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Abstract

Brain stimulation has the potential to create desired neural population activity states.
However, it is challenging to search the large space of stimulation parameters, for
example, selecting which subset of electrodes to be used for stimulation. In this
scenario, creating a model that maps the configuration of stimulation parameters to
the brain’s response can be beneficial. Training such an expansive model usually
requires more stimulation-response samples than can be collected in a given experi-
mental session. Furthermore, changes in the properties of the recorded activity over
time can make it challenging to merge stimulation-response samples across sessions.
To address these challenges, we propose MiSO (MicroStimulation Optimization),
a closed-loop stimulation framework to drive neural population activity toward
specified states by optimizing over a large stimulation parameter space. MiSO
consists of three key components: 1) a neural activity alignment method to merge
stimulation-response samples across sessions, 2) a statistical model trained on the
merged samples to predict the brain’s response to untested stimulation parameter
configurations, and 3) an online optimization algorithm to adaptively update the
stimulation parameter configuration based on the model’s predictions. In this study,
we implemented MiSO with a factor analysis (FA) based alignment method, a
convolutional neural network (CNN), and an epsilon greedy optimization algorithm.
We tested MiSO in closed-loop experiments using electrical microstimulation in the
prefrontal cortex of a non-human primate. Guided by the CNN predictions, MiSO
successfully searched amongst thousands of stimulation parameter configurations
to drive the neural population activity toward specified states. More broadly, MiSO
increases the clinical viability of neuromodulation technologies by enabling the
use of many-fold larger stimulation parameter spaces.

1 Introduction

Brain stimulation is an important tool for treating brain disorders [1–3] and for causally perturbing
neural activity states to understand brain function [4]. Because complex brain functions are realized
through the coordinated activity of populations of neurons, brain stimulation techniques to control
neural population activity have the potential to manipulate complex brain function. Most brain
stimulation studies to date have used electrical microstimulation to produce a motor response [5]
or perceptual experience [6, 7], disrupt neural activity [8, 9], or shift cognitive state [10]. It has
been less common to consider the response of a population of neurons to microstimulation [11–14].
In principle, different combinations of stimulation parameters make it possible to create diverse
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neural population activity patterns [15–20]. However, it is challenging to identify specific stimulation
parameters that achieve a desired activity manipulation for an entire recorded neural population.

Previous studies have developed closed-loop stimulation methods to search the stimulation parameter
space [12, 21, 22]. A key challenge for closed-loop stimulation is to widely sample the multi-
dimensional stimulation parameter space. It is necessary to collect many stimulation-response
samples before the closed-loop stimulation procedure can begin to work effectively. A key innovation
of our work is to merge stimulation-response samples across experimental sessions [23–25]. The
ability to merge data leverages the finding that neural population activity tends to occupy a lower-
dimensional space than the number of neurons being recorded, which enables the alignment of
low-dimensional spaces across sessions. By merging data across multiple previous sessions, it is
possible for the closed-loop stimulation procedure to work effectively starting from the very outset of
the current session.

In this study, we propose MiSO (MicroStimulation Optimization), a closed-loop stimulation frame-
work to drive neural population activity toward specified states by optimizing over a large stimulation
parameter space (Section 2.1). MiSO consists of three key components: 1) a neural activity alignment
method to merge stimulation-response samples across sessions (Sections 2.2 and 2.3), 2) a statistical
model trained on the merged samples to predict the brain’s response to untested stimulation parameter
configurations (Section 2.4), and 3) a closed-loop optimization algorithm to adaptively update the
model’s predictions and then choose the next stimulation parameter configuration to test (Section 2.5).
In this study, we implemented MiSO with a factor analysis (FA) based alignment method [23], a
convolutional neural network (CNN) model [26], and an epsilon greedy optimization algorithm [27].
These methods were chosen to satisfy the fast online computation requirement during the closed-loop
stimulation experiments with a predictive model trained on a limited amount of data. However, MiSO
is a general framework and applicable to other design choices.

We tested MiSO using electrical microstimulation (uStim) in a non-human primate implanted with
a multi-electrode array in the prefrontal cortex (PFC, area 8Ar). MiSO was used to optimize the
location of the stimulated electrode(s) on each trial through closed-loop updates, while keeping
other parameter values such as current amplitude and frequency fixed. We considered a large uStim
parameter space, defined by all possible patterns in which two electrodes out of 96 electrodes are
stimulated (4,560 patterns). MiSO’s latent alignment method enabled us to merge neural activity
across sessions to increase the number of stimulation-response samples (Section 3.1). MiSO’s CNN
model trained on these merged stimulation-response samples accurately predicted neural responses to
untested uStim parameter configurations (Section 3.2). In closed-loop experiments with a non-human
primate, MiSO successfully searched among 4,560 uStim parameter configurations to drive the neural
population activity toward targeted states. By enabling the search of a larger stimulation parameter
space, MiSO produced novel population activity patterns which were not achievable by searching
over a smaller stimulation parameter space (Section 3.3).

2 Methods

2.1 MiSO overview

The goal of MiSO is to identify stimulation parameter configurations that produce specified neural
population activity states (Fig. 1A). MiSO first identifies a reference low-d latent space of the high-d
population activity to which the neural activity from all the other experimental sessions are aligned
(Fig. 1B, Section 2.2). MiSO then collects stimulation-response samples on multiple experimental
sessions, then merges the samples using latent space alignment (Section 2.3). The samples are
used to fit a statistical model to predict the brain’s response to all possible stimulation parameter
configurations within the set of parameters defined by the user (Section 2.4). These model predictions
obtained prior to the closed-loop experimental session(s) are used to initialize the optimization
procedure. At the beginning of each closed-loop experimental session, MiSO identifies the latent
space for the session. MiSO then aligns it to the reference latent space, which was used to generate
the model predictions (Section 2.5). On each trial, MiSO stimulates using the chosen parameters and
updates the predictions based on the responses measured online (Fig. 1C). MiSO iteratively runs this
optimization over trials to produce the specified latent activity state.

In the following sections, we refer to a specific stimulation parameter configuration as a “stimulation
pattern” and the induced brain response as the “stimulation response”. The stimulation patterns
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Figure 1: Experimental paradigm and MiSO closed-loop framework. (A) MiSO’s goal is to
optimize brain stimulation parameter configurations to create specified neural population activity
states. (B) Experimental setup. Top: Spiking activity was recorded from a multi-electrode array
implanted in PFC. During fixation, uStim was applied for 150ms (orange bar) to induce a specified
neural population activity state in the post uStim period (pink bar). Bottom: The uStim response was
evaluated within a low-d latent space (e.g., 2D) identified from high-d multi-electrode spiking activity.
(C) Closed-loop stimulation framework. Each MiSO iteration involves four steps (Section 2.5).

tested in this study consist of all possible patterns in which one of 96 electrodes is stimulated
(single electrode stimulation patterns) and/or two of 96 electrodes are stimulated (double electrode
stimulation patterns). While the neural activity used in this study consists of spiking responses
recorded with a planar grid of electrodes implanted in the brain and each stimulation pattern specifies
the location of the electrodes used for stimulation within the grid, MiSO can be readily applied to
other stimulation/recording protocols (e.g., holographic optogenetics [19]).

2.2 Latent space identification

To merge stimulation-response samples across multiple experimental sessions, MiSO identifies
a low-d latent space of the high-d population activity in each session. For this study, we used
Factor Analysis (FA), which provides computationally fast latent space identification and latent state
estimation, compatible with closed-loop experiments. Since MiSO’s ultimate goal is to create targeted
changes in neural population activity that lead to changes in brain state and in turn behavior, MiSO
identifies the intrinsic latent space only using non-stimulation trials.

For the ith session, MiSO extracts a list of ni “usable” electrodes ei → Rni , where each element of
ei is an integer representing one of the electrodes. An electrode is deemed “usable” if it satisfies
criteria involving its mean firing rate, Fano factor, and coincident spiking with other electrodes (see
Section S1). For each time bin indexed by k = 1, ...,KnoStim

i
, MiSO then takes spike counts during

the fixation period (Fig. 1B) on each usable electrode xnoStim

i,k
→ Rni . MiSO fits the following FA

model using the EM algorithm:

znoStim

i,k
↑ N (0, I)

xnoStim

i,k
|znoStim

i,k
↑ N (!iznoStim

i,k
+ µi,”i)

(1)

where znoStim

i,k
→ Rm, with m < ni, is the low-d latent activity for the kth time bin, !i → Rni↑m is

the loading matrix whose columns define the low-d latent space, µi → Rni contains the mean spike
counts for each electrode, and ”i → Rni↑ni is a diagonal matrix capturing the independent variance
of the spike counts for each electrode.

2.3 Latent space alignment

To merge neural activity across experimental sessions, we used the latent space alignment method
introduced in [23] (termed “FA+Procrustes”). It has been shown to work well in a brain-computer
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interface, which like MiSO is a closed-loop experimental paradigm. The FA+Procrustes method
solves the Procrustes problem to find an orthogonal transformation matrix to maximize the alignment
between two FA loading matrices. First, MiSO runs a single experimental session exclusively with
non-stimulation trials and extracts a list of usable electrodes e0, which contains n0 electrodes. MiSO
uses the data from this session to identify a reference latent space !0 → Rn0↑m. For each subsequent
session, MiSO aligns the latent space identified in the ith session !i to the reference latent space !0.
Concretely, for the ith session, MiSO identifies an orthogonal transformation matrix Ôi → Rm↑m

that fulfills:
Ôi = argmin

O:OO↭=I

↓!0(ecom, :)↔ !i(ecom, :)O↭↓2
F

(2)

where ecom = e0 ↗ ei is a list of usable electrodes common to the reference session and the ith
session, and ↓ · ↓F is the Frobenius Norm. This optimization can be solved in closed-form [28]. The
Ôi found is applied to !i to obtain the aligned latent space !̃i → Rni↑m:

!̃i = !iÔi

↭
(3)

The latent activity in the post-stimulation period (Fig. 1B) is estimated as the posterior mean from the
FA model (equation (1)) using the loading matrix !̃i:

zStim

i,k
= ωi(x

Stim

i,k
↔ µi) (4)

where zStim

i,k
→ Rm, xStim

i,k
→ Rni , and ωi = !̃↭

i
(!̃i!̃

↭
i
+ ”i)↓1. By using !̃i, the induced latent

activity zStim

i,k
resides in a common latent space across all sessions.

2.4 Stimulation-response sample collection and CNN model fitting

To predict the stimulation response to untested stimulation patterns, MiSO uses a statistical model
trained on the merged neural activity across sessions. We used a CNN in this study to capture
the spatial structure of the stimulation-response relationship across the multi-electrode array (see
Sections 2.7 and 3.2 for model selection). To train the CNN, MiSO runs two phases of experimental
sessions to collect stimulation-response samples. In the first phase, MiSO applies randomly-selected
stimulation patterns to train an initial CNN model. In the second phase, MiSO uses the trained CNN
to choose stimulation patterns to maximize the diversity of the observed stimulation responses.

2.4.1 Phase 1: Random stimulation pattern selection

In the first phase, we apply random stimulation patterns over R experimental sessions to train the
initial CNN model. With a planar grid of electrodes of size h ↘ v, the stimulation pattern tested
in the kth trial during the ith session Si,k → Rh↑v is encoded using a value of 1 for stimulated
electrodes and 0 for all other electrodes. The induced latent activity state zStim

i,k
→ Rm is computed

using equation (4). The entries of zStim

i,k
corresponding to the user defined t target dimensions

within the m dimensional aligned latent space (t ≃ m) are subselected and collected in a new
vector žStim

i,k
→ Rt. All tested stimulation patterns Si,k and corresponding responses žStim

i,k
across R

sessions are appended to obtain Sk → Rh↑v and žStim

k
→ Rt, where k = 1, ...,KStim, and K

Stim is
the total number of stimulation trials across sessions.

The totality of the stimulation-response samples Sk and žStim

k
are used to train the CNN model,

which maps the stimulation patterns Sk to the induced responses žStim

k
. Since the CNN predictions

can be variable due to training using a finite number of stimulation-response samples, MiSO uses
bagging to stabilize the CNN predictions [29]. In bagging, M CNN models are fit with bootstrapping
and the top C performing models in testing are used to generate predicted simulation responses for all
P possible stimulation patterns defined by the user (e.g., P = 4, 560 for double electrode stimulation
patterns, computed as “96 choose 2” electrodes) (Section S2). For p = 1, . . . , P , the predicted
response ẑp → Rt to the pth stimulation pattern Sp → Rh↑v is defined as the average prediction of
the C CNN models.

2.4.2 Phase 2: Guided stimulation pattern selection

Because the stimulation responses do not uniformly occupy the t-dimensional response space,
choosing random stimulation patterns in Phase 1 tends to yield responses primarily in the densest
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portions of the response distribution. To diversify the stimulation responses for retraining the
CNN, MiSO collects stimulation-response samples using a guided sample collection strategy over
G experimental sessions in Phase 2. In each session, MiSO uses the CNN-predicted stimulation
responses ẑp from Phase 1 to select stimulation patterns on the fringes (i.e., sparsely populated
regions) of the response distribution. Concretely, for each stimulation pattern p = 1, ..., P , MiSO
computes the distance measure:

dp =
1

K

∑

j↔Np

↓ẑp ↔ ẑj↓22 (5)

where Np is the set of K-nearest neighbors of ẑp. MiSO chooses the top Eg stimulation patterns that
maximize this criterion, corresponding to responses on the fringes of the response distribution. To
complement these patterns, MiSO also selects Er stimulation patterns at random (from the P possible
stimulation patterns, typically Er < Eg), corresponding to responses in the more densely populated
regions of the response distribution. The selected Eg + Er patterns are experimentally tested for
one session. The resulting stimulation-response samples are appended to the samples collected in
Phase 1 and thus far in Phase 2, and the CNN is retrained using the same bagging procedure as in
Phase 1. The CNN predictions are then updated and used to choose stimulation patterns to test in
the next experimental session. MiSO iterates these steps of selecting stimulation patterns, collecting
new stimulation-response samples, and retraining the CNN over G experimental sessions. The CNN
predictions ẑp for p = 1, ..., P obtained during the final session are used to initialize the closed-loop
optimization.

2.5 Closed-loop optimization

Each online closed-loop session starts with K
noStim
c

calibration trials, where no stimulation is
applied. MiSO extracts a list of usable electrodes ec, which includes nc electrodes, using these trials
and finds the common electrodes ecom = ec ↗ e0 between this session and the reference session.
The observed spike count vectors xnoStim

c,k
→ Rnc are used to fit the FA parameters !c → Rnc↑m,

µc → Rnc , and ”c → Rnc↑nc . The identified latent space !c is aligned to the reference latent space
!0 using the methods described in Section 2.3, yielding !̃c → Rnc↑m.

The closed-loop optimization starts by the user defining a target state žtarg → Rt and loading the
predicted stimulation responses ẑp for p = 1, ..., P obtained from Section 2.4. MiSO then randomly
chooses a stimulation pattern Ss from the P possible patterns (s = 1, . . . , P ) to start the closed-
loop optimization procedure. Subsequent stimulation patterns are chosen using the epsilon greedy
algorithm, described below. We used the epsilon greedy algorithm due to the need for a fast online
update to compensate for activity fluctuations during the closed-loop optimization.

On the kth trial during the closed-loop optimization, the selected stimulation pattern Ss is applied and
the induced response during the post-stimulation period xStim

c,k
→ Rnc is measured. MiSO estimates

the latent activity zStim

c,k
→ Rm in real time as:

zStim

c,k
= ωc(x

Stim

c,k
↔ µc) (6)

where ωc = !̃↭
c
(!̃c!̃↭

c
+ ”c)↓1. The entries of zStim

c,k
corresponding to the target dimensions are

subselected as žStim

c,k
→ Rt, and the prediction of the response to stimulation pattern Ss is updated as:

ω = ẑs ↔ žStim

c,k

ẑs = ẑs + εsω
(7)

where 0 < εs < 1 is the learning rate. This update is essential for ensuring that the CNN predictions
(based on data from previous experimental sessions) are adjusted for the current closed-loop session.
Although the CNN predictions used to initialize the closed-loop optimization can capture spatial
structure in the stimulation-response relationship, this update is performed separately for each
stimulation pattern and therefore does not leverage spatial structure (see Section 4). MiSO uses a
time-varying clipped learning rate:

εs = max(εclip,
1

N(s)
) (8)
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where 0 < εclip < 1, and N(s) is the number of trials tested with the sth stimulation pattern within
the current closed-loop session. The clipped learning rate allows MiSO to make larger updates at the
beginning of the session, when the framework tries to adapt to stimulation responses in the current
session, and smaller updates as the framework becomes more confident about the predictions.

After updating the prediction, MiSO chooses the stimulation pattern to test on the next trial using an
epsilon greedy algorithm, which balances exploitation and exploration. With a probability of 1↔ ϑ,
MiSO chooses the stimulation pattern which minimizes the L1 distance between the induced activity
and the target state

s
→ = argmin

s

↓ẑs ↔ žtarg↓1 (9)

and applies stimulation pattern Ss→ on the next trial. With a probability of ϑ, MiSO chooses a random
stimulation pattern among the P possible patterns. MiSO then iterates until the experimental session
is terminated.

2.6 Experiment details

We tested MiSO using electrical microstimulation (uStim) in a macaque monkey with a 96 electrode
Utah array implanted in prefrontal cortex (PFC, area 8Ar). Experimental procedures were approved
by the Institutional Animal Care and Use Committee (IACUC) of Carnegie Mellon University. In
each experimental session, the monkey performed a visually-guided saccade task. Each trial began
with the monkey fixating on a dot at the center of the screen (Section S3). On uStim trials, we applied
uStim for 150 ms during the fixation period. For each session indexed by i, we identified latent
dimensions by applying FA to spike counts taken in 50 ms bins from usable electrodes ei that passed
a set of criteria (Section S1). Stimulation-response samples were collected starting 50 ms after uStim
offset (Fig. 1B, pink) to avoid uStim artifacts.

The number of random stimulation sessions R and guided stimulation sessions G to collect
stimulation-response samples for CNN training (Section 2.4) were chosen based on the number
of trials the animal worked in each session (about 300-500 uStim trials per session). We performed
R = 3 sessions with random uStim pattern sampling and G = 2 sessions with guided uStim pattern
sampling. On each guided sampling session, we collected Eg = 80 patterns based on CNN predic-
tions and Er = 20 random patterns. We used the top C = 10 test performing models among M = 50
CNN models to obtain the CNN prediction. To calculate dp, we used 3 nearest neighbors of ẑp.

Each closed-loop experimental session started with K
noStim
c

= 100 no-uStim trials for latent space
calibration. For some sessions, this calibration period also included an additional 96 trials (one per
single-electrode stimulation pattern). These observations were used to compare the performance of
the “MiSO with single elec., sample avg.” with the “Single elec., same day observation” (Fig. 2B).
The latter method uses stimulation-response samples collected in the current session to initialize the
predictions (Section S4). We chose t = 2 target dimensions among the m = 4 latent dimensions.
The latent dimensionality m was determined based on the cross-validated data likelihood. We set the
learning rate εclip as 0.1, chosen manually by assessing how the latent activity state changed over
trials, and ϑ as 0.05, chosen by running simulations with previously-collected stimulation-response
samples.

2.7 Model comparison

To decide which prediction model to use in MiSO, we compared the prediction performance of uStim
responses when holding out different percentages of uStim patterns in three models: Multi-Layer
Perceptron (MLP) [30], Gaussian Process (GP) [31], and Convolutional Neural Network (CNN) [26]
(Fig. 3). For all models, we only encoded the location of the stimulating electrodes as inputs in this
study. Other stimulation parameters, such as stimulation amplitude and frequency, were constant
across electrodes and trials (see Section S3). The models differed in their ability to capture any spatial
structure present in the stimulation-response relationship, whereby stimulating with nearby electrodes
could induce similar latent activity states.

Below we describe the input (i.e., stimulation pattern) encoding format for each model. For the
kth trial on the ith session, the MLP model takes as input SMLP

i,k
→ {0, 1}96, a one-hot vector

representing each uStim pattern. Its entries have a value of 1 for each stimulated electrode and 0 for
non-stimulated electrodes. Since the one-hot input does not designate which electrodes are close
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Figure 2: Closed-loop performance in a non-human primate of MiSO initialized using merged
samples. (A) An example closed-loop experimental session. The top two panels show smoothed
(for visualization) FA latent activity in the two target dimensions. Trials for all three methods were
interleaved in the session. The bottom two panels show the electrode selected for uStim on each trial
by “Random uStim” and “MiSO with single elec., sample avg.”. (B) Mean L1 error relative to the
“No uStim” baseline across 5 closed-loop experimental sessions. Error bars indicate standard error
across sessions.

to or far from each other, this MLP model does not capture spatial structure among the stimulating
electrodes. For the kth trial on the ith session, the GP model takes as input SGP

i,k
→ R2n, where

n is the number of electrodes used for stimulation. The locations of each stimulating electrode
are encoded by a pair of values {0, 1, ..., 9} ↘ {0, 1, ..., 9}, with the stimulating electrodes sorted
in ascending order by electrode id. This input encoding format for the GP model captures spatial
structure using a single Radial Basis Function kernel. Note that this format requires all stimulation
patterns to have the same number of stimulating electrodes. For the kth trial on the ith session, the
CNN takes a grid-format input with the same layout as the electrode array S

CNN

i,k
→ {0, 1}10↑10,

where electrodes being used for stimulation have a value of 1 and all other electrodes have a value of
0. The CNN captures spatial structure using multiple 2D convolutional filters applied to this grid
input.

3 Results

3.1 Merging stimulation-response samples across sessions

When the stimulation parameter space is large, the number of uStim patterns we can test within
an experimental session is much smaller than the total number of possible uStim patterns. This
requires merging neural activity across sessions to create a large enough set of stimulation-response
samples to learn their relationship. To develop MiSO, we considered merging neural activity based on
aligning latent spaces across sessions [23]. To assess the effectiveness of this method for uStim, we
empirically measured the uStim response for all possible single-electrode uStim patterns (96 patterns).
We ran 5 experimental sessions in which we stimulated with each of the 96 electrodes on the array
for 3-7 trials per session. We found that raw uStim responses were inconsistent across sessions due
to neural recording instabilities but were more consistent within the aligned latent space (Fig. S1).
This opened up the possibility of estimating uStim responses based on merged stimulation-response
samples collected in previous sessions.

To test this idea, we ran closed-loop experiments with all single-electrode uStim patterns in which
we used the sample average of the merged stimulation-response samples from previous sessions to
initialize the predicted stimulation responses ẑp in MiSO (Section 2.5). We call this method “MiSO
with single elec., sample avg.” (Section S4). Here, we could use this method instead of the CNN
model to generate the predictions zp, given that for the small parameter space of single electrodes
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Figure 3: Leveraging spatial smoothness to predict uStim responses to untested uStim patterns.
(A) uStim pattern difference determined by the physical location(s) of the stimulating electrode(s)
on the array (illustrated here for single-electrode patterns). (B) Relationship between uStim pattern
difference (horizontal axis, L1 distance, Section S5) and uStim response difference (vertical axis,
latent activity difference along FA dim1) when stimulating using single electrodes. A positive
correlation (r) implies that stimulating using nearby electrodes tended to induce similar responses.
(C) uStim response prediction error as a function of the percentage of held-out uStim patterns during
training. Error bars indicate standard error across test datasets. The black square indicates the test
MSE achieved using the sample average of the training data. (D, E) Same format as (B) and (C)
respectively, but for stimulation using double-electrode patterns. In (E), we experimentally tested
45% of all possible double-electrode patterns (9 sessions, 3301 trials).

we could collect sufficient stimulation-response samples for all stimulation patterns to compute the
average responses. We compared this method to two baselines, “No uStim” and “Random uStim”
(Section S4), which allow us to assess whether MiSO induces activity closer to the target state than via
natural activity fluctuations or random uStim patterns, respectively. On each trial, we randomly chose
one of the three methods. “MiSO with single elec., sample avg.” (Fig. 2A, blue lines and dots) drove
neural activity closer to the target state than “No uStim” and “Random uStim” (Fig. 2A, gray and
green lines). Across multiple sessions with a different target state on each session, MiSO achieved
significantly smaller errors than the two baseline methods (Fig. 2B, N = 5 sessions, p < 0.05 for
“No uStim” and “Random uStim”, one-tailed t-test). These results indicate that MiSO can identify
effective stimulation patterns by leveraging merged samples from previous sessions.

To further validate the utility of merging past observations, we compared MiSO’s performance with a
method where the predictions were initialized using stimulation-response samples (one uStim trial
for each of 96 electrodes) acquired immediately before starting the closed-loop optimization. We call
this method “Single elec., same day observation”. This method and MiSO use different approaches to
initialize the same closed-loop procedure (equations (6)-(9)). MiSO leverages stimulation-response
samples collected across multiple previous sessions for initialization. By contrast, “Single elec., same
day observation” uses the stimulation-response samples that can be collected in the current session
for initialization, with the advantage that it gets to observe responses in the current session. We
found that “MiSO with single elec., sample avg.” performed equivalently to “Single elec., same day
observation” (Fig. 2B, N = 5 sessions, p = 0.715, two-tailed t-test). This result indicates that the
merging of stimulation-response samples across previous sessions in MiSO enables the closed-loop
stimulation procedure to work effectively from the very outset of the current session. Furthermore,
this result using single-electrode stimulation patterns represents an important building block for
optimizing over larger stimulation parameter spaces, where merging stimulation-response samples
across sessions becomes essential.
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Figure 4: Closed-loop performance in a non-human primate of MiSO initialized using a CNN.
(A) Range of activity patterns achievable by single (blue) and double (pink) electrode uStim patterns,
as predicted by the CNN. Dashed region: area reachable exclusively by double-electrode uStim.
Yellow star: target state used in (B). (B) Example closed-loop experimental session. Same format as
Fig. 2A. (C) Mean L1 error of different methods relative to “No uStim” baseline, across 3 closed-loop
sessions. Error bars indicate standard error across sessions.

3.2 Predicting uStim responses using a CNN

When a search space is small (e.g., 96 single electrodes), we can measure the responses to all uStim
patterns to initialize MiSO (as we did with “MiSO with single elec., sample avg.”, Section 3.1). This
method becomes untenable as we increase size of the stimulation parameter space (e.g., stimulating
two electrodes out of 96 yields 4,560 uStim patterns, which would require more than 30 experimental
sessions to collect 3 repeats of each uStim pattern). Thus, to expand the stimulation parameter space
with MiSO, we need to reduce the required number of stimulation-response samples to learn their
relationship.

We asked whether there was spatial structure in the stimulation-response relationship, which could
be leveraged to predict the uStim response with a limited number of samples (Fig. 3A). For this, we
ran 5 experimental sessions in which we stimulated with each of the 96 electrodes on the array for
3-7 trials per session. With single-electrode uStim, we indeed observed spatial smoothness in the
uStim response across physical locations on the array (Fig. 3B, Fig. S2A). In other words, stimulating
with nearby electrodes tended to induce similar responses. We then asked whether we could use this
property to predict the response to untested uStim patterns. We found that the GP and CNN models
more accurately predicted uStim responses than the MLP model when holding out uStim patterns,
indicating that spatial smoothness is a useful property for generalization to untested uStim patterns
(Fig. 3C).

To increase the size of the stimulation parameter space, we ran 9 experimental sessions in which
we stimulated with two out of 96 electrodes (4,560 possible patterns). We were only able to test 45
percent of this large number of possible uStim patterns, with most of the uStim patterns tested for one
trial each. As with the single-electrode uStim patterns, we also observed spatial smoothness in the
double-electrode uStim patterns (Fig. 3D, Fig. S2B). By leveraging this spatial smoothness, the CNN
achieved better generalization performance to untested uStim patterns than the other models (Fig. 3E).
Although both the GP and CNN capture aspects of spatial smoothness, the CNN outperformed the
GP for double-electrode uStim. Whereas the CNN uses multiple convolution filters to capture the
spatial structure of uStim patterns, the GP uses just one spatial kernel, likely limiting its performance.
Furthermore, there is no natural input encoding format for a GP when stimulating using more than
one electrode on a 2D array. Overall, these results indicate that the CNN model can generalize its
predictions to even untested uStim patterns, enabling MiSO to perform closed-loop optimization over
a large stimulation parameter space with a limited number of stimulation-response samples.
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3.3 Closed-loop testing of MiSO initialized using a CNN

By combining the latent space alignment method (Section 3.1) and the CNN prediction model
(Section 3.2), we tested MiSO in closed-loop experiments in a non-human primate over a large uStim
parameter space, defined by all possible double-electrode uStim patterns (4,560 patterns). To train
the CNN model, we ran 2,122 double-electrode uStim trials across 5 sessions (representing ~30
percent of the possible patterns) and merged the stimulation-response samples using latent space
alignment. Using the trained CNN model, we predicted the uStim response for all double-electrode
uStim patterns. The key motivation of expanding the stimulation parameter space is to expand the
range of uStim responses that can be produced. Based on the CNN predictions, we found that the
range of activity states achievable by double-electrode stimulation patterns spanned novel regions of
the target space that were not reachable using single-electrode uStim (Fig. 4A, Fig. S3).

To demonstrate the benefit of searching a larger stimulus parameter space, we ran closed-loop
experiments in which we set the target states to those exclusively reachable using double-electrode
uStim patterns (Fig. 4A, yellow star). We implemented “MiSO with double elec., CNN”, in which
CNN predictions ẑp were used to initialize the closed-loop optimization (Section 2.5). We compared
the performance of “MiSO with double elec., CNN” with three baselines: “No uStim”, “Random
uStim”, as well as MiSO optimizing over the 96 single-electrode uStim patterns (termed “MiSO
with single elec., CNN”). If the CNN predictions are meaningful and the closed-loop optimization
is able to guide the search in the stimulus parameter space, “MiSO with double elec., CNN” would
outperform the three baselines. Indeed, “MiSO with double elec., CNN” (Fig. 4B, pink lines and
dots) successfully identified double-electrode uStim patterns that induced responses closer to the
target state than the three baseline methods (gray, green, and blue lines). Across multiple sessions
with different target states, “MiSO with double elec., CNN” produced smaller errors than the three
baseline methods (Fig. 4C, N = 3 sessions, p < 0.05 for “No uStim” and “Random uStim”, and
p = 0.079 for “MiSO with single elec., CNN”, one-tailed t-test). These results demonstrate the utility
of MiSO, which enables searching over a larger stimulation parameter space than previously possible.

4 Discussion

In this work, we proposed MiSO which searches a large stimulation parameter space to drive neural
population activity toward specified states. MiSO’s closed-loop optimization procedure is guided by
predictions of a CNN trained on merged neural activity across sessions. To our knowledge, this is
the first study to apply latent space alignment in the field of brain stimulation to merge stimulation-
response samples across sessions. This enables MiSO to search larger stimulation parameter spaces
than previously possible.

Although we demonstrated MiSO’s functionality in a 2D target space (t = 2), the neural activity
corresponding to a desired brain state might need to be specified in a higher dimensional space
(t > 2). As the dimensionality of the target space grows, it may become necessary to expand the
stimulation parameter space in order to achieve a greater variety of target states. Provided that a target
state is achievable, the epsilon greedy algorithm would require more time to identify appropriate
stimulus parameter configurations. The reason is that a stimulation pattern that successfully achieves
a target in two dimensions would not necessarily produce the desired activity if a third dimension
was added to the target specification. In this case, the use of a more efficient online algorithm would
be beneficial to reduce the exploration of suboptimal stimulation parameter configurations.

To expand the range of achievable population activity states, one might consider expanding the
stimulation parameter space. For example, in the context of electrical microstimulation, we could use
stimulation patterns involving larger numbers of electrodes and/or different current amplitudes or
frequencies. For the CNN model (or any other predictive model) to retain its prediction accuracy, it
would likely need to capture additional structure in the stimulation-response relationship (e.g., similar
stimulation amplitudes or frequencies lead to similar responses) and require more training data.
Furthermore, MiSO’s closed-loop updates of the predicted responses are performed separately for
each stimulation pattern (equation (7)), which becomes untenable as the stimulation parameter space
grows. In this case, incorporating a statistical model in the closed-loop updates to account for spatial
(or other) structure could be beneficial, such that observing a response to one stimulation pattern
leads to updates of the predicted responses for multiple stimulation patterns. These computations
would need to be performed fast enough to be used in a closed-loop optimization procedure.
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Supplementary material

S1 Spiking activity preprocessing

To identify the latent dimensions using FA, we computed binned spike counts during the 1.2 s fixation
period on each no-uStim trial (50 ms bins, yielding 24 bins per trial). Thus, KnoStim

i
for the ith

session was the number of no-uStim trials ↘ 24. These no-uStim trials were also used to extract a
list of usable electrodes ei for the ith session based on the following three criteria: mean firing rate
>1 Hz, Fano factor <8, and <20% coincident spiking with each of the other electrodes. The latent
dimensionality (m = 4) was chosen based on the cross-validated data likelihood across multiple
sessions, then used for all sessions. To evaluate the uStim response, we computed binned spike counts
starting 50 ms after uStim offset on each uStim trial (Fig. 1B) to avoid uStim artifacts. The latent
activity was then computed using equation (4).

S2 Models architecture and fitting

The CNN architecture and hyperparameters were determined based on a grid search. The following
describes the CNN architecture used in this work from input to output: 1. a convolutional layer
with 32 channels, spatial kernel size 3x3, and stride size 1, followed by ReLU activation, 2. a
convolutional layer with 64 channels, spatial kernel size 3x3, and stride size 1, followed by ReLU
activation, 3. two linear layers with ReLU activation, and 4. a linear output layer of size equal to
the target dimensionality without any activation. The MLP architecture used in this work includes:
1. an input layer of size 96, 2. a hidden layer of size 10, followed by ReLU activation, and 3.
an output layer of size equal to the target dimensionality. The CNN and MLP were implemented
in PyTorch and fit using the Adam optimizer with mean squared error loss and a learning rate of
0.001. The GP model was fitted using the GPyTorch library [32]. We used a Radial Basis Function
whose length scale hyperparameter was chosen by maximizing the marginal data log likelihood
using the Adam optimizer with a learning rate of 0.001. We trained all models on a local computing
cluster using 4 NVIDIA GeForce RTX GPUs and 11GB of RAM. We used the same architecture and
hyperparameters for all experiments.

To train CNN models using bagging (Section 2.4), the merged stimulation-response samples across
sessions were split into training, validation, and test sets with a ratio of 80:10:10. Each CNN model
was trained on the training data. The validation data was used for hyperparameter tuning. The test
data were used to evaluate the ability of the models to generalize to untested uStim patterns, and to
choose the top C performing models to generate the uStim response predictions for all possible uStim
patterns. These predictions were used to initialize the closed-loop optimization (Section 2.5).

S3 Details of uStim experimental paradigm

In each experimental session, the monkey performed a visually-guided saccade task. In this task,
the monkey first fixated on a dot at the center of the screen. Following a random (1.45-1.75s)
fixation period, the center dot turned off and one of four peripheral targets (45°, 135°, 225°, 315°)
appeared. The monkey saccaded to that target to receive a liquid reward. There were two types of
visually-guided saccade trials: “uStim trials”, in which we applied uStim, and “no-uStim trials”, in
which we did not apply uStim. The experimental system randomly chose which trial type to perform
in an interleaved manner. On uStim trials, we applied uStim for 150 ms during the fixation period.
The stimulation was biphasic with each square pulse in the biphasic pair being 250 ms in duration.
We set the current amplitude low enough not to induce any eye movements (current amplitude: 25 uA
for single-electrode uStim, 15 uA + 15 uA for double-electrode uStim). We changed the location(s)
of the stimulated electrode(s) on each trial, while keeping other parameter values such as current
amplitude and frequency (350 Hz) fixed. In each closed-loop session, we chose two target dimensions
along which we could modulate neural activity and induce diverse latent activity with uStim. These
were not necessarily the top FA dimensions that explained the greatest covariance among the neurons.
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S4 Closed-loop performance assessment methods

The table below summarizes the methods used to assess closed-loop performance. The “Prediction
model” column indicates the method used to obtain uStim response predictions to initialize the
closed-loop optimization. The “Training data” column indicates the stimulation-response samples
used to train the prediction model. The “uStim patterns” column indicates the number of electrodes
used for stimulation, both in the training data and during closed-loop optimization. The “Online
algorithm” column indicates the method used to choose the next uStim pattern. All methods that use
the epsilon greedy algorithm also perform closed-loop updates of the predicted responses (equations
(6)-(9)).

Method Pred. model Training data uStim patterns Online algorithm

No uStim None None None None

Random uStim None None Single elec. for Section 3.1
Double elec. for Section 3.3 Random selection

Single elec., same day observation Sample avg. Same day Single elec. Epsilon greedy
MiSO with single elec., sample avg. Sample avg. Multi day Single elec. Epsilon greedy
MiSO with single elec., CNN CNN Multi day Single elec. Epsilon greedy
MiSO with double elec., CNN CNN Multi day Double elec. Epsilon greedy

S5 Spatial structure of uStim responses

To evaluate the spatial smoothness of uStim responses across the multi-electrode array (Fig. 3), we
measured the spatial similarity between uStim patterns (dpattern) and the similarity in the uStim
response elicited by those patterns (dresponse). We computed these metrics for every pair of tested
uStim patterns.

For single-electrode uStim patterns e1 = [x1, y1] and e2 = [x2, y2] (for xi and yi → {0, 1, ..., 9}), we
quantified their spatial similarity using the L1 distance:

dpattern = |x1 ↔ x2|+ |y1 ↔ y2| (10)

where x1 and y1 are the spatial coordinates on the multi-electrode grid for the first uStim electrode
e1, and x2 and y2 are the spatial coordinates for the second uStim electrode e2.

For double-electrode uStim patterns, each pattern involves two electrodes. Let e1 = [x1, y1] and
e2 = [x2, y2] represent the uStim electrodes used for the first pattern, and e3 = [x3, y3] and
e4 = [x4, y4] represent the uStim electrodes used for the second pattern. To calculate the distance in
this case, we computed:

d
1
pattern

= (|x1 ↔ x3|+ |y1 ↔ y3|) + (|x2 ↔ x4|+ |y2 ↔ y4|)
d
2
pattern

= (|x1 ↔ x4|+ |y1 ↔ y4|) + (|x2 ↔ x3|+ |y2 ↔ y3|)
(11)

and used min(d1
pattern

, d2
pattern

) as the distance measure.

For each pair of uStim patterns, we quantified the difference in uStim response using the L1 distance:

dresponse = |z1 ↔ z2| (12)

where z1 is the response to the first uStim pattern along a target dimension, and z2 is the uStim
response to the second uStim pattern along the same target dimension. To focus on local smoothness,
we only analyzed the pairs in which dpattern was less than 8 in the single-electrode case, and less
than 16 in the double-electrode case.

Using the dpattern and dresponse values, we computed the correlation between them to evaluate if
spatial structure is present. A positive correlation indicates that uStim electrodes located closer to
each other on the array tend to induce a more similar response.
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S6 Summary of experimental sessions

The experimental sessions used in this study comprised 3 sessions without uStim (reference sessions),
10 sessions involving single-electrode uStim, 19 sessions involving double-electrode uStim, and 8
closed-loop sessions. Each of the entries in the tables below uses a subset of the sessions described
above.

The table below summarizes the number of sessions used in each closed-loop experimental result:

Reference session Training sessions Closed-loop test sessions

Fig. 2 1 session 5 sessions 5 sessions

Fig. 4 1 session 5 sessions for single elec. CNN
5 sessions for double elec. CNN 3 sessions

The table below summarizes the number of sessions used in each offline analysis result:

Reference session Training sessions Test sessions

Fig. 3B, Fig. 3C, and Fig. S1A 1 session 5 sessions 5 sessions
Fig. 3D, Fig. 3E, and Fig. S1B 1 session 9 sessions 5 sessions
Fig. S3 1 session 10 sessions (split into train and test)

S7 Code availability

Python code for MiSO is available on GitHub at https://github.com/yuumii-san/MiSO.git.
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Figure S1: uStim response consistency across sessions. (A) Response maps of uStim-induced
mean firing rates. Each panel shows the mean firing rate, averaged across the entire array, induced
by stimulating each electrode individually. For example, the color of the cell in (x,y) position (1,2)
in a given response map indicates the mean firing rate across the array induced by stimulating
this particular electrode. Each column corresponds to a different session. (B) Response maps of
uStim-induced mean latent activity across trials. Each panel shows the average latent activity induced
by stimulating each electrode individually. The latent spaces have been aligned across sessions.
Stimulation-response samples from the five sessions shown here are used to compute the sample
average-based predictions in Fig. 2. (C) Normalized distance of response maps from session 1. The
mean firing rates and latent activity are normalized across sessions using a min-max transformation
to align their scales. The uStim response is more consistent across sessions in the aligned latent space
than in the raw firing rate space.

Figure S2: Relationship between uStim pattern spatial similarity and response similarity along
the second target dimension. Same format as Fig. 3B and Fig. 3D, which were based on the first
target dimension. Left, single-electrode uStim, right, double-electrode uStim.
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Figure S3: Generalization to uStim patterns involving a different number of electrodes can
be challenging. (A) Prediction error for different CNN models tested on single-electrode uStim
data. Each bar shows the predictive performance of CNNs trained with different merged stimulation-
response samples (single-electrode uStim trials, double-electrode uStim trials, and both types of trials).
A CNN trained on single-electrode uStim trials performed better than a CNN trained on double-
electrode uStim trials. Because the single-electrode training trials include all 96 possible patterns,
we are not testing here the ability of the CNN to generalize to unseen uStim patterns (see Fig. 3).
Instead, we are assessing to what extent the CNN is able to predict the response to double-electrode
uStim patterns given only training data from single-electrode uStim patterns. If the responses to
double-electrode uStim were simply a linear combination of the responses to single-electrode uStim
using each constituent electrode, then the performance of the CNN trained on double-electrode uStim
trials should perform as well as the CNN trained on single-electrode uStim trials. However, this was
not the case. These results reveal a complex relationship between single-electrode uStim responses
and double-electrode uStim responses. Furthermore, training a CNN on both types of uStim trials
yielded similar accuracy to training only on single-electrode uStim trials. (B) Prediction error for
different CNN models tested on double-electrode uStim data. Here the double-electrode uStim trials
used to train the CNN comprised 1,031 (of the possible 4,560) uStim patterns, which were partially
overlapping with the double-electrode uStim patterns used for testing. Even though this requires
some generalization to double-electrode uStim patterns not used in training, the CNN trained on
double-electrode uStim trials still outperformed the CNN trained on single-electrode uStim trials.
This provides further evidence for a complex relationship between single-electrode uStim responses
and double-electrode uStim responses.
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