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MATERIALS AND METHODS 

All animal procedures were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee in accordance with the guidelines of the US Department of 

Agriculture, the International Association for the Assessment and Accreditation of Laboratory 

Animal Care, and the National Institutes of Health. 

Electrophysiology and behavioral monitoring 

We recorded neural activity from the arm region of the primary motor cortex (M1) in two 

male rhesus monkeys (Macaca mulatta, age, monkey L: 9 years; monkey N: 7 years) using 96-

channel microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT, USA).  We 

recorded neural units as threshold crossings, where a threshold crossing was detected when the 

depolarizing phase of the voltage signal crossed a threshold of -3 times the root-mean-square 

voltage.  We estimated the root-mean-square voltage of the signal on each electrode while the 

monkeys sat calmly in a darkened room.   For multi-day experiments, we set the threshold on 

day one and did not adjust it again.  Across multi-day experiments, we recorded 89.9±1.9 neural 

units (all quantities are listed as mean±SD unless otherwise noted) for monkey L, and 93.2±1.8 

units for monkey N; within a given OMP experiment the number of recorded neural units was 

constant throughout.  The number of threshold crossings were counted in non-overlapping 45-ms 

bins.  The data were recorded between 18 and 41 months after array implantation for monkey L 

and from 2.5 to 8 months after array implantation for monkey N.   

Both arms were loosely restrained throughout all experiments.  While the monkeys could 

move their forearms slightly and there was no restriction on wrist and hand movement, the arm 

movements during the experiments were minimal.   

Behavioral task 

Throughout each experiment animals performed an eight-target center-out task under 

brain-computer interface control.  Each trial began with the cursor appearing at the center of the 

workspace. A peripheral target 125 mm away appeared simultaneously.  Target locations were 

uniformly spaced 45 degrees apart around a circle.  Targets were presented in a random (monkey 

N) or a pseudo-random (monkey L) order.  Pseudo-random target presentation consisted of 8-

trial blocks, in which target location was randomly chosen without replacement, and the next 

block of trials began only after all eight targets were successfully acquired.  The cursor was 

frozen at the center of the workspace for the first 300 ms of the trial.  After this “freeze period” 

the cursor began moving under neural control. Details about the neural control are given in the 

Intuitive BCI mappings and Perturbed BCI mappings sections below.  Target acquisition 

occurred when the cursor entered the target window (circle, radius = 14 mm, monkey L; 35 mm, 

monkey N).  If the target was successfully acquired within 7.5 s, the trial was deemed a success, 

the monkey was given a water reward, and the next trial began 200 ms later.  If the target was not 

acquired within the 7.5 s allotted time, there was a 1.7 s timeout before the next trial.   
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Identifying the intrinsic manifold 

The Intrinsic Manifold is defined as the low-dimensional space that describes the neural 

activity patterns generated by the animal prior to learning. To estimate it, we used the data 

collected on day 1, while we calibrated the intuitive BCI mapping (as described below Intuitive 

BCI mappings).  We used factor analysis to describe each high-dimensional spike count vector in 

terms of a low-dimensional set of factors.  Under factor analysis, factors are described by a 

standard normal distribution: 

𝑧𝑡~𝑁(0, 𝐼) (1) 

where I is the identity matrix.  The neural activity is related to those factors by a normal 

distribution: 

𝑢𝑡|𝑧𝑡~𝑁(𝛬𝑧𝑡 , 𝜓) (2) 

where 𝑢𝑡 ∈ ℝ𝑞×1is the z-scored spike count vector across q simultaneously-recorded neural units 

at timestep t.  Each neural unit was z-scored separately.  𝑧𝑡 ∈ ℝ𝑝×1 is the set of p factors at 

timestep t.  𝛬 ∈ ℝ𝑞𝑥𝑝 and 𝜓 ∈ 𝛴+
𝑞
 (a diagonal 𝑞 × 𝑞 covariance matrix) were estimated using the 

expectation-maximization algorithm (37).  The intrinsic manifold is defined as the column space 

of Λ, where each factor corresponds to a column of Λ. By z-scoring we ensure that animals are 

not required to produce firing rates that are outside of the observed physiological range of each 

neural unit in order to learn how to control the cursor while using the perturbed BCI mappings.  

We set the dimensionality of the intrinsic manifold to be 10 for all experiments. This was 

the dimensionality used in Sadtler et al. (8), and is consistent with the dimensionality of the 

neural activity in the current study.  Here, we computed the dimensionality as the number of 

dimensions needed to explain 95% of the shared variance (38).  This method differs slightly from 

that used in Sadtler et al. (8).  We used the method described in (38) because it returns a more 

reliable estimate of dimensionality, even though it tends to underestimate the “true” 

dimensionality.  The underestimation occurs because it seeks only to explain 95% of the shared 

variance.  Using this method, the multi-day experiments had a mean dimensionality of 8.4 

(range: 5-11) across both monkeys (computed using 3500-5500 time points for each session). 

(For each monkey individually, dimensionalities were monkey N: mean = 9.6, range: 8 – 11; 

monkey L: mean = 7.4, range: 5 - 9).  This distribution is consistent with the use of 10 

dimensions in this study.  

Given the neural activity 𝑢𝑡, we extract the factors    

𝑧̂𝑡 = 𝐸[𝑧𝑡|𝑢𝑡] = 𝛬𝑇(𝛬𝛬𝑇 + 𝜓)−1𝑢𝑡 = 𝛽𝑢𝑡 (3) 

 where 𝛽 = 𝛬𝑇(𝛬𝛬𝑇 + 𝜓)−1.  A separate factor analysis model was fit for each experiment based 

on the neural activity recorded during the calibration trials (as described below Intuitive BCI 

mappings).   
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Intuitive BCI mappings 

BCI mappings translated the neural activity into 2D cursor velocities 𝑣𝑡 using a Kalman 

filter (8).  A Kalman filter consists of a state model, which describes how cursor velocity 

changes over time, and an observation model, which describes how observed neural activity 

relates to cursor velocity.  The state model is: 

𝑣𝑡|𝑣𝑡−1~𝑁(𝐴𝑣𝑡−1, 𝑄)  (4) 

where 𝐴 = 𝐼 and 𝑄 = 2(𝑚2 𝑠2⁄ ) × 𝐼.  𝑄 controls the smoothness of cursor velocities over time, 

and was chosen based on the setting that yielded the best closed-loop performance.  In a standard 

Kalman filter, the high-dimensional neural activity is directly translated into cursor velocities.  

Here, we first estimated the lower-dimensional factors using Eqn. 3, and then translated the 

factors to cursor velocities.  The observation model is: 

𝑧̂𝑡|𝑣𝑡~𝑁(𝐶𝑣𝑡 + 𝑑, 𝑅)  (5) 

where 𝐶 ∈ ℝ10×2, 𝑑 ∈ ℝ10, and 𝑅 ∈ 𝛴+
10.  These parameters were fit using maximum likelihood 

to relate the factors and intended cursor velocities (defined below) from the calibration trials at 

the start of each experiment.  Taken together, the intuitive BCI mapping can be written as 

𝑣𝑡 = 𝑀1𝑣𝑡−1 + 𝑀2𝑢𝑡 + 𝑚0 (6) 

𝑀1 = 𝐴 − 𝐾𝐶𝐴  

𝑀2 = 𝐾𝛽 

𝑚0 =  −𝐾𝑑 

where 𝑣𝑡 is the velocity used to move the cursor on the screen at time t and K is the converged 

Kalman gain.  𝑀1 temporally smooths the velocities, 𝑀2 describes the high-dimensional neural 

activity in terms of the low-dimensional factors and relates the factors to the cursor velocity, and 

𝑚0 is a constant offset.  

Each experiment began with 80 trials to calibrate an intuitive BCI mapping.  Calibration 

involved a mixture of passive observation of center-out cursor movements and closed-loop BCI 

cursor control, during which we gradually increased the animal’s level of control over the cursor, 

until all assistance was removed, and he had full control.  Calibration began with 16 trials (2 to 

each target) of the monkey observing automatic center-out cursor movements straight to the 

target at a constant speed (0.15 m/s).  Here, intended cursor velocity at each timestep was taken 

to be the observed cursor velocity (0.15 m/s) in the center-to-target direction.  For the next 8 

trials, the animal controlled the cursor using a mapping calibrated using the data from the 16 

observation trials, but the cursor was restricted to move only along the center-to-target direction 

(velocity components perpendicular to the center-to-target direction were set to 0).  The next 8 

trials used a mapping calibrated from the previous 8 trials, and perpendicular velocity 
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components were scaled by a factor of 0.2.  The next 8 trials used a mapping calibrated from the 

previous 16 trials, and perpendicular velocity components were scaled by a factor of 0.4.  We 

repeated this procedure for a total of 40 to 80 trials until the animal was given complete control 

of the cursor (perpendicular scale factor = 1).  All calibrations performed within this procedure 

defined intended cursor velocities to be straight to the target, with speeds taken from the cursor 

movements that were displayed to the animal.  Animals demonstrated proficient cursor control 

using the intuitive BCI mapping from the very first intuitive trial of each experiment, as 

evidenced by success rates (100%), fast acquisition times (L: 678.7 ± 42.9 ms; N: 522.3 ± 23.8 

ms), and relatively straight cursor trajectories (e.g., Fig. 1C).  The data from these 80 calibration 

trials were used to determine the intrinsic manifold. 

Perturbed BCI mappings 

Perturbed BCI mappings alter the relationship between recorded neural activity and 

cursor velocities to induce learning.  The OMP mappings are of the same general form as the 

intuitive mapping (Eqn. 6). OMP mappings modify an intuitive BCI mapping by permuting the 

elements of 𝑢𝑡 (that is, the ~90 neural channels) before passing it into factor analysis.  This 

changes the relationship between the neural activity and factors, but preserves the relationship 

between the factors and cursor velocity.  The impact of this manipulation is that it encourages the 

monkey to change the way in which neurons co-vary in order to restore proficient cursor control.  

(In contrast, to generate a WMP mapping, the ten factors were permuted before passing them to 

the Kalman filter.  This manipulation changes the relationship between the factors and cursor 

velocity, but preserves the relationship between the neural activity and the factors (8).)  An OMP 

mapping can be described in terms of the high-dimensional neural activity by: 

𝑣𝑡 = 𝑀1𝑣𝑡−1 + 𝑀2
𝑂𝑀𝑃𝑢𝑡 + 𝑚0,   (7) 

where 𝑀2
𝑂𝑀𝑃 = 𝑀2𝜂𝑂𝑀  and 𝜂𝑂𝑀  is 𝑞 × 𝑞 permutation matrix defining the outside-manifold 

perturbation (where q indexes the neural channels).   

The OMP mappings we chose were not orthogonal to the manifold, as this would result in 

essentially zero cursor movement, at least initially.  Rather, each mapping was selected to be 

difficult enough to require substantial learning but not so difficult that the animal would give up 

(8).    

Behaviorally, these perturbations had complex effects on cursor movements, which 

cannot be expressed as pure visuomotor rotations or gains.  Before learning, the effects of a 

typical perturbation can be approximately summarized by a combination of per-target velocity 

rotations and speed scalings.  Because the perturbations were implemented in high-dimensional 

space, these rotations and scalings need not be consistent across movement directions and speeds 

(as they would be in the case of a pure visuomotor rotation or gain).  Perturbations often affected 

movement speeds more profoundly along one movement direction than along the perpendicular 

direction (as seen in Fig. 2D-F). 
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Incremental training paradigm 

We developed an incremental training paradigm to facilitate learning.  The incremental 

training paradigm consisted of giving the monkey a series of incremental mappings which were 

successively further from the intrinsic manifold and successively closer to the full OMP 

mapping, to guide the monkey through neural space to the new patterns of neural activity 

requested by the OMP mapping (Fig. S1A).  The incremental mappings were a weighted 

combination of the intuitive mapping and the OMP mapping, such that 

 𝑀2
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 = (1 −

𝑎

5
) ∗ 𝑀2 +  (

𝑎

5
) ∗ 𝑀2

𝑂𝑀𝑃  (8) 

where a = 1, 2, 3, 4 and 4.5.  Incremental step 1 is closer to the intrinsic manifold and should be 

easier to learn to control and incremental step 4 is closer to the OMP mapping and is expected to 

be more difficult to learn to control.  The inclusion of the additional half step (4.5) was made to 

increase the monkeys’ willingness to continue to attempt the task.  The criteria for incrementing 

the mapping are described below. 

 

Task flow 

Each experiment began with a calibration block during which we identified the intrinsic 

manifold and determined the parameters of the intuitive mapping.  The monkeys used the 

intuitive mapping for 206 ± 56 trials (monkey L) or 193 ± 3.68 trials (monkey N).  We then ran 

one of four possible OMP experiment types (Fig. 1B): multi-day, incremental training (monkey 

L: n=9; monkey N: n=6 ); multi-day, no incremental training (monkey L: n=6; monkey N: n=5); 

single day, incremental training (monkey L: n=12; monkey N: n=15); single day, no incremental 

training (monkey L: n=13; monkey N: n=8).  Single day WMP experiments are also included 

(monkey L: n=11; monkey N: n=11). 

We conducted a total of 51 experiments with monkey L.  The 13 single day OMP, no 

incremental training experiments and 11 single day WMP experiments from monkey L have 

been previously reported (8).  We conducted a total of 45 experiments with monkey N.  Single 

day WMP experiments from monkey N have been analyzed in previous studies (9, 15).  Below, 

we detail the task for each experiment type.  The number of each type of experiment is 

summarized in Table S1.  

Multi-day OMP, incremental training 

This section corresponds to the experiments described in Figs. 1-4 and Fig. S1C, D, G 

(lower right).  The procedures for multi-day incremental training experiments differed somewhat 

for the two monkeys.  For monkey N, on day 1 the intuitive mapping block was followed by that 

experiment’s full OMP mapping (434±81 trials).  Day 2 began with 40 trials of the full OMP 

mapping before beginning the incremental training with the incremental step 1 mapping.  (These 
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data were collected to test whether OMP learning simply required a night’s sleep.  We did not 

observe this to be the case.  These data are not included in the analyses.) The mapping was 

incremented when the monkey reached a success rate of 80% or greater over the prior 40 trials 

and target acquisition times appeared to asymptote according to visual inspection by the 

experimenter (E. Oby).  On subsequent days, the monkey began with an incremental mapping 

(usually step 3) and incremental training continued in the same way.  After arriving at the full 

OMP mapping, the experiment continued for another 2 to 3 days (2.8±1.2 days).  At the end of 

the final day, the intuitive mapping from day 1 was re-introduced for a washout block (356±130 

trials).  

For monkey L, day 1 of a multi-day, incremental training experiment proceeded in the 

same manner as a single day, incremental training experiment (as described below) without a 

washout block.  On subsequent days, the monkey began with an incremental mapping (usually 

step 3) and incremental training continued.  That is, the full OMP mapping was not re-presented 

at the start of day 2, as it was for monkey N.  There were not objective criteria for incrementing 

to the next mapping for monkey L; the mapping was incremented when he showed good 

performance as judged by the experimenter.  This procedure was adopted in part because 

monkey L was more likely to give up when the task was difficult, and we felt that a fixed rule 

might actually disrupt learning.  After reaching the full OMP mapping, the experiment continued 

for another 4.5±3.1 days.  At the end of the final day, the intuitive mapping from day 1 was re-

introduced for a washout block (425±283 trials). 

Multi-day OMP, no incremental training 

This section corresponds to Fig. S1E, F, G (upper right). In this type of experiment, on 

day 1 the intuitive mapping block was followed by a full OMP mapping block for 250 to 815 

trials (L: 563±226 trials; N: 440±90 trials).  The first day ended with no washout block. The 

same OMP mapping was presented for 3 to 7 days (L: 4.5±1.5 days; N: 5±0 days).  On 

subsequent days the monkey saw only that experiment’s full OMP mapping, and he had at least 

400 trials (L: 738±257 trials; N: 443±139 trials) of exposure to it each day.  At the end of the 

final day of each multi-day OMP, no incremental training experiment the intuitive mapping from 

day 1 was re-introduced for a washout block (699±205 trials). 

Single-day OMP, incremental training 

This section corresponds to Fig. S1G (lower left).  In this type of experiment, the intuitive 

mapping block was followed by a 40 to 160 trial block with that day’s full OMP mapping.  Then 

incremental training began.  The monkey saw each incremental mapping for the same number of 

trials regardless of performance: Incremental step 1 for 40 trials, incremental step 2 for 40 trials, 

incremental step 3 for 80 trials, incremental step 4 for 80 trials, incremental step 4.5 for 120 or 

160 trials, and then the full OMP mapping for at least 160 trials.  These block sizes were chosen 

to balance the number of trials it took for the monkey to improve performance and to minimize 

the number of rewards the monkey received when the task required less learning (i.e., when the 
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incremental mapping was closer to the intuitive mapping).  Following the full OMP mapping 

block, the intuitive mapping was re-introduced for a washout block (342±99 trials). 

Single-day OMP, no incremental training 

This section corresponds to Fig. 1D (blue) and Fig. S1G (upper left). In this type of 

experiment, the intuitive mapping block was followed by a block with that day’s full OMP 

mapping for 116 to 600 trials (L: 365±85 trials; N: 575±70 trials).  Following the OMP mapping 

block, the intuitive mapping was re-introduced for a washout block (206±83 trials).   

Single-day WMP 

This section corresponds to Fig. 1D (red).  In this type of experiment, the intuitive 

mapping block was followed by a WMP mapping block for 189 to 800 trials (L: 331±98 trials; 

N: 616±58 trials).  Following the WMP mapping block, the intuitive mapping was re-introduced 

for a washout block (L: 167±60 trials; N: 334±108 trials).   

Analysis 

Amount of learning 

For each experiment, we computed the amount of learning (AoL) during OMP control, 

which provides a measure of the extent to which learning recovered intuitive levels of 

performance subsequent to the introduction of the BCI perturbation.  The metric is based on 

reward rate (i.e. the number of successful trials per unit time when the cursor is under the 

monkey’s control) and accounts for the reward rate with the intuitive mapping, as well as the 

potential learning possible given the difficulty of the perturbed mapping.    Reward rate (RR) was 

computed for a sliding window of 40 consecutive trials. Then, we quantified the amount of 

learning (Fig. 1) as 

𝐴𝑜𝐿𝑇 =
𝑅𝑅𝑇

𝑂𝑀𝑃−𝑅𝑅1
𝑂𝑀𝑃

𝑅𝑅𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑣𝑒−𝑅𝑅1
𝑂𝑀𝑃  (9) 

where 𝑅𝑅𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑣𝑒  is the reward rate calculated for the 40 trials with the intuitive mapping just 

before the perturbation is introduced, and 𝑅𝑅𝑇
𝑂𝑀𝑃  is the reward rate with the OMP mapping 

calculated for a sliding window of 40 trials beginning at trial T after the OMP is introduced.  A 

value of 1 reflects performance that was fully restored to intuitive levels of control, and a value 

of 0 reflects no performance improvement.  This is a different learning metric than was used in 

Sadtler et al. (8), and was chosen because it better captures the learning across all targets when 

the monkeys had a particularly low success rate to a subset of the targets, which was common for 

the OMP mappings studied here.      

For single day experiments, 𝐴𝑜𝐿 = 𝑚𝑎𝑥𝑇 (𝐴𝑜𝐿𝑇).  For multi-day experiments, we found 

𝐴𝑜𝐿 for each T on each day.  The 𝐴𝑜𝐿 values reported in the histograms in Fig. 1D are the 

maximum 𝐴𝑜𝐿 across all days.  Thus, it reflects the best 40 consecutive trials on the best day, to 
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showcase the learning.  The results were qualitatively similar when we considered the best 40 

trials from the first day the monkey saw the full OMP mapping after incremental training or if 

we considered the best 40 trials from the last day the monkey saw that OMP mapping.  Because 

our effects were robust to these choices, this shows that the learning is not trivially dependent on 

the particular trials we chose.   

Neural analyses 

Because our goal here was to characterize changes in neural activity that facilitate 

learning, we focused on the trials that showed the greatest improvement in behavioral 

performance.  For our neural analyses, we analyzed the successful trials from the 40 consecutive 

perturbation trials that showed the best 𝐴𝑜𝐿 on each day.  Failed trials interspersed within that 

block of 40 trials were not analyzed because it is difficult to determine whether the animal was 

actively engaged in the task during failed trials. 

Defining new patterns of neural activity with a speed limit 

To look for the emergence of new neural activity patterns, we defined a “speed limit”. To 

define the speed limit (Fig. 2), we first projected each intuitive neural activity pattern through the 

OMP mapping    

𝑣𝑡 = 𝑀2
𝑂𝑀𝑃𝑢𝑡 + 𝑚0 (10) 

Here we are interested in the impact of the neural activity patterns on the cursor kinematics and 

so do not include the previous timestep’s velocity (i.e., 𝑀1𝑣𝑡−1 in Eqn. 6).  We computed the 

95% convex hull of the resulting velocities.  This convex hull is a 2D representation of the 

intuitive neural repertoire (9) in the behaviorally-relevant space. The convex hull is the smallest 

polygon enclosing all the 2D points that also encloses all possible line segments between any 

two points within the polygon. To be robust to outliers, the outermost points were successively 

dropped until 5% of all the points had been excluded.  Points nearest to the boundary of the hull 

were dropped in order from largest to smallest Mahalanobis distance from the centroid of all 

points in the 2D projection.  Mahalanobis distances were computed relative to the covariance 

across all points in 2D.   

We refer to the convex hull as a speed limit because it represents the maximum speed in 

each direction that neural activity patterns within the intuitive neural repertoire would have 

produced under the OMP mapping.  By definition, cursor speeds exceeding the speed limit could 

not have been achieved by the previously-observed neural activity patterns.  Therefore, we 

classified any neural activity patterns leading to cursor speeds exceeding the speed limit as new.  

This is a conservative definition of new patterns, in the sense that it does not capture patterns of 

neural activity outside the ~90D neural repertoire that map to speeds within the speed limit.  The 

percentage of new patterns (e.g., Fig. 2G) is the ratio of new neural activity patterns to total 
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neural activity patterns generated by the monkey during that 40-trial block (successful trials 

only).   

In all figures except Fig. S7, we have used the 95% convex hull to define the speed limit 

and to identify the emergence of new neural activity patterns.  To ensure that our results did not 

depend on the percentage of points contained within the convex hull, we repeated our analyses 

for 98% and 100% convex hulls (Fig. S7).  The results were consistent across these definitions of 

the speed limit.   

Cursor progress 

To quantify the behavioral consequence of each neural activity pattern, we measured the 

component of cursor velocity in the direction of the target at each timestep.  We termed this 

metric progress 

𝑃𝑡 =  [
cos 𝜃𝑡

sin 𝜃𝑡
]∗ (𝑀2

𝑂𝑀𝑃𝑢𝑡 + 𝑚0) (11) 

which is the projection of the single-timestep cursor velocity onto a unit vector in the cursor-

target direction 𝜃𝑡.  This metric is depicted graphically in Fig. 3A.  While our AoL metric (i.e., 

reward rate) provides an overall metric of learning, the change in progress provides a metric of 

the impact of each neural activity pattern on performance.  Changes in progress provide a metric 

of per-target learning.  

Outside-manifold contribution to progress 

In Figures 4 and S6 we sought to assess whether the new patterns of neural activity that 

we observed were still subject to the constraints of the intrinsic manifold.  Each population 

activity pattern can be decomposed into an inside- and outside-manifold component.  

Correspondingly, the observed progress at each timestep is the sum of the inside-manifold 

contribution to progress and the outside-manifold contribution to progress, as depicted Fig. S6B.  

We computed the progress that can be attributed to getting outside the intrinsic manifold 

according to the equation: 

𝑃𝑡
𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

=  𝑃𝑡
𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑡

𝑖𝑛𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑
  (12) 

where 𝑃𝑡
𝑡𝑜𝑡𝑎𝑙  is calculated from Eqn. 11. To calculate 𝑃𝑡

𝑖𝑛𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑
 , first we found the 

orthogonal projection of each neural population activity pattern into the manifold 

𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑜 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 =  𝑈𝑇𝑢𝑡  (13) 

where 𝑢𝑡is the z-scored spike count vector.  Because the spike counts have been z-scored, the 

mean of 𝑢𝑡 is 0. 𝑈 contains the orthonormalized columns of Λ and is found using the singular 

value decomposition, such that 𝛬 = 𝑈𝑆𝑉𝑇.  The column space of 𝑈 defines the intrinsic 
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manifold.  Then we found the representation of the orthogonal projection in the high-dimensional 

space 

𝑢̃𝑡 = 𝑈𝑈𝑇𝑢𝑡  (14) 

where 𝑢̃𝑡 is the inside-manifold component of the population activity pattern.  Finally, we 

computed the progress from this inside-manifold component of the spike count vector.  

𝑃𝑡
𝑖𝑛𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

=  [
cos 𝜃𝑡

sin 𝜃𝑡
]∗ (𝑀2

𝑂𝑀𝑃𝑢̃𝑡 + 𝑚0) (15) 

Fig. S6C shows the 𝑃𝑡
𝑖𝑛𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

 and 𝑃𝑡
𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

 for each of the new neural activity 

patterns expressed on the last day of OMP1. Some neural activity patterns produce large inside-

manifold contributions to progress and small outside-manifold contributions to progress (Fig. 

S6C, red).  Other neural activity patterns produce small inside-manifold contributions to progress 

and large outside-manifold contributions to progress (Fig. S6C, blue).  To further show that 

learning is not constrained by the intrinsic manifold, in Fig. S6D we calculated the change in the 

mean  𝑃𝑡
𝑖𝑛𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

 and mean 𝑃𝑡
𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

 across all neural activity patterns produced for 

each target relative to day 1.  For this calculation we include all the neural activity patterns 

expressed for each target, not only the new neural activity patterns.  For many targets learning 

occurs by increasing the 𝑃𝑡
𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑

 , thus demonstrating that learning can be driven by 

producing new neural activity patterns outside the intrinsic manifold.  Note that even for some 

targets that show good learning, the inside-manifold or outside-manifold component can be 

unhelpful, but then be overcome by helpful progress in the other component (Fig. S6E).   

 

SI References: 

37.   Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data 

via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39: 1–38. 

38. Williamson RC, et al. (2016) Scaling properties of dimensionality reduction for neural 

populations and network models. PLoS Comp Bio. 12: e1005141. 
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Fig. S1.  Incremental training facilitates multi-day learning. (A) An incremental training 

approach was used to guide monkeys during learning of the OMP mappings.  Incremental 

mappings spanned the neural space between the intuitive mapping and the OMP mapping.  (B) 

Training scheme used for single- and multi-day experiments with incremental training and no 

incremental training.  Each block indicates a day.  (C) Learning curves for all multi-day OMP, 

incremental training experiments for monkey L.  The amount of learning (circles) is shown only 

for days on which the full OMP was presented to the animal.  Each line indicates a unique OMP 

mapping.    (D) All multi-day OMP, incremental training learning curves for monkey N.  Same 

conventions as in C.  OMP 1 corresponds to the experiment highlighted in other figures.  (E) All 

multi-day OMP, no incremental training learning curves for monkey L.  (F) All multi-day OMP, 

no incremental training learning curves for monkey N.  (G) The amount of learning for multi-

day, incremental training OMP experiments (green) was greater than for all other training 

strategies we used (vs. single-day, incremental training OMP experiments (cyan; t-test, 

p=0.0019);  vs. multi-day, no incremental training OMP experiments (light green; t-test, 

p=0.052); vs. single-day no incremental training (blue; t-test, p<10
-4

). 
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Fig. S2.  Changes in neural activity are specific to the OMP mapping presented to the monkey. 

(A) Mean progress (cf. Fig. 3) observed through the OMP 1 mapping increased from day 1 to 

day 8 (green).  For comparison, we mapped the learned neural activity patterns through 500 

random OMP mappings and measured progress.  The gray dashed lines show the average 

progress through these random mappings.  Progress does not improve through these random 

mappings over time.  This shows that neural activity changed in a manner that is appropriate for 

the particular OMP mapping the monkey was learning.  (B) The change in progress between day 

1 and the last day (averaged over all targets) is plotted for the OMP mapping the animal 

experienced (green) and each of the 500 random OMP mappings (gray).  (C) For each multi-day 

OMP, incremental training experiment we compared the observed learning (change in progress 

relative to day 1 averaged across targets, green dot) to the apparent learning distribution through 

500 random mappings (box and whisker plot, where the center line indicates the median, the 

edges of the box indicate the 25th and 75th percentiles, and the whiskers extended to the smallest 
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and largest of the data points).  For all but one experiment, the chosen mapping showed more 
learning than would have occurred for 75% of the random mappings. 
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Fig. S3.  Recordings are stable on the timescale of several days.  Here, stability is assessed 

during an example multi-day OMP learning experiment and a multi-day intuitive mapping 

experiment.  (A)  Waveforms of the threshold crossings used for decoding from six selected 

channels on day 1 and the last day (day 8) of OMP1 for Monkey N (green) and day 1 and the last 

day (day 5) of a multi-day intuitive experiment for Monkey N (gray).  The waveform shape for 

each channel remains stable across days.  (B) Waveform differences for OMP1.  We quantified 

the difference in waveform shape by calculating the distance between the mean waveform on day 

1 and that on the last day for each channel.  Arrows correspond to the selected channels in panel 

A.  (C)  Waveform differences for a multi-day intuitive experiment.  Arrows correspond to the 

selected channels in panel A.  The waveform shape changes are not statistically different 

between the multi-day OMP learning and multi-day intuitive scenarios (K-S test, p=0.97).  (D) 

ISI differences for OMP1.  The difference in ISI histograms was calculated as the K-S statistic 

between the distribution of ISIs on day 1 and the last day.   Arrows correspond to the selected 

channels in panel A.  (E)  ISI differences for a multi-day intuitive experiment.  Arrows 

correspond to the selected channels in panel A.  ISI changes are not statistically different 

between the multi-day OMP learning and multi-day intuitive scenarios (K-S test, p=0.99). 

  



17 
 

 



18 
 

Fig. S4.  New neural activity patterns preferentially emerge during OMP learning.  (A-C) “New” 

neural activity patterns correspond to velocities that exceed the speed limit.  As in Fig. 2, the 

“speed limit” is defined as the 95% convex hull of velocities generated from the intuitive neural 

repertoire projected through the OMP mapping (gray dashed line).  The velocities generated 

while using the OMP mapping are colored according to the instructed target location.  Each dot 

is the velocity resulting from one neural activity pattern (45 ms bin).  (A) Multi-day OMP 

learning for OMP 1.  This experiment is the same as in Fig. 2, but here we include all days for 

which the monkey used the full OMP mapping.  On day 1, the velocities during OMP control 

mostly fell within the speed limit defined from the intuitive neural repertoire.  On day 6, most of 

the velocities are still within the speed limit.  However, the velocities have become more 

appropriate for successful target acquisition, as can be seen by the points for each target (color 

code given by inset).  For example, when the monkey is instructed to move the cursor to the 

upper-left target (blue), he generates neural activity patterns that cause velocities in that 

direction.  On days 7 and 8, velocities begin to consistently exceed the speed limit in the 

direction that is most beneficial for behavior (blue arrows).  Thus, during OMP learning, new 

neural activity patterns emerge in a manner that increases the progress of the cursor toward the 

target.  % new indicates the percentage of points that fall outside the speed limit.  Δ prog refers 

to the progress relative to day 1.   (B)  Multi-day intuitive mapping. This is considered a “low 

learning pressure” scenario because while cursor control performance is high from the beginning 

of the experiment, there might still be motivation for the monkey to increase his reward rate by 

generating faster speeds.  The speed limit (gray dashed outline) is identified on day 1. Each panel 

shows the velocities generated during subsequent days with the same intuitive mapping relative 

to the speed limit. Across all days there are only small changes in progress (which happen to all 

be negative, i.e., behavior has gotten worse relative to day 1) and few new neural activity 

patterns (that is, velocities which exceed the speed limit).  The velocities that do exceed the 

speed limit do not occur in an appropriately target-directed manner, as was seen during OMP 

learning in row A.  (C) For a “no learning pressure” scenario, we passed the neural activity from 

the multi-day intuitive experiment through 500 random OMP mappings.  There is no learning 

pressure because the monkey did not receive any online feedback about these random OMP 

mappings.  The speed limit (gray dashed line) and velocities corresponds to one representative 

random OMP mapping which the monkey never saw.  In this scenario, it is not the emergence of 

new neural activity patterns that leads to apparent behavioral improvement.  Rather, there is a 

slight shift of the velocities relative to the speed limit that leads to an increase in speeds in some 

directions and a decrease in speeds in other directions.  (D)  New neural activity patterns 

preferentially emerge during OMP learning.  Increases in progress are plotted as a function of the 

percentage of new neural activity patterns for the three conditions of high- (green), low- 

(magenta), and no-learning pressure (density histogram across 500 random OMP mappings).  

There is significant correlation between the formation of new neural activity patterns and 

increases in progress for the high-learning condition (Pearson correlation coefficient r=0.67, 
p=1*10

-11
). 



19 
 

  

 

Fig. S5. New neural activity patterns move progressively farther away from the speed limit with 

learning.  In Fig. 2, we defined the speed limit as the 95% convex hull of the velocities generated 

when the intuitive neural repertoire is mapped through the OMP.  We defined new neural activity 

patterns as patterns that generate velocities which exceed the speed limit.  With learning, we 

observe more new neural activity patterns.  One possible interpretation of this result is that the 

velocities that exceed the speed limit arise from visiting those 5% of points outside the speed 

limit progressively more often.  If this were case, the percentage of “new” neural activity 

patterns identified by the speed limit metric might go up, but the distance of those points from 

the speed limit would remain unchanged. Here, we show that this possibility is not consistent 

with the data.  (A)  Instead, the points move progressively farther from the speed limit (gray 

dashed) during learning (i.e., the cursor velocities continue to get faster and more target-directed 

during learning).  (B)  With learning over days, neural activity patterns are further from the speed 

limit, and they contribute to greater progress.  For the multi-day OMP experiments, there is a 

significant correlation between the extent of the points beyond the speed limit and increases in 

progress (Pearson correlation coefficient r=0.40, p=0.0002).  Each symbol is the average over all 

8 targets from one day of one OMP experiment relative to day 1.  Symbols are shaded to indicate 

the day within a given multi-day experiment.   
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Fig. S6.  New patterns of neural activity can be inside or outside of the intrinsic manifold. (A) A 

particular value of cursor progress can be produced by many different neural activity patterns 

(dashed cyan line), including both patterns inside and outside of the manifold.  (B) Each neural 
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activity pattern (green dot) can be decomposed into an inside-manifold component (red dot) and 

outside-manifold component.  Correspondingly, observed progress (green X) is the sum of 

inside-manifold contribution to progress (red arrow) and outside-manifold contribution to 

progress (blue arrow).  (C) Animals learn using both inside-manifold and outside-manifold 

strategies for a given OMP mapping.  Each dot shows a new (i.e., outside-repertoire) neural 

activity pattern observed on the last day of OMP 1.  For each new neural activity pattern, the 

inside-manifold component is plotted against the outside-manifold component.  Dots are colored 

according to the instructed target when that pattern was generated by the monkey (inset).  Dots 

above the diagonal have largely outside-manifold contributions to progress.  Dots below the 

diagonal have largely inside-manifold contributions to progress.  We found that some targets 

(e.g., red) are learned using a largely inside-manifold strategy, whereas other targets (e.g., blue) 

are learned using a largely outside-manifold strategy.  Most of the targets (e.g., teal) are learned 

using a mixed strategy.  (D) Learning (i.e., change in progress relative to day 1) can arise from 

both outside-manifold and inside-manifold strategies for different targets.  Each symbol shows 

the extent of inside- and outside-manifold contributions to learning for one target from one 

experiment.  Each point is the average of all of the same-colored dots plotted in the space of 

panel C.  Here all population activity patterns are included in the average, not just the new 

patterns.  Colored symbols correspond to the targets represented in panel C.  Equal Δ progress 

lines are plotted to emphasize that both inside- and outside-manifold strategies were used by the 

animals to achieve similar amounts of learning.  (E) Animals learn using both inside-manifold 

and outside-manifold strategies.  Each bar shows one target from one multi-day OMP 

experiment.  This figure differs from Fig. 4C in that here all targets are shown, including those 

that show negative learning.  The overall learning, defined as change in progress from day 1 to 

the last day, is represented by a green dot.  The inside-manifold contributions to that learning are 

shown in red.  The outside-manifold contributions are shown in blue.  The overall learning is 

equal to the sum of the inside-manifold contribution (whether it be positive, i.e., helpful, or 

negative, i.e., unhelpful) and the outside-manifold contribution (whether it be positive or 

negative).  Thus, it is possible for a bar to exceed the corresponding green dot if the inside-

manifold and outside-manifold contributions take on different signs. 
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Fig. S7.  Results do not depend on the specific definition of the speed limit.  In all other figures, 

we define the speed limit as the 95% convex hull.  Here we have repeated the key analyses that 

depend on the speed limit (Fig. 2G and Fig. 3C) for speed limits defined as the (A) 95% convex 

hull (reproduced here to facilitate comparison), (B) 98% convex hull and (C) 100% convex hull.    
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Monkey Multi-day OMP, 
incremental 

training 

Multi-day OMP, 
no incremental 

training 

Single-day OMP, 
incremental 

training 

Single-day OMP, 
no incremental 

training 

Single-day 
WMP 

L 9 (7 to 16 days) 6 (3 to 7 days) 12 13 11 

N 6 (6 to 11 days) 5 (5 days) 15 8 11 

Table S1.  Number of experiments of each type. 
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Movie S1.  Example BCI trials to each target with the intuitive mapping  on day 1 of a multi-

day, incremental training OMP experiment (OMP 1), and the OMP mapping on day 1 and after 8 

days of training.   

 

 

 
 

 

 


