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Establishing causal relationships between neural activity and brain function re-
quires experimental perturbations of neural activity. Many existing perturbation
methods modify activity by directly applying external signals to the brain. We re-
view an alternative approach where brain-computer interfaces (BCls) leverage
volitional control of neural activity to manipulate and causally perturb it. We high-
light the potential of BCls to manipulate neural activity in ways that are flexible,
accurate, and adhere to intrinsic biophysical and network-level constraints to in-
vestigate the consequences of configuring neural population activity in specified
ways. We discuss the advantages and disadvantages of using BCls as a pertur-
bation tool compared with other perturbation methods and how BCls can ex-
pand the scope of questions that can be addressed about brain function.

Causal manipulations of neural activity link activity to behavior

How neural activity implements neural computations and gives rise to behavior is a central ques-
tion in neuroscience. We often observe neural activity while animals perform different behaviors,
which can uncover correlational relationships (see Glossary) between the neural activity and
behavior. When neural activity is controlled by the experimenter while an animal performs behav-
iors of interest, we can establish causal relationships between neural activity and behavior [1].

A wide range of tools are available to directly manipulate neural activity. These include intracortical
electrical microstimulation [2,3]; transcranial electrical stimulation (TES) [4,5]; transcranial magnetic
stimulation (TMS) [6,7]; optogenetics [8,9]; pharmacology, such as cortical inactivation using
muscimol [10,11]; pharmacogenetics, such as designer receptors exclusively activated by designer
drugs (DREADDs) [12,13]; ultrasound [14,15]; lesions [16,17]; and cortical cooling [18,19]. These
tools differ in many aspects, such as the spatial and temporal scale at which they manipulate neural
activity, the biological mechanism through which they act, and the specificity with which they can tar-
get different circuits. A key characteristic shared by all these perturbation methods is that they exert
external control over neural activity, relying on forces or interventions originating outside the brain itself.

In this review, we highlight an alternative way to causally perturb neural activity: using a BCl to le-
verage an animal's control of their own neural activity. In this way, neural activity is controlled by
volitional forces internal to the brain. Here we discuss how volitional control can modulate neural
activity in ways that are complementary to other perturbation tools. By considering BCls as an ad-
ditional tool to manipulate neural activity, we can open new avenues to probe neural circuits and
advance our understanding of the brain.

BCls for manipulating neural activity to investigate neural circuit function
A BCI - also known as a brain-machine interface (BMI) — is a system that translates neural activity
into movements of an external effector, such as a computer cursor or a robotic limb. BCls
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Highlights

Causal manipulations of neural activity
can go beyond correlational studies in
establishing how neural activity relates
to neural computations and behavior.

Multiple neural perturbation tools exist,
which directly manipulate neural activity
by using forces external to the brain.

Brain—computer interfaces (BCls) pro-
vide a causal tool whereby animals per-
turb their own neural activity using
volition — a force internal to the brain.

We can assess perturbation tools, in-
cluding BCls, in terms of the flexibility, ac-
curacy, and naturalness of population
activity patterns that they elicit.
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consist of three primary components: (i) measurement of neural activity; (i) a mathematical map-
ping of the neural activity to desired movements (referred to as a ‘BCl mapping’); and (i) an ex-
ternal effector whose movement is specified by the neural activity (Figure 1A) [20]. Neural
activity used for BCls can range from intracortical measurements of neuronal firing (e.g., using
surgically implanted multi-electrode arrays) to non-invasive measurements of neural activity
[e.g., using electroencephalography (EEG)]. The BCl mapping then converts the recorded activity
into movements of the external effector, which provides the user with moment-by-moment
sensory feedback of their neural activity. This closed-loop system allows users to volitionally
modulate their neural activity to achieve task goals (Figure 1B). Laboratory proof-of-concept
BCls [21-25] have informed the development of BCls used in clinical settings to restore
motor and communication capabilities in individuals with paralysis or other disorders [26-34].
BCls are also referred to as neurofeedback systems when they are used in settings where
self-regulation of brain signals, typically measured non-invasively, is leveraged for therapeutic
purposes [35-41].

In addition to their use for clinical applications, BCls have also been used as a tool to investigate
basic scientific questions about neural circuit function [42-48]. BCls allow us to simplify the out-
put interface of the brain, while preserving the cognitive processes involved in sensorimotor con-
trol [46]. Because experimenters define the BCl mapping, the causal relationship between the
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Figure 1. Brain—-computer interfaces (BCls) as a tool to manipulate neural activity. (A) Schematic of a BCI in which
neural activity is recorded from a population of neurons and spike counts are taken in sequential time bins (illustrated here
using three neurons; top left). A BCl mapping translates the spike counts into movements of a computer cursor (bottom
right, 'BCl workspace'). Moment-by-moment visual feedback is provided to the animal. It is also possible to use other
sensory feedback modalities, such as auditory, proprioceptive or tactile feedback, or a combination [53,114]. The
feedback enables the animal to modify its neural activity in real time to guide the computer cursor to an on-screen target
(light blue circle). (B) We define a population activity space, in which each axis represents the activity of one recorded
neuron. Neural activity at different times constitutes a sequence of points in the population activity space, forming a neural
trajectory. The solid gray trajectory represents neural activity prior to BCI control. The blue trajectory represents volitional
modulation of neural activity to drive the BCI cursor to the target (light blue circle) under moment-by-moment sensory
feedback. The perturbed activity (blue trajectory) deviates from the activity that would have been observed if left
unperturbed (broken gray trajectory). The yellow plane represents the dimensions along which neural activity is read out by
the BCI mapping. The current population activity state (hollow circle along the blue trajectory) is mapped (along the broken
line) to cursor kinematics (hollow circle in the yellow plane).
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Glossary

Causal relationship: statistical
dependency between variables that
describes which variables directly
influence others. This is typically revealed
by an experimenter-induced
manipulation.

Closed-loop system: a system that
receives control inputs at each time step
that are informed by recent observations
(i.e., feedback) of the state of the system.
Correlational relationship: statistical
dependency between variables for
which it is not known which variables
directly influence others. This is typically
revealed by only observing a system
without intervening in it.

Effector: a body part (e.g., a limb) or a
mechanical device (e.g., a robotic arm or
a computer cursor) that moves in
response to control commands, such as
neural activity.

Targeted neural population: a neural
population whose activity is directly
influenced by a perturbation. In the case
of external perturbation methods, the
targeted population refers to the set of
neurons that the external signals impinge
upon. In the case of BCls, the targeted
population refers to the recorded
neurons that drive BCI readouts.
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recorded neural activity and effector (e.g., computer cursor) movements is known. This funda-
mental property of BCls has enabled insights into the extent and limits of volitional modulation
of neural activity [49-54], how those limits can change with repeated practice [55-57] and
sleep [58], how volitional modulation relies on sensory feedback [59,60], and how volitional mod-
ulation relies on multiple brain areas [61,62].

This body of work shows how BCls can be used as a tool to causally manipulate neural activity.
The goal in many of the aforementioned studies has been to investigate changes in neural popu-
lation activity during BCI control. These studies demonstrate how the specifications of different
BCI components and task goals directly influence the requirements for volitional modulation of
neural activity to achieve task success, thereby exerting a causal influence on neural activity
(Figure 1B and Box 1).

Insights into how neural activity can be manipulated using BCls have laid the groundwork for
using BCls to investigate the consequences of specific perturbations of neural activity. This shifts
the focus of investigation from the neural mechanisms underlying activity changes during BClI
control to the subsequent consequences of having intentionally changed neural activity. These
two uses for BCls for basic science — for discovering the limits of volitional activity modulation
and for perturbing neural activity — are synergistic. Understanding the capabilities of volitional ac-
tivity modulation informs the manner in which BCls can be used for neural activity perturbations.
The use of BCls to perturb brain signals has been extensively explored at the scale of brain-wide
signals such as those measured using fMRI, EEG, and other non-invasive approaches [63]. How-
ever, at the scale of populations of individual neurons, the use of BCls as tools to perturb neural
activity has been less common. Studies that have used BCls in this way have advanced our

Box 1. Design choices for manipulating neural activity using a BCI

The design of each BCl component can be tailored to require specific patterns of neural activity for successful BCI control.
We explain this in the context of two key BCI components (highlighted in Figure |A).

() Readout dimensions. The BCI mapping defines what aspects of the recorded neural activity drive BCI effector move-
ments and what aspects are ignored. When this mapping is linear, the readout operations can be represented as pro-
jections of neural activity onto specific dimensions of the population activity space. Typically, one dimension is
specified for each degree of freedom of the effector to be controlled. For example, to control a computer cursor on
a 2D screen, two readout dimensions are specified. Changes in the neural activity along these two dimensions
map to the movement of the cursor along the horizontal and vertical coordinates of the screen. By varying the readout
dimensions, one can constrain the elicited population activity patterns along specific dimensions. However, the evo-
lution of population activity outside the readout dimensions is left unconstrained (compare Figure IB and C).

(i) Control of cursor kinematics. The kinematic variables to which neural activity is mapped can be chosen by the exper-
imenter. Each choice imposes distinct requirements on the neural activity that would yield successful BCI control. For
example, the BCI mapping might drive the cursor's position, velocity, acceleration, or a combination of these. A
center-out cursor movement using a position mapping sets a requirement on the direction in which population ac-
tivity needs to be modulated and how far from the baseline level that neural activity needs to be at the time of target
acquisition (Figure ID). By contrast, mapping neural activity to cursor velocity sets requirements only on the direc-
tion in which population activity must be modulated, but does not tightly constrain how neural activity changes
from time step to time step. The degree to which neural activity is modulated away from the baseline level controls
cursor speed, and cursor position is determined by integrating cursor velocity over time. In the same center-out
task, using a velocity mapping, successful cursor control may be possible even if, at the time of target acquisition,
neural activity has returned close to the baseline level (Figure |E).

Among other BCI components, the chosen sensory feedback modality (e.g., visual, auditory, proprioceptive, or tactile)
should be appropriate for the known properties of the targeted neural population and the scientific question being asked.
For example, if the targeted population responds directly to visual stimuli, then non-visual feedback should be used, or vi-
sual feedback should be designed carefully to avoid confounding aspects of the neural activity that arise due to volition
versus being driven by a sensory stimulus [53].
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Figure |. Implications of brain—computer interface (BCl) design choices on neural activity perturbations.
(A) Schematic of a closed-loop BCI system. We illustrate how different design choices for the readout dimensions and
the control of cursor kinematics impose different requirements on neural activity. (B-C) Readout dimensions.
(B) Readout A places requirements on the neural activity along the blue readout dimensions, but allows activity to vary
in dimensions orthogonal to them. Each neural trajectory in the population activity space represents an
experimental trial. Three trials for the same BCI target are shown. The shaded plane represents the readout dimensions
of the BCI mapping. The neural activity is converted by the BCl mapping into cursor trajectories (shown in the square
inset, representing the BCI workspace). For each cursor trajectory, there is a corresponding neural trajectory. Circle
represents the BCI target; (C) Readout B places requirements on the neural activity along the red readout dimensions
(orthogonal to readout A). The requirements placed on the BCI cursor are the same for the two readouts. Same
conventions as panel B. (D-E) Control of cursor kinematics. (D) A position-based mapping directly translates activity
along readout dimensions to cursor position. This allows experimenters to specify requirements on the path of the
cursor on the screen to set requirements on the path of neural activity in the readout dimensions. Same conventions as
panel B, but here we show two BCI targets and one trajectory (solid and dashed lines) for each BCI target. (E) A
velocity-based mapping translates activity along the readout dimensions to cursor velocity. This allows experimenters to
elicit neural activity consistent with moving the cursor towards the target, whatever the speed of the cursor. Same
conventions as panel D.
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understanding of cognitive and motor functions, including spatial attention [64], motor learning
transfer [65], memory [58,66], and motor planning [67].

Compared with other perturbation methods, BCls stand out as a distinct perturbation tool due to
a fundamental difference in the mechanism by which they induce changes in neural activity. Any
perturbation of neural activity can be viewed as a controlled force applied on a targeted neural
population. \When using perturbation methods such as electrical or optogenetic stimulation, the
targeted population comprises the neurons that respond directly to the external stimulation ap-
plied. In this case, the force of change that triggers neural activity perturbations in the targeted
population is generated externally and controlled by the experimenter (Figure 2A, blue arrow).
By contrast, when using BCls as a perturbation tool, the population that is read out for BCI control
is considered the targeted population, because task success is a function of the activity in this
population. As a result, the BCI task requirements influence how activity in this population is mod-
ulated. These activity changes are initiated by recruiting upstream circuits that drive the targeted
population. The force of change that alters neural activity is thus generated internally within the
brain by leveraging an animal’s own volitional control (Figure 2B, blue arrows). The reliance on
the animal's volition underlies the unique properties of BCls as tools to perturb neural activity.
Using either external perturbation methods or BCls, subsequent changes in activity would be ob-
served in circuits downstream to and/or recurrently connected with the targeted population.

Properties of BCls as a perturbation tool

In the following sections, we identify three desirable properties of perturbation tools and describe
the benefits of using BCls to perturb neural activity in terms of these properties. To do so, we de-
fine a multi-dimensional population activity space (also referred to as a ‘state space’), in which
each axis represents the activity of a recorded neuron (Figure 1B). Within this state space, we
can characterize how the activity of recorded neurons covaries and how neurons change their ac-
tivity together over time [68-71]. Any perturbation method can be conceptualized as a means of
configuring neural activity within this state space [1]. The key properties are: (i) the degree of
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Figure 2. Approaches for neural activity perturbations. (A) Perturbation of neural activity using an external signal or force (blue
arrow) directly applied to the targeted neural population (black square). Such approaches involve the selection of stimulation
parameters, such as the amplitude and frequency of the external signal. In some cases, neural activity is also recorded (broken
gray arrow) and can be used in a closed-loop fashion to guide the selection of stimulation parameters (green arrow). (B)
Perturbation of neural activity via volitional control of the targeted population using brain—-computer interfaces (BCls). This exerts an
internally generated force to modulate neural activity, which originates in upstream circuits (olue arrows). In the case of BCls, the
targeted population (black square) comprises the neurons whose activity is read out by the BCl mapping to move the BCI cursor.
The animal is provided with moment-by-moment sensory feedback to move the BCI cursor to a target.
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flexibility in eliciting different population activity patterns (‘flexibility’); (i) the accuracy in eliciting
desired neural population activity patterns (‘accuracy’); and (i) the extent to which elicited popu-
lation activity conforms to intrinsic single-neuron and network constraints (‘naturalness’). We also
discuss how different BCI design choices can bring about these properties and be tailored to in-
vestigate basic science questions.

Flexibility in bringing neural activity to different states

We operationalize the “flexibility’ of a perturbation tool as the degree to which it can elicit a diverse
range of neural population activity patterns. This is an important capability for mapping causal re-
lationships between various neural activity states and behavioral outcomes. The flexibility of a per-
turbation tool can be characterized by its ability to guide neural activity throughout state space.
This includes bringing neural activity to diverse targets in state space, whether that target is a spe-
cific state or a neural trajectory (i.e., a particular sequence of activity states) (Figure 3A). For a per-
turbation tool to exhibit high flexibility, there should exist perturbation parameters that elicit
population activity that can achieve diverse targets.

To flexibly manipulate neural activity using external perturbation methods, we need to understand
how neural activity varies as a function of the perturbation parameters. For instance, when using
electrical microstimulation or optogenetic stimulation, one needs to characterize how the choice
of stimulation parameters, such as the location, frequency, and amplitude of the stimulation
waveforms [72,73], influences neural activity. An explicit mathematical model can help capture
these relationships. However, estimating such models can be challenging because it requires
measurements of neural activity for numerous stimulation parameter combinations. Novel ap-
proaches are necessary to overcome data limitations to properly constrain models with such a
large parameter space [73-78]. Even if one can properly constrain such a model, it is possible
that no combination of parameters exists that attains certain activity targets. This can limit the flex-
ibility to move neural activity to different regions in state space (Figure 3B).

BCls allow us to specify the desired outcome of a perturbation by determining how neural ac-
tivity must be modulated to achieve BCI task goals, such as moving a computer cursor to dif-
ferent target locations on the screen. We can then observe whether the animals are able to
flexibly modulate activity in the target population to achieve the BCI task goals (Figure 1B). In
addition to BCI task goals, other BCI design choices also allow experimenters to influence
the range of population activity patterns that must be elicited for successful BCI control. For ex-
ample, by changing the BCI readout (a component of the BCl mapping; see Figure |A in Box 1),
one can specify the dimensions along which volitional changes in population activity result in
changes in the cursor’s movement (see Figure IB,C in Box 1) [49,51,55,57,79-81]. However,
not all desired population activity patterns and neural trajectories are volitionally achievable.
In particular, there are constraints on how neurons covary (‘neural manifold’) [52], on the pop-
ulation activity patterns that are readily expressed within the neural manifold (‘neural repertoire’)
[79,82], and on the time courses of neural activity within the neural repertoire [54], among other
constraints (Box 2).

Accuracy in guiding neural activity to a specified state

The ‘accuracy’ of a perturbation tool refers to how reliably it can elicit a desired population activity
pattern. To assess its accuracy, we ask first, how close can it bring neural activity to a target region
in neural population activity space, and second, how consistently it can do this across repeated tri-
als. To attain accurate control over neural activity, it may be necessary to account for the neural
state at the onset of the perturbation because this can influence the outcome (Figure 3C,D).
There are other senses in which we can consider a perturbation technique to exhibit accuracy.
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Figure 3. The properties of neural activity perturbations. (A) High flexibility. Neural activity in response to different
combinations of perturbation parameters (colored trajectories) evolve in different directions. Each trajectory represents the
trial-averaged activity for one particular combination of perturbation parameters. (B) Low flexibility. The direction in which
neural activity trajectories evolve is similar for different combinations of perturbation parameters. As a consequence, large
regions of state space cannot be achieved using such a perturbation method. (C) High accuracy. Repeated application of
the same combination of perturbation parameters drives neural activity to a similar state. Each trajectory represents neural
activity on a single experimental trial. The trial-to-trial variability in the neural activity at perturbation onset (shaded dots)
does not influence the outcome of the perturbation. (D) Low accuracy. Population activity patterns elicited by the
perturbation are dispersed because the perturbation does not compensate for the trial-to-trial variability in neural activity at
perturbation onset (shaded dots, the same locations as in panel C). The neural activity after perturbation can be even
more variable from trial-to-trial than the neural activity at perturbation onset. (E) The neural activity in response to a
perturbation adheres to intrinsic single-neuron and network-level constraints (beige surface). (F) The neural activity in
response to a perturbation deviates from the intrinsic neural constraints.

For example, it may provide the ability to define the exact location in the brain where activity
changes originate, the timing of activity changes elicited, and the knowledge or specification of
the mechanisms by which the elicited changes in neural activity are achieved (Table 1).

External perturbation methods are limited in their accuracy due to the impact of ongoing activity
fluctuations on the perturbation outcome, which results in trial-to-trial variability. A way to improve
the accuracy of neural activity control is to increase the granularity of the external perturbation
method itself — for example, optical methods can selectively target specific cells and deliver
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Box 2. Considerations and limitations of BCls as a perturbation tool

Using BCls for neural perturbations requires subjects to volitionally modulate their neural activity based on task goals and
sensory feedback. This involves several key considerations. First, some physiologically possible population activity pat-
terns may be inaccessible under volitional control. For example, animals might be unable to volitionally elicit population ac-
tivity patterns that drive muscle activations without actually moving the arm. As another example, brief disruptions in
excitation/inhibition (E/I) balance may be caused by the transient onset of a sensory stimulus propagating through the brain
via intrinsic biophysical and network-level mechanisms [115], but might not be achievable through volitional control.
Second, intrinsic circuit constraints can set limits on the timescales of perturbations that are possible using BCl-based ap-
proaches. Desired activity changes that are very fast (e.g., millisecond timescale) or that need to be triggered with very
short latencies might not be achievable using volitional modulation [25]. Finally, the BCI design and the training protocols
used by experimenters may also impact an animal’s ability to identify appropriate control strategies to elicit certain popu-
lation activity patterns using volition. For example, even when it is possible for an animal to learn to volitionally elicit new
population activity patterns, how the animal learns to control a BCI can lead them to a local optimum in the solution space
of neural activity [116,117]. In this case, they might require an incremental training strategy to overcome such cognitive
constraints and produce the instructed patterns [56].

A limitation of BCls as a perturbation tool is that there may be contexts in which it would be desirable to override intrinsic
constraints on neural activity. This might be the case for the purpose of system identification. For example, prefrontal [118],
premotor [119], and motor [98] circuits have been shown to exhibit robustness to large-scale, non-natural activity pertur-
bations, potentially through mechanisms that involve neural population-level properties [118], inter-hemispheric commu-
nication [119], or maintaining E/I balance [98]. Another context in which we might require activity perturbations that do
not adhere to intrinsic neural constraints would be for treatments of neurological disorders, where we may require activity
perturbations that can override these constraints in order to create therapeutic interventions.

External perturbation methods can, in principle, allow for direct control over the location and timing of the change in neural
activity. By contrast, BCI perturbations rely on upstream populations to trigger changes in the targeted population. Since
BCl perturbations do not specify how neural activity should change beyond the targeted population, there can be multiple
possible solutions for upstream activity changes and recurrent interactions that ultimately lead to similar activity in the
targeted population. These upstream activity changes could influence the neural computation or behavior being studied,
even if the computation or behavior does not rely on the targeted population.

specific amounts of stimulation to each of the selected cells [8,9]. Even still, the effect of stimula-
tion can depend on the ongoing state of the population activity. This dependence might be over-
ridden if the stimulation is strong (e.g., optical stimulation using high laser intensities, or electrical
microstimulation using large currents). However, if the stimulation parameters are adjusted to
modulate rather than override activity, then the outcome of the stimulation would depend on
the ongoing activity [83]. To further improve control, a closed-loop design can be used where
the stimulation parameters are adjusted in real time based on measurements of the current neural
state. Implementing this approach requires models that can accurately predict how external per-
turbations will affect neural activity (as described in the section ‘Flexibility in bringing neural activity
to different states’) and it is still a challenge to deploy these models in real time to account for on-
going fluctuations in neural activity (out see [75,84-87]).

By contrast, a closed-loop design is inherent to BCI paradigms. Fluctuations in neural activity (e.g.,
due to a slow drift in neural activity [88] or changes in neural engagement [89)]) that are read out by
the BCI mapping have a direct impact on the movement of the external effector and, therefore, the
sensory feedback received by animals. By leveraging this feedback, animals can counteract the ef-
fect of these fluctuations using their own volitional control of neural activity to achieve successful
BCI control. Thus, BCls are a particularly powerful tool to accurately produce targeted activity
that is consistent across trials.

The accuracy of neural activity control can depend on several BCI design choices, such as the
dimensionality and modality of the sensory feedback provided to the animal and the effector kine-
matics that neural activity is mapped to. First, the dimensionality of sensory feedback determines
the number of BCl readout dimensions, which is usually smaller than the number of dimensions of
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Table 1. Comparison of BCls as a perturbation tool with external perturbation methods
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ab,c

Features BCI perturbations External perturbations
Flexibility Eliciting diverse (+) Achieved by specifying an (+) Needs a model that maps
range of population appropriate BCI mapping and various stimulation parameter
activity patterns diverse BCl task goals combinations to activity targets
Generating arbitrary (—) Activity patterns that cannot be (+) Neural activity that is outside
activity patterns volitionally elicited are not natural conditions but within
accessible physiological limits can be evoked
Targeting identified (+) BCls can be constructed such (+) Optical methods can target
neuronal that the BCl mapping uses only genetically identified populations
subpopulations identified subpopulations
Accuracy Trial-to-trial (+) Closed-loop design of BCls (+) Needs a model that considers
reliability allows animals to counteract ongoing activity fluctuations to
ongoing fluctuations in neural select the appropriate perturbation
activity to reliably generate the parameters
desired activity
Control of location (+) Does not allow full control over (+) Allows full control of the location
and timing of the where and when neural activity and timing of the origin of activity
origin of activity changes originate that result in the perturbation
changes desired activity modulation in the
targeted population
Timescale of activity ~ (-) Sensory delays and timescales (+) The timescale of the
changes of volitional modulation can perturbation is constrained only by
constrain the timescale of changes the biophysical mechanisms that
in the targeted population the perturbation recruits
Knowledge of the (+) The principles of BCI function (+) The nature of external signals
mechanism are well understood, but the exact delivered into the brain to cause the
producing activity manner in which upstream circuits perturbation is known, although the
changes give rise to neural activity changes precise mechanism of action on the
in the targeted population is not circuit can be underspecified
well known and cannot be readily (e.g., electrical microstimulation
controlled can impact cell bodies or fibers of
passage)
Naturalness  Activity achieved (+) Volitional modulation of neural (=) The action of external

through intrinsic
neuronal and
network
mechanisms

Activity appears in
ethological
conditions of the
animal

activity inherently propagates
through intrinsic neuronal and
network mechanisms

(+) Requires designing a BCI
mapping and task such that it
generates neural activity that is
observed during specific behaviors

2(+) Ways in which the method inherently exhibits a given feature.
®(+) Ways in which the method can or needs to be developed to exhibit a given feature.
°(-) Ways in which a method may be inherently limited.

perturbations overrides intrinsic
neuronal and network constraints
to generate activity

(+) Requires a model that specifies
the perturbation parameters that
generate neural activity observed
during specific behaviors

population activity. Hence, many redundant population activity patterns lead to the same BCI
readout and consequently elicit the same sensory feedback [79,90]. This can lead to dimensions
along which ongoing activity fluctuations are not controlled (see Figure IB-C in Box 1). Second,
the sensory modality of the feedback and its associated latency can influence how interpretable
the feedback is about the ongoing neural activity. For instance, visual feedback might be easier to
parse than proprioceptive feedback, but proprioceptive feedback is faster than visual feedback
[91]. Whether the feedback is provided through the senses or via intracortical stimulation can
also affect its interpretation. Visual feedback may be more interpretable than intracortical
microstimulation of the sensory cortex, although with sufficient training, BCI users can learn to re-
liably interpret the microstimulation signals [31,92]. These aspects of the sensory feedback can
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impact the accuracy with which neural activity is controlled moment-to-moment. Third, the BCI
mapping might drive the effector's position, velocity, acceleration, or a combination of these.
Each of these choices affects the degree to which neural activity changes are integrated over
time to drive the effector state, and consequently the accuracy with which we can shape the
time course of neural activity required for successful BCl control. Mapping neural activity to effec-
tor position creates the tightest correspondence between ongoing population activity state and
effector state (see Figure ID-E in Box 1). A position-based mapping allows the experimenter to
set requirements on the time course of the elicited neural activity in the readout dimensions [54].

Naturalness of elicited neural population activity patterns

‘Naturalness’ of elicited activity refers to the similarity of the elicited activity to neural activity that
accompanies the sensory, cognitive, and motor processes that drive an animal’s behavior in
the absence of perturbations. To evaluate the naturalness of an elicited activity pattern, we can
characterize the degree to which it aligns with activity observed during specific behaviors.
When the elicited activity aligns with those observations, it can be confirmed to be natural. How-
ever, when the elicited activity does not match that observed during the animal’s behavior,
assessing its naturalness becomes more complicated. This is because the elicited activity pattern
might occur during a behavior not tested in the laboratory setting. To conclude that elicited activity
is not natural, in principle, would require knowledge of the full range of neural activity observed in
ethological contexts.

Another way to quantify naturalness is in terms of whether elicited activity patterns are achievable
through intrinsic single-neuron and network-level mechanisms, since population activity patterns
that underlie sensory, cognitive, and motor processes are constrained by these intrinsic neural
mechanisms [93,94]. As a consequence of these constraints, neural activity naturally exhibits
structure in how neurons covary [50,52], in the distribution of population activity [79,82,95] and
in the time course of population activity [54,96]. Using the state space view, these constraints
imply that population activity tends to lie in specific regions of state space and follow particular
paths as the activity changes over time (Figure 3E). Eliciting activity patterns that adhere to
these intrinsic neural constraints is important when the objective of manipulating neural activity
is to characterize how different neural population activity patterns causally relate to specific be-
haviors [1]. Perturbations that do not adhere to such constraints would be considered unnatural,
but they can still be highly informative, such as for system identification (Box 2).

External perturbation methods, such as electrical or optical stimulation, can elucidate causal re-
lationships between changes in neural activity originating in the targeted population and subse-
quent changes in both neural activity and behavior. These methods typically elicit unnatural
population activity patterns by broadly affecting neurons, overriding biophysical processes and
network-level interactions in neural populations [97,98] and leading to activity that may fall outside
the regions of state space that neural activity naturally occupies (Figure 3F). As a consequence,
perturbing neural activity using external forces can lead to unnatural perceptual experiences
[99-101]. Recent developments in perturbation techniques, such as holographic optogenetics
[9], have enhanced our ability to selectively manipulate neural activity along dimensions engaged
during an animal’s behavior, allowing us to generate activity patterns that resemble those ob-
served during behavior. This has enabled the characterization of the dynamics of population ac-
tivity that underlie behaviorally relevant computations (e.g., [102,1083]). However, such
perturbations still usually violate the network-level constraints that govern how neural activity in
the targeted population is coordinated with activity in other interconnected brain regions. During
an animal’s behavior, a change in activity in any given population is triggered by inputs from up-
stream brain regions. When the targeted population is driven directly by external perturbation
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methods, the relationship between activity in that region and its upstream brain regions would be
altered. If we want to perturb activity in the targeted population in a manner that resembles how its
activity would be driven by other brain regions, we would need to manipulate activity in multiple
brain regions simultaneously.

By contrast, BCls perturb neural activity through volitional forces internal to the brain, and thus, recruit
the inputs from other neurons and brain areas needed to modulate the targeted neural population.
Because of this, the population activity patterns elicited using BCls obey network-level constraints
due to network connectivity within the targeted population, as well as constraints due to connectivity
across brain regions to which the targeted population is connected (Box 2). Even when novel popu-
lation activity patterns are induced during BClI learning, these novel patterns are still constrained by
physiological limitations and are learned through intrinsic synaptic and network mechanisms
[47,104]. Additionally, how BCls are designed can influence the degree to which elicited activity re-
sembles activity during other behavioral contexts. For example, biomimetic decoder designs am to
match the mapping between neural activity and overt movements as closely as possible [105].

Concluding remarks

The main thesis of our review is that BCls function as a tool for the causal perturbation of neural
activity. Seen in this light, we can consider BCls among the suite of tools available to manipulate
neural activity, and we can expand the range of questions that can be addressed about neural
circuit function. As with any perturbation tool, BCls have a unique mixture of advantages and lim-
itations in how they manipulate and perturb neural activity. These need to be considered when
selecting BCls as a causal perturbation method, and in interpreting the outcomes of BCI-
based perturbations (Box 2 and Table 1). It is also possible to combine volitional activity modula-
tion using BCls with external perturbation methods to further expand the range of questions that
can be addressed [59,60,106-108].

As aresult of its reliance on volition to modulate neural activity, BCls may be well suited to inves-
tigate complex cognitive functions that rely on volitional processes that are distributed across
many brain areas (see Outstanding questions). These include learning, attention, decision mak-
ing, motivation, emotion, motor control, and more [46-48,63,109,110]. Where in the brain
these processes originate is uncertain and, likely, there is no single point of origin. BCls can
use volition to recruit the broader networks in which the targeted population is embedded, and
doing so may be necessary to influence cognitive functions that rely on distributed circuits across
the brain.

BCls can also be used to repeatedly manipulate brain-wide neural activity that supports com-
plex cognitive processes. Doing so could have significant therapeutic implications since re-
peated modulation of activity can induce long-lasting modifications of neural pathways
[111-113]. As a result, BCl-based perturbations may be a promising tool for the treatment of
cognitive and neurological disorders by potentially enabling long-term reconfiguration of neural
activity across the brain.
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Outstanding questions

What aspects of neural activity are and
are not volitionally controllable?

Are there differences in the level of
volitional control of neural activity in
different brain areas or neuronal
subpopulations?

How widespread are the changes in
neural activity induced by volitional
control  beyond the targeted
population?

How can we design sensory feedback
to be most useful to animals for
enacting the desired volitional
changes in neural activity?

For which brain disorders are BCI-
based perturbations most amenable
as a therapeutic tool?
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