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Highlights 
Causal manipulations of neural activity 
can go beyond correlational studies in 
establishing how neural activity relates
to neural computations and behavior.

Multiple neural perturbation tools exist, 
which directly manipulate neural activity 
by using forces external to the brain.

Brain–computer interfaces (BCIs) pro-
vide a causal tool whereby animals per-
turb their own neural activity using 
Establishing causal relationships between neural activity and brain function re-
quires experimental perturbations of neural activity. Many existing perturbation 
methods modify activity by directly applying external signals to the brain. We re-
view an alternative approach where brain–computer interfaces (BCIs) leverage 
volitional control of neural activity to manipulate and causally perturb it. We high-
light the potential of BCIs to manipulate neural activity in ways that are flexible, 
accurate, and adhere to intrinsic biophysical and network-level constraints to in-
vestigate the consequences of configuring neural population activity in specified
ways. We discuss the advantages and disadvantages of using BCIs as a pertur-
bation tool compared with other perturbation methods and how BCIs can ex-
pand the scope of questions that can be addressed about brain function.
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voliti on – a force internal to the brain.

We can assess perturbation tools, in-
cludingBCIs, in terms of the flexibility, ac-
curacy, and naturalness of population 
activity patterns that they elicit.
Causal manipulations of neural activity link activity to behavior
How neural activity implements neural computations and gives rise to behavior is a central ques-
tion in neuroscience. We often observe neural activity while animals perform different behaviors,
which can uncover correlational relationships (see Glossary) between the neural activity and 
behavior. When neural activity is controlled by the experimenter while an animal performs behav-
iors of interest, we can establish causal relationships between neural activity and behavior [1]. 

A wide range of tools are available to directly manipulate neural activity. These include intracortical 
electrical microstimulation [2,3]; transcranial electrical stimulation (TES) [4,5]; transcranial magnetic 
stimulation (TMS) [6,7]; optogenetics [8,9]; pharmacology, such as cortical inacti vation using
muscimol [10,11]; pharmacogenetics, such as designer receptors exclusively activated by designer 
drugs (DREADDs) [12,13]; ultrasound [14,15]; lesions [16,17]; and cortical cool ing [18,19]. These 
tools differ in many aspects, such as the spatial and temporal scale at which they manipulate neural 
activity, the biological mechanism through which they act, and the specificity with which they can tar-
get different circuits. A key characteristic shared by all these perturbation methods is that they exert 
external control over neural activity, relying on forces or interventions originating outside the brain itself.

In this review, we highlight an alternative way to causally perturb neural activity: using a BCI to le-
verage an animal's control of their own neural activity. In this way, neural activity is controlled by 
volitional forces internal to the brain. Here we discuss how volitional control can modulate neural 
activ ity in ways that are complementary to other perturbation tools. By considering BCIs as an ad-
ditional tool to manipulate neural activity, we can open new avenues to probe neural circuits and
advance our understanding of the brain.

BCIs for manipulating neural activity to investigate neural circuit function
A BCI – also known as a brain–machine interface (BMI) – is a system that translates neural activity 
into movements of an external effector, such as a computer cursor or a robotic limb. BCIs
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Glossary 
Causal relationship: statistical 
dependency between variables that 
describes which variables directly 
influence others. This is typically revealed 
by an experimente r-induced
manipulation.
Closed-loop system: a  system  that  
receives control inputs at each time step 
that are informed by recent observations 
(i.e. , feedback) of the state of the system.
Correlational relationship: statistical 
dependency between variables for 
which it is not known which variables 
directly influence others. This is typically 
revealed by only observing a system
without intervening in it.
Effector: a body part (e.g., a limb) or a 
mechanical device (e.g., a robotic arm or 
a computer cursor) that moves in 
response to control commands, such as
neural activity.
Targeted neural population: a neural 
consist of three primary components: (i) measurement of neural activity; (ii) a mathematical map-
ping of the neural activity to desired movements (referred to as a ‘BCI mapping’); and (iii) an ex-
ternal effector whose movement is specified by the neural activity (Figure 1A) [20]. Neural 
activity used for BCIs can range from intracortical measurements of neuronal firing (e.g., using 
surgically implanted multi-electrode arrays) to non-invasive measurements of neural activity 
[e.g., using electroencephalography (EEG)]. The BCI mapping then converts the recorded activity 
into movements of the external effector, which provides the user with moment-by-moment 
sensory feedback of their neural activity. This closed-loop system allows users to volitionally
modulate their neural activity to achieve task goals (Figure 1B). Laboratory proof-of-concept 
BCIs [21–25] have informed the development of BCIs used in clinical settings to restore 
motor and communication capabilities in individuals with paralysis or other disorders [26–34]. 
BCIs are also referred to as neurofeedback systems when they are used in settings where 
self-regulation of brain signals, typically measured non-invasiv ely, is leveraged for therapeutic
purposes [35–41]. 

In addition to their use for clinical applications, BCIs have also been used as a tool to investigate
basic scientific questions about neural circuit function [42–48]. BCIs allow us to simplify the out-
put interface of the brain, while preserving the cognitive processes involved in sensorimotor con-
trol [46]. Because experimenters define the BCI mapping, the causal relationship between the
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Brain–computer interfaces (BCIs) as a tool to manipulate neural activity. (A) Schematic of a BCI in which
neural activity is recorded from a population of neurons and spike counts are taken in sequential time bins (illustrated here
using three neurons; top left). A BCI mapping translates the spike counts into movements of a computer cursor (bottom
right, 'BCI workspace'). Moment-by-moment visual feedback is provided to the animal. It is also possible to use othe
sensory feedback modalities, such as auditory, proprioceptive or tactile feedback, or a combination [53,114]. The
feedback enables the animal to modify its neural activity in real time to guide the computer cursor to an on-screen targe
(light blue circle). (B) We define a population activity space, in which each axis represents the activity of one recorded
neuron. Neural activity at different times constitutes a sequence of points in the population activity space, forming a neura
trajectory. The solid gray trajectory represents neural activity prior to BCI control. The blue trajectory represents volitiona
modulation of neural activity to drive the BCI cursor to the target (light blue circle) under moment-by-moment sensory
feedback. The perturbed activity (blue trajectory) deviates from the activity that would have been observed if lef
unperturbed (broken gray trajectory). The yellow plane represents the dimensions along which neural activity is read out by
the BCI mapping. The current population activity state (hollow circle along the blue trajectory) is mapped (along the broken
line) to cursor kinematics (hollow circle in the yellow plane).

population whose activity is directly 
influenced by a perturbation. In the case 
of external perturbation methods, the 
targeted population refers to the set of 
neurons that the external signals impinge 
upon. In the case of BCIs, the targeted
population refers to the recorded
neurons that drive BCI readouts.
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recorded neural activity and effector (e.g., computer cursor) movements is known. This funda-
mental property of BCIs has enabled insights into the extent and lim its of volitional modulation
of neural activity [49–54], how those limits can change with repeated practice [55–57]  and
sleep [58], how volitional modulation relies on sensory feedback [59,60], and how volitional mod-
ulation relies on multiple brain areas [61,62].

This body of work shows how BCIs can be used as a tool to causally manipulate neural activity. 
The goal in many of the aforementioned studies has been to investigate changes in neural popu-
lation activity during BCI control. These studies demonstrate how the specifications of different 
BCI components and task goals directly in fluence the requirements for volitional modulation of
neural activity to achieve task success, thereby exerting a causal influence on neural activity
(Figure 1B and Box 1). 

Insights into how neural activity can be manipulated using BCIs have laid the groundwork for 
using BCIs to investigate the consequences of specific perturbations of neural activity. This shifts 
the focus of investigation from the neural mechanisms underlying activity changes during BCI 
control to the subsequent consequences of having intentionally changed neural activity. These 
two uses for BCIs for basic science – for discovering the limits of volitional activity modulation 
and for perturbing neural activ ity – are synergistic. Understanding the capabilities of volitional ac-
tivity modulation informs the manner in which BCIs can be used for neural activity perturbations.
The use of BCIs to perturb brain signals has been extensively explored at the scale of brain-wide
signals such as thosemeasured using fMRI, EEG, and other non-invasive approaches [63]. How-
ever, at the scale of populations of individual neurons, the use of BCIs as tools to perturb neural 
activity has been less common. Studies that have used BCIs in this way have advanced our
Box 1. Design choices for manipulating neural activity using a BCI

The design of each BCI component can be tailored to require specific patterns of neural activity for successful BCI control.
We explain this in the context of two key BCI components (highlighted in Figure IA). 

(i) Readout dimensions. The BCI mapping defines what aspects of the recorded neural activity drive BCI effector move-
ments and what aspects are ignored. When this mapping is linear, the readout operations can be represented as pro-
jections of neural activity onto specific dimensions of the population activity space. Typically, one dimension is 
specified for each degree of freedom of the effector to be controlled. For example, to control a computer cursor on 
a 2D screen, two readout dimensions are speci fied. Changes in the neural activity along these two dimensions
map to the movement of the cursor along the horizontal and vertical coordinates of the screen. By varying the readout
dimensions, one can constrain the elicited population activity patterns along specific dimensions. However, the evo-
lution of population activity outside the readout dimensions is left unconstrained (compare Figure IB and C).

(ii) Control of cursor kinematics. The kinematic variables to which neural activity is mapped can be chosen by the exper-
imenter. Each choice imposes distinct requirements on the neural activity that would yield successful BCI control. For 
example, the BCI mapping might drive the cursor's position, velocity, acceleration, or a combination of these. A 
center-out cursor movement using a position mapping sets a requirement on t he direction in which population ac-
tivity needs to be modulated and how far from the baseline level that neural activity needs to be at the time of target
acquisition (Figure ID). By contrast, mapping neural activity to cursor velocity sets requirements only on the direc-
tion in which population activity must be modulated, but does not tightly constrain how neural activity changes 
from time step to time step. The degree to which neural activity is modulated away from the baseline level controls 
cursor speed, and cursor position is determined by integrating cursor velocity over time. In the same center-out 
task, using a velocity mapping, successful cursor control may be possible even if, at the time of target acquisition,
neural activity has returned close to the baseline level (Figure IE). 

Among other BCI components, the chosen sensory feedback modality (e.g., visual, auditory, proprioceptive, or tactile) 
should be appropriate for the known properties of the targeted neural population and the scientific question being asked. 
For example, if the targeted population responds directly to visual stimuli, then non-visual feedback should be used, or vi-
sual feedback should be designed carefully to avoid confounding aspects of the neural activity that arise due to volition
versus being driven by a sensory stimulus [53].

42 Trends in Cognitive Sciences, January 2026, Vol. 30, No. 1
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Figure I. Implications of brain–computer interface (BCI) design choices on neural activity perturbations. 
(A) Schematic of a closed-loop BCI system. We illustrate how different design choices for the readout dimensions and 
the control of cursor kinematics impose different requirements on neural activity. (B–C) Readout dimensions. 
(B) Readout A places requirements on the neural activity along the blue readout dimensions, but allows activity to vary 
in dimensions orthogonal to them. Each neural trajectory in the population activity space represents an 
experimental trial. Three trials for the same BCI target are shown. The shaded plane represents the readout dimensions 
of the BCI mapping. The neural activity is converted by the BCI mapping into cursor trajectories (shown in the square 
inset, representing the BCI workspace). For each cursor trajectory, there is a corresponding neural trajectory. Circle 
represents the BCI target; (C) Readout B places requirements on the neural activity along the red readout dimensions 
(orthogonal to readout A). The requirements placed on the BCI cursor are the same for the two readouts. Same 
conventions as panel B. (D–E) Control of cursor kinematics. (D) A position-based mapping directly translates activity 
along readout dimensions to cursor position. This allows experimenters to specify requirements on the path of the
cursor on the screen to set requirements on the path of neural activity in the readout dimensions. Same conventions as
panel B, but here we show two BCI targets and one trajectory (solid and dashed lines) for each BCI target. (E) A
velocity-based mapping translates activity along the readout dimensions to cursor velocity. This allows experimenters to
elicit neural activity consistent with moving the cursor towards the target, whatever the speed of the cursor. Same
conventions as panel D.
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understanding of cognitive and motor functions, including spatial attention [64], motor learning 
trans fer [65], memory [58,66], and motor planni ng [67].

Compared with other perturbation methods, BCIs stand out as a distinct perturbation tool due to 
a fundamental difference in the mechanism by which they induce changes in neural activity. Any 
perturbation of neural activity can be viewed as a controlled force applied on a targeted neural 
population. When using perturbation methods such as electrical or optogenetic stimulation, the 
targeted population comprises the neurons that respond directly to the external stimulation ap-
plied. In this case, the force of change that triggers neural activity perturbations in the targeted
population is generated externally and controlled by the experimenter (Figure 2A, blue arrow). 
By contrast, when using BCIs as a perturbation tool, the population that is read out for BCI control 
is considered the targeted population, because task success is a function of the activity in this 
population. As a result, the BCI task requirements influence how activity in this population is mod-
ulated. These activity changes are initiated by recruiting upstream circuits that drive the targeted
population. The force of change that alters neural activity is thus generated internally within the
brain by leveraging an animal’s own volitional control (Figure 2B, blue arrows). The reliance on 
the animal's volition underlies the unique properties of BCIs as tools to perturb neural activity. 
Using either external perturbation methods or BCIs, subseq uent changes in activity would be ob-
served in circuits downstream to and/or recurrently connected with the targeted population.

Properties of BCIs as a perturbation tool
In the following sections, we identify three desirable properties of perturbation tools and describe 
the benefits of using BCIs to perturb neural activity in terms of these properties. To do so, we de-
fine a multi-dimensional population activity space (also referred to as a ‘ state space’), in which
each axis represents the activity of a recorded neuron (Figure 1B). Within this state space, we 
can characterize how the activity of recorded neurons covarie s and how neurons change their ac-
tivity together over time [68–71]. Any perturbation method can be conceptualized as a means of 
configuring neural activity within this state space [1]. The key properties are: (i) the degree of
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Approaches for neural activity perturbations. (A) Perturbation of neural activity using an external signal or force (blue
arrow) directly applied to the targeted neural population (black square). Such approaches involve the selection of stimulation
parameters, such as the amplitude and frequency of the external signal. In some cases, neural activity is also recorded (broken
gray arrow) and can be used in a closed-loop fashion to guide the selection of stimulation parameters (green arrow). (B
Perturbation of neural activity via volitional control of the targeted population using brain–computer interfaces (BCIs). This exerts an
internally generated force to modulate neural activity, which originates in upstream circuits (blue  arr  ows). In the case of BCIs, the
targeted population (black square) comprises the neurons whose activity is read out by the BCI mapping to move the BCI cursor
The animal is provided with moment-by-moment sensory feedback to move the BCI cursor to a target.
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flexibility in eliciting different population activity patterns (‘flexibility’); (ii) the accuracy in eliciting 
desired neural population activity patterns (‘accuracy’); and (iii) the extent to which elicited popu-
lation activity conforms to intrinsic single-neuron and network constraints (‘ naturalness’). We also
discuss how different BCI design choices can bring about these properties and be tailored to in-
vestigate basic science questions.

Flexibility in bringing neural activity to different states
We operationalize the ‘flexibility’ of a perturbation tool as the degree to which it can elicit a diverse 
range of neural population activity patterns. This is an important capability for mapping causal re-
lationships between various neural activity states and behavioral outcomes. The flexibility of a per-
turbation tool can be characterized by its ability to guide neural activity throughout state space.
This includes bringing neural activity to diverse targets in state space, whether that target is a spe-
cific state or a neural trajectory (i.e., a particular sequence of activity states) (Figure 3A). For a per-
turbation tool to exhibit high flexibility, there should exist perturbation parameters that elicit
population activity that can achieve diverse targets.

To flexibly manipulate neural activity using external perturbation methods, we need to understand 
how neural activity varies as a function of the perturbation parameters. For instance, when using 
electrical microstimulation or optogenetic stimulation, one needs to characterize how the choice
of stimulation parameters, such as the location, frequency, and amplitude of the stimulation
waveforms [72,73], influences neural activity. An explicit mathematical model can help capture 
these relationships. However, estimating such models can be challenging because it requires 
measurements of neural activity for numerous stimulation parameter combinations. Novel ap-
proaches are necessary to overcome data limitations to properly constrain models with such a
large parameter space [73–78]. Even if one can properly constrain such a model, it is possible 
that no combination of parameters exists that attains certain activity targets. This can limit the flex-
ibility to move neural activity to different regions in state space (Figure 3B). 

BCIs allow us to specify the desired outcome of a perturbation by determining how neural ac-
tivity must be modulated to achieve BCI task goals, such as moving a computer cursor to dif-
ferent target locations on the screen. We can then  observe  w  hether the animals are able to
flexibly modulate activity in the target population to achieve the BCI task goals (Figure 1B). In 
addition to BCI task goals, other BCI design choices also allow experimenters to influence 
the range of population activity patterns that must be elicited for successful BCI control. For e x-
ample, by changing the BCI readout (a component of the BCI mapping; see Figure IA  i  n Box 1), 
one can specify the dimensions along which volitional changes in population activity result in 
changes in the cursor’s movement (see Figure IB,C i n Box 1)  [49,51,55,57,79–81]. However, 
not all desired population activity patterns and neural trajectories are volitionally achievable. 
In particular, there are constraints on how neurons covary (‘neural manifold’) [52], on the pop-
ulation activity patterns that are readily expressed within the neural manifold (‘neur al repertoire’)
[79,82], and on the time courses of neural activity within the neural repertoire [54], among other 
constrain ts (Box 2). 

Accuracy in guiding neural activity to a specified state
The ‘accuracy’ of a perturbation tool refers to how reliably it can elicit a desired population activity 
pattern. To assess its accuracy, we ask first, how close can it bring neural activity to a target region 
in neural population activity space, and second, how consistently it can do this across repeated tri-
als. To attain accurate control over neural activity, it may be necessary to account for the neural
state at the onset of the perturbation because this can influence the outcome (Figure 3C,D). 
There are other senses in which we can consider a perturbation technique to exhibit accuracy.
Trends in Cognitive Sciences, January 2026, Vol. 30, No. 1 45
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Figure 3. The properties of neural activity perturbations. (A) High flexibility. Neural activity in response to different 
combinations of perturbation parameters (colored trajectories) evolve in different directions. Each trajectory represents the 
trial-averaged activity for one particular combination of perturbation parameters. (B) Low flexibility. The direction in which 
neural activity trajectories evolve is similar for different combinations of perturbation parameters. As a consequence, large 
regions of state space cannot be achieved using such a perturbation method. (C) High accuracy. Repeated application of 
the same combination of perturbation parameters drives neural activity to a similar state. Each trajectory represents neural 
activity on a single experimental trial. The trial-to-trial variability in the neural activity at perturbation onset (shaded dots) 
does not influence the outcome of the perturbation. (D) Low accuracy. Population activity patterns elicited by the 
perturbation are dispersed because the perturbation does not compensate for the trial-to-trial variability in neural activity at 
perturbation onset (shaded dots, the same locations as in panel C). The neural activity after perturbation can be even
more variable from trial-to-trial than the neural activity at perturbation onset. (E) The neural activity in response to a
perturbation adheres to intrinsic single-neuron and network-level constraints (beige surface). (F) The neural activity in
response to a perturbation deviates from the intrinsic neural constraints.
For example, it may provide the ability to define the exact location in the brain where activity 
changes originate, the timing of activity changes elicited, and the knowledge or specification of 
the mechanisms by which the elicited changes in neural activity are achieved (Table 1).

External perturbation methods are limited in their accuracy due to the impact of ongoing activity 
fluctuations on the perturbation outcome, which results in trial-to-trial variability. A way to improve 
the accuracy of neural activity control is to increase the granularity of the external perturbation
method itself – for example, optical methods can selectively target specific cells and deliver
46 Trends in Cognitive Sciences, January 2026, Vol. 30, No. 1
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Box 2. Considerations and limitations of BCIs as a perturbation tool

Using BCIs for neural perturbations requires subjects to volitionally modulate their neural activity based on task goals and 
sensory feedback. This involves several key considerations. First, some physiologically possible population activity pat-
terns may be inaccessible under volitional control. For example, animals might be unable to volitionally elicit population ac-
tivity patterns that drive muscle activations without actually moving the arm. As another example, brief disruptions in
excitation/inhibition (E/I) balancemay be caused by the transient onset of a sensory stimulus propagating through the brain
via intrinsic biophysical and network-level mechanisms [115], but might not be achievable through volitional control. 
Second, intrinsic circuit constraints can set limits on the timescales of perturbations that are possible using BCI-based ap-
proaches. Desired activity changes that are very fast (e.g., mil lisecond timescale) or that need to be triggered with very
short latencies might not be achievable using volitional modulation [25]. Finally, the BCI design and the training protocols 
used by experimenters may also impact an animal’s ability to identify appropriate control strategies to elicit certain popu-
lation activity patterns using volition. For example, even when it is possible for an ani mal to learn to volitionally elicit new
population activity patterns, how the animal learns to control a BCI can lead them to a local optimum in the solution space
of neural activity [116,117]. In this case, they might require an incremental training strategy to overcome such cognitive
constraints and produce the instructed patterns [56]. 

A limitation of BCIs as a perturbation tool is that there may be contexts in which it would be desirable to override intrinsic 
constraints on neural activity. This might be the case for the purpose of system identification. For example, prefrontal [118], 
premotor [119], and motor [98] circuits have been shown to exhibit robustness to large-scale, non-natural activity pertur-
bations, potentially through mechanisms that involve neural population-level properties [118], inter-hemispheric commu-
nication [119], or maintaining E/I balance [98]. Another context in which we might require activity perturbations that do 
not adhere to intrinsic neural constraints would be for treatments of neurological disorders, where we may require activity
perturbations that can override these constraints in order to create therapeutic interventions.

External perturbation methods can, in principle, allow for direct control over the location and timing of the change in neural 
activity. By contrast, BCI perturbations rely on upstream populations to trigger changes in the targeted population. Since 
BCI perturbations do not specify how neural activity should change beyond the targeted population, there can be multiple 
possible solutions for upstream activity changes and recurrent interactions that ul timately lead to similar activity in the
targeted population. These upstream activity changes could influence the neural computation or behavior being studied,
even if the computation or behavior does not rely on the targeted population.
specific amounts of stimulation to each of the selected cells [8,9]. Even still, the effect of stimula-
tion can depend on the ongoing state of the population activity. This dependence might be over-
ridden if the stimulation is strong (e.g., optical stimulation using high laser intensities, or electrical 
microstimulation using large currents). However, if the stimulation parameters are adjusted to 
modulate rather than override activity, then the outcome of the stimulation would depend on
the ongoing activity [83]. To further improve control, a closed-loop design can be used where 
the stimulation parameters are adjusted in real time based on measurements of the current neural 
state. Implementing this approach requires models that can accurately predict how external per-
turbations will affect neural activity (as described in the section ‘Flexibility in bringing neural activity
to different states’) and it is still a challenge to deploy these models in real time to account for on-
going fluctuations in neural activity (but see [75,84–87]). 

By contrast, a closed-loop design is inherent to BCI paradigms. Fluctuations in neural activity (e.g., 
due to a slow drift in neural activity [88] or changes in neural engagement [89]) that are read out by 
the BCI mapping have a direct impact on the movement of the external effector and, therefore, the 
sensory feedback received by animals. By leveraging this feedback, animals can counteract the ef-
fect of these fluctuations using their own volitional control of neural activity to achieve successful 
BCI control. Thus, BCI s are a particularly powerful tool to accurately produce targeted activity
that is consistent across trials.

The accuracy of neural activity control can depend on several BCI design choices, such as the 
dimensionality and modality of the sensory feedback provided to the animal and the effector kine-
matics that neural activity is mapped to. First, the dimensionality of sensory feedback determines
the number of BCI readout dimensions, which is usually smaller than the number of dimensions of
Trends in Cognitive Sciences, January 2026, Vol. 30, No. 1 47



Trends in Cognitive Sciences

Table 1. Comparison of BCIs as a perturbation tool with external perturbation methodsa,b,c 

Features BCI perturbations External pertu rbations

Flexibility Eliciting diverse 
range of pop ulation
activity patterns

(+) Achieved by specifying an 
appropriate BCI mapp ing and
diverse BCI task goals

(±) Needs a model that maps 
various stimulation parameter
combinations to activity targets

Generating arbitrary 
activity patterns

(−) Activity patterns that cannot be 
volitionally elicited are not
accessible

(+) Neural activity that is outside 
natural conditions but within
physiological limits can be evoked

Targeting identified 
neuronal 
subpopulations

(±) BCIs can be constructed such 
that the BCI mapping uses only
identified subpopulations

(+) Optical methods can target 
genetical ly identified populations

Accuracy Trial-to-trial 
reliability 

(+) Closed-loop design of BCIs 
allows animals to counteract 
ongoing fl uctuations in neural
activity to reliably generate the
desired activity

(±) Needs a model that considers 
ongoing activity fl uctuations to
select the appropriate perturbation
parameters

Control of location 
and timing of the
origin of activity
changes

(±) Does not allow full control over 
where and when neural activity 
changes originate that result in the
desired activity modulation in the
targeted population

(+) Allows full control of the location 
and timing of the origin of activity
perturbation

Timescale of activity
changes

(−) Sensory delays and timescales 
of volitional modulation can 
constrain the timescale of changes
in the targeted population

(+) The timescale of the 
perturbation is constrained only by 
the biophysical mechanisms that
the perturbation recruits

Knowledge of the 
mechanism 
producing activity
changes

(±) The principles of BCI function 
are well understood, but the exact 
manner in which upstream circuits 
give rise to neural activity changes
in the targeted population is not
well known and cannot be readily
controlled

(±) The nature of external signals 
delivered into the brain to cause the 
perturbation is known, although the 
precise mechanism of action on the
circuit can be underspecified
(e.g., electrical microstimulation
can impact cell bodies or fibers of
passage)

Naturalness Activity achieved 
through intrinsic 
neuronal and
network
mechanisms

(+) Volitional modulation of neural 
activity inherently propagates 
through intrinsic neuronal and
network mechanisms

(−) The action of external 
perturbations overrides intrinsic 
neuronal and network constraints
to generate activity

Activity appears in 
ethological 
conditions of the
animal

(±) Requires designing a BCI 
mapping and task such that it 
generates neur al activity that is
observed during specific behaviors

(±) Requires a model that specifies 
the perturbation parameters that 
generat e neural activity observed
during specific behaviors

a (+) Ways in which the method inherently exhibits a given feature.
b (±) Ways in which the method can or needs to be developed to exhibit a given feature.
c (−) Ways in which a method may be inherently limited.
population activity. Hence, many redundant population activity patterns lead to the same BCI 
readout and consequently elicit the same sensory feedback [79,90]. This can lead to dimensions 
along which ongoing activity fluctuations are not controlled (see Figure IB–C  i  n Box 1). Second, 
the sensory modality of the feedback and its associated latency can influence how interpretable 
the feedback is about the ongoing neural activity. For instance, visual feedback might be easier to
parse than proprioceptive feedback, but proprioceptive feedback is faster than visual feedback
[91]. Whether the feedback is provided through the senses or via intracortical stimulation can 
also affect its interpretation. Visual feedback may be more interpretable than intracortical 
microstimulation of the sensory cortex, although with sufficient training, BCI users can learn to re-
liably interpret the microstimulation signals [31,92]. These aspects of the sensory feedback can
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impact the accuracy with which neural activity is controlled moment-to-moment. Third, the BCI 
mapping might drive the effector's position, velocity, acceleration, or a combination of these. 
Each of these choices affects the degree to which neural activity changes are integrated over 
time to drive the effector state, and consequently the accuracy with which we can shape the
time course of neural activity required for successful BCI control. Mapping neural activity to effec-
tor position creates the tightest correspondence between ongoing population activity state and
effector state (see Figure ID–E  i  n Box 1). A position-based mapping allows the experimenter to 
set requirements on the time course of the elicited neural activity in the readout dimensions [54]. 

Naturalness of elicited neural population activity patterns
‘Naturalness’ of elicited activity refers to the similarity of the elicited activity to neural activity that 
accompanies the sensory, cognitive, and motor processes that drive an animal’s  behavior  in
the absence of perturbations. To evaluate the naturalness of an elicited activity pattern, we can 
characterize the degree to which it aligns with activity observed during specific behaviors. 
When the elicited activity aligns with those observations, it can be confirmed to be natural. How-
ever, when the elicited activity does not match that observed during the animal’s behavior,
assessing its naturalness becomes more complicated. This is because the elicited activity pattern
might occur during a behavior not tested in the laboratory setting. To conclude that elicited activity
is not natural, in principle, would require knowledge of the full range of neural activity observed in
ethological contexts.

Another way to quantify naturalness is in terms of whether elicited activity patterns are achievable 
through intrinsic single-neuron and network-level mechanisms, since population activity patterns 
that underlie sensory, c ognitive, and motor processes are constrained by these intrinsic neural
mechanisms [93,94]. As a consequence of these constraints, neural activity naturally exhibits
structure in how neurons covary [50,52], in the distribution of population activity [79,82,95] and 
in the time course of population activity [54,96]. Using the state space view, these constraints 
imply that population activity tends to lie in specific regions of st ate space and follow particular
paths as the activity changes over time (Figure 3E). Eliciting activity patterns that adhere to 
these intrinsic neural constraints is important when the objective of manipulating neural activity 
is to characterize how different neural population activity patterns causally relate to specific be-
haviors [1]. Perturbations that do not adhere to such constraints would be considered unnatural, 
but they can still be highly informative, such as for system identification (Box 2). 

External perturbation methods, such as electrical or optical stimulation, can elucidate causal re-
lationships between changes in neural activity originating in the targeted population and subse-
quent changes in both neural activity and behavior. These methods typically elicit unnatural 
population activity patterns by broadly affecting neurons, overriding biophysical processes and
network-level interactions in neural populations [97,98] and leading to activity that may fall outside 
the regions of state space that neural activity naturally occupies (Figure 3F). As a consequence, 
perturbing neural activity using external forces can l ead to unnatural perceptual experiences
[99–101]. Recent developments in perturbation techniques, such as holog raphic optogenetics
[9], have enhanced our ability to selectively manipulate neural activity along dimensions engaged 
during an animal’s behavior, allowing us to generate activity patterns that resemble those ob-
served during behavior. This has enab led the characterization of the dynamics of population ac-
tivity that underlie behaviorally relevant computations (e.g., [102,103]). However, such 
perturbations still usually violate the network-level constraints that govern how neural activity in 
the targeted population is coordinated with activity in other interconnected brain regions. During 
an animal’s behavior, a change in activity in any given population is triggered by inputs from up-
stream brain regions. When the targeted population is driven directly by external perturbation
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Outstanding questions 
What aspects of neural activity are and 
are not volitionally controllable?

Are there differences in the level of 
volitional control of neural activity in
different brain areas or neuronal
subpopulations?

How widespread are the changes in 
neural activity induced by voli tional
control beyond the targeted
population?

How can we design sensory feedback 
to be most useful to animals for 
enacting the desired volitional
changes in neural activity?

For which brain disorders are BCI-
based perturbations most amenable
as a therapeutic tool?
methods, the relationship between activity in that region and its upstream brain regions would be 
altered. If we want to perturb activity in the targeted population in a manner that resembles how its
activity would be driven by other brain regions, we would need to manipulate activity in multiple
brain regions simultaneously.

By contrast, BCIs perturb neural activity through volitional forces internal to the brain, and thus, recruit 
the inputs from other neurons and brain areas needed to modulate the targeted neural population. 
Because of this, the population activity patterns elicited using BCIs obey network-level constraints 
due to network connectivity within the targeted population, as well as constraints due to connectivity
across brain regions to which the targeted population is connected (Box 2). Even when novel popu-
lation activity patterns are induced during BCI learning, these novel patterns are still constrained by 
physiological limitations and are learned through intrinsic synaptic and network mechanisms
[47,104]. Additionally, how BCIs are designed can influence the degree to which elicited activity re-
sembles activity during other behavioral contexts. For example, biomimetic decoder designs aim t o
match the mapping between neural activity and overt movements as closely as possible [105]. 

Concluding remarks 
The main thesis of our review is that BCIs function as a tool for the causal perturbation of neural 
activity. Seen in this light, we can consider BCIs among the suite of tools available to manipulate 
neural activity, and we can expand the range of questions that can be addressed about neural 
circuit function. As with any perturbation tool, BCIs have a unique mixture of advantages and lim-
itations in how they manipulate and perturb neural activity. These need to be considered when
selecting BCIs as a causal perturbation method, and in interpreting the outcomes of BCI-
based perturbations (Box 2 and Table 1). It is also possible to combine volitional activity modula-
tion using BCIs with external perturbation methods to further expand the range of questions that
can be addressed [59,60,106–108]. 

As a result of its reliance on volition to modulate neural activity, BCIs may be well suited to inves-
tigate complex cognitive functions that rely on volitional process es that are distributed across
many brain areas (see Outstanding questions). These include learning, attention, decision mak-
ing, motivation, emotion, motor control, and more [46–48,63,109,110]. Where in the brain 
these processes originate is uncertain and, likely, there is no single point of origin. BCIs can 
use volition to recruit the broader networks in which the targeted population is embedded, and
doing so may be necessary to influence cognitive functions that rely on distributed circuits across
the brain.

BCIs can also be used to repeatedly manipulate brain-wide neural activity that supports com-
plex cognitive processes. Doing so could have significant therapeutic implications since re-
peated modulation of activity can induce long-lasting modifications of neural pathways
[111–113]. As a result, BCI-based perturbations may be a promising tool for the treatment of 
cognitive and neurological disorders by potentially enabling long-term reconfi guration of neural
activity across the brain.
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