementary Table 1 describes this procedure in detail
(Supplementary Note).

In order to combine results across recording sessions, in Fig. 6 we used a single
value for the latent dimensionality q for all sessions. To select the value of the latent
dimensionality q, we first determined the value qt that maximized the cross-
validated data likelihood for each epoch t, in each recording session. For the
anesthetized V1–V2 recordings, the average dimensionality across all recording
sessions was 3.30 ± 0.09 SEM across epochs in the evoked period and 2.09 ± 0.14
SEM across epochs in the spontaneous period (averages taken across epochs and
recording sessions). To avoid comparing spurious canonical dimensions, we choose
q to be no greater than both these estimated dimensionalities. Thus, we choose
q= 2 for these recordings. For the awake V1–V4 recordings the average
dimensionality across all recording sessions was 1.8 ± 0.29 SEM across epochs in
the evoked period and 2.40 ± 0.24 SEM across epochs in the spontaneous period
(averages taken across epochs and recording sessions). Thus, we choose q= 1 for
these recordings. For both sets of recordings, results were robust to different
choices of q, over a reasonable range.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
V1–V2 data are available at the CRCNS data sharing website, at https://doi.org/10.6080/
K0B27SHN. V1-V4 data will be made available upon reasonable request. Source data are
provided with this paper.

Code availability
MATLAB code that supports the data analyses is available at https://github.com/joao-
semedo/canonical-correlation-maps.
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