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C
ortically controlled prostheses are able to translate neural activity from the cerebral
cortex into control signals for guiding computer cursors or prosthetic limbs. While
both noninvasive and invasive electrode techniques can be used to measure neural
activity, the latter promises considerably higher levels of performance and therefore
functionality to patients. The process of translating analog voltages recorded at the

electrode tip into control signals for the prosthesis requires sophisticated signal acquisition and
processing techniques. In this article we briefly review the current state-of-the-art in invasive,
electrode-based neural prosthetic systems, with particular attention to the advanced signal pro-
cessing algorithms that enable that performance. Improving prosthetic performance is only
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part of the challenge, however. A clinically viable prosthetic
system will need to be more robust and autonomous and,
unlike existing approaches that depend on multiple computers
and specialized recording units, must be implemented in a
compact, implantable prosthetic processor (IPP). In this article
we summarize recent results which indicate that state-of-the-
art prosthetic systems can be implemented in an IPP using
current semiconductor technology, and the challenges that
face signal processing engineers in improving prosthetic per-
formance, autonomy and robustness within the restrictive
constraints of the IPP.

INTRODUCTION
An emerging class of prostheses aims to provide control of para-
lyzed upper limbs, prosthetic arms, and computers by translat-
ing cortical neural activity into control signals. A number of
research groups have now demonstrated that monkeys and
humans can learn to move computer cursors and robotic arms
to various locations simply by activating the neural populations
that participate in natural arms movements [1]–[7]. These com-
pelling proof-of-concept laboratory demonstration systems
motivate the development of clinically viable, electrode-based
neural prosthetic systems that exhibit the level of cortical con-
trol needed for many everyday behaviors. The process of trans-
lating analog voltages recorded at the electrode tip into control
signals for a prosthesis requires sophisticated signal acquisition
and processing techniques. The challenge then to signal pro-
cessing engineers is twofold: develop neural signal processing
algorithms that achieve the maximum possible prosthetic per-
formance and do so in a clinically viable manner.

Neural prosthetic systems are only clinically viable when the
anticipated quality of life improvement outweighs the potential
risks. Noninvasive techniques [8] are attractive due to their
reduced surgical risk (and well studied, see other articles in this
issue), however, invasive, electrode-based techniques have
become a major research thrust, as they offer high signal quality
and thus the potential for increased performance relative to
noninvasive approaches. For example, the current state-of-the-
art electrode-based system in our laboratory achieves an infor-
mation transfer rate of 6.5 b/s [7], many fold higher than
previously reported invasive and noninvasive systems. The
tradeoffs for invasive approaches, however, are increased surgi-
cal risk and high cost. As a result, at present, chronic electrode-
based prosthetic systems are a long-term approach, with
near-term applications potentially limited to only the most
severely disabled patients. The transition from research to wide-
spread use will require improving the performance-risk-cost
balance by increasing overall prosthetic performance and reduc-
ing surgical risk and device cost through system integration. 

The prosthesis performance cited above is made possible
through high-quality neural signal measurement and advanced
signal processing methods, in particular uncompromising real-
time action potential identification (spike sorting) [9] and prob-
abilistic movement decoding algorithms (in particular, a special
case of [10]). These techniques are differentiated from other

approaches by their ability to extract more unique neurons,
more accurately, in the spike identification process, and incor-
porate more, and make better use of, neural activity in the
decoding process. It is anticipated that >10 b/s systems are
achievable with further improvements in neural measurement
and signal processing methods [11]. 

Equipment intensive, laboratory-based experiments, like
those cited above, in which a restrained subject performs a high-
ly controlled task under supervision by a trained researcher are a
powerful experimental platform but not necessarily the best
approximation of a clinical environment. Clinical systems cannot
be reliant on trained operators and external control; they must
be autonomous and capable of identifying patient intent, specifi-
cally whether neural activity actually corresponds to an intended
movement, using that neural activity alone. Furthermore, pros-
thetic systems must provide these capabilities continuously (24
h/day, everyday) and robustly, not just during the short, discrete
daily recording periods used in current experimental protocols.
Spike sorting algorithms that utilize unsupervised learning
reduce the need for a trained operator and offer the potential for
robust, adaptive algorithms which respond autonomously to
changes in the neural recordings. Similarly decoding algorithms
with autonomous neural state detection (movement intended or
not) eliminate the need for external cues to identify time periods
with relevant neural activity.

Prosthetic systems need to reduce surgical risk and device
cost by enabling system integration and eliminating chronic
transcutaneous connectors. The goal is a fully integrated pros-
thetic system, where electrodes, digital post-processing and
wireless telemetry comprise a single implantable unit that will
provide state-of-the-art performance in a self-contained package
with reduced physical footprint and no chronic tissue openings
[12]. In such an approach, however, signal acquisition and pro-
cessing must be performed within a very restrictive power budg-
et. The transmission of neural information out of the electrode
implantation site is a key challenge. While the required band-
width is within the capability of current wireless links, the
power consumption of such a link is prohibitive. Some form of
bandwidth reduction is essential. There are a number of
approaches to achieve this reduction; however, many utilize
lossy compression and thus can potentially reduce prosthetic
performance. Our goal is to not sacrifice any prosthesis per-
formance; thus we wish to implement the same high perform-
ance signal processing algorithms we use in the laboratory,
which can reduce the required bandwidth by a factor of ∼106,
in the implantable system, while meeting power constraints.

The combination of strict power constraints, aggressive per-
formance goals, and robustness and autonomy requirements
present a difficult design challenge to signal processing engi-
neers, and new algorithms and implementations will be needed.
In this article, we provide a brief introduction to chronic elec-
trode-based neural prosthetic systems, with particular attention
to the digital post-processing algorithms in current state-of-
the-art laboratory based systems. We will show that such algo-
rithms along with the relevant signal acquisition hardware are
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in principle realizable as an IPP in current CMOS technology
within power consumption constraints [13], [14]. Better per-
forming, more robust algorithms are possible, and, as we will
present, will be required to transition from laboratory-based
systems to an IPP operating continuously, and autonomously,
in a clinical setting.

CHRONIC ELECTRODE-BASED NEURAL PROSTHESES
The basic architecture of motor and communication prosthe-
ses are shown in Figure 1(a). Motor prostheses aim to pro-
vide neural control of the paralyzed limb, while
communication prostheses aim to provide a communication
channel equivalent to “typing” on a computer. The relation-
ship between a movement and the neural response (tuning)
is used to design estimation
(decoding) algorithms to infer the
desired movement from only the
neural activity, a sample of which is
shown in Figure 1(b). The system
can then generate control signals
appropriate for continuously guid-
ing a paralyzed or prosthetic arm
through space (motor prosthesis)
or positioning a computer cursor
on the desired letter on a keyboard (communication prosthe-
sis). Two types of neural spike activity, plan and movement,
are well suited for driving prosthetic systems plan activity,
present from soon after the reach target is identified until
just after the movement begins, is tuned for the target of the
movement. (In the context of this article, neural activity is

almost exclusively spiking activity recorded in the motor
(M1) and dorsal premotor (PMd) cortex. While the local field
potential (LFP) has been shown to predict movement direc-
tion in other cortical regions [16], its role in M1 and PMd
remains unclear.) This goal information can be decoded to
drive communication prostheses, which only need to esti-
mate the movement endpoint [5], [7]. Motor prostheses must
incorporate movement activity since the goal is to recreate
the desired movement. Plan activity can play a role in motor
prostheses, however, by providing a probabilistic prior, or tar-
get estimation, to constrain movement estimation [15], [10]. 

ACHIEVING STATE-OF-THE-ART PERFORMANCE
As shown in Figure 1, there are four major components—neural

signal acquisition, spike sorting, neural
decoding and control signal genera-
tion—that can be engineered to
improved prosthetic system perform-
ance. Control signals are considered to
be part of the actuation system and are
not discussed. Neural signal quality, and
particularly the number of independent
neurons that could possibly be observed
is a function of the electrode technology,

surgical placement and time since implantation, all topics beyond
the scope this article. The two remaining blocks, spike sorting
and neural decoding, are where significant improvements in per-
formance can be realized through advanced signal processing
algorithms, and thus will be the focus of the remainder of this
article. In the following section we will describe the algorithms

[FIG1] (a) Concept sketch of cortically controlled motor and communication prostheses. Adapted from [11]. (b) Neural activity (spikes
indicated by black dots) during typical instructed-delay reaching task. Adapted from [15].
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used to achieve the 6.5 b/s transfer rate communication prosthe-
ses described in [7]. Although these are not the most advanced
algorithms available, they are some of the highest performing in
active use in a complete prosthetic system, and are excellent
examples of the types of algorithms currently being developed.

SPIKE SORTING
The neural signal captured by an extracellular electrode contains
the overlapping, noisy measurement of action potentials (spikes)
from several nearby neurons. Automatic or semi-automatic tech-
niques for disambiguating between unique neurons, often termed
“spike sorting,” have been heavily investigated (see [17] for a review
and [18] for a description of more recent methods). For a given
channel, each neuron is assumed to produce a unique and consis-
tent spike waveform (100–400 μV peak-to-peak, 1 ms in duration),
which is then corrupted by noise. Spike-sorting techniques attempt
to identify and classify these distinct spike shapes. Most algorithms
consist of two phases, a training phase, when the sort parameters
are set using a subset of the neural recording, and a classification
phase, during which all identified spikes are assigned to originating
neurons using previously determined parameters. 

Although numerous automated spike sorters have been
developed, they are only beginning to come into widespread use
among electrophysiology researchers. The benefit of a manual,
or semimanual approach is direct control of the spike identifica-
tion; the tradeoffs are long sorting times and inconsistency
(measured average false positive and false negative rates for
manual sorting are 23 and 30% respectively [19]). In contrast,
automated sorters are faster, more consistent (for a given data
set), often more sensitive and accurate (i.e., able to extract more

unique neurons, more accurately) and, most importantly for
clinical applications, able to operate without human interven-
tion. We describe one particular automated spike sorting algo-
rithm, the Sahani algorithm [9], which is in daily use in our
laboratory, and is an excellent example of a large class of statisti-
cally rigorous sorters.

It must be noted that while some form of spike sorting is
employed in most systems, it is neither required nor universally
used. In [20], the authors describe a threshold based spike iden-
tification methodology that does not attempt to disambiguate
between multiple neurons recorded on a single electrode.
Implemented with a simple analog circuit, this approach has
very low power consumption and significantly reduces telemetry
bandwidth, both important when developing an IPP. However,
this approach conflates all the neurons recorded on a given
channel to a single neuron. Two neurons observed on the same
channel are not guaranteed, however, to have identical response
properties. Therefore when unique neurons are not disam-
biguated information is irrecoverably lost, artificially limiting
overall system performance.

Figure 2(a) shows the block diagram for the Sahani sorting
algorithm. After digitization the broadband neural signal (sam-
pled at 30 kHz) is high-pass filtered (cut off at 250 Hz) to
remove the low frequency components (termed LFP) and
expose the spikes. The rms of the filtered signal is computed,
and a threshold of 3× the rms voltage is used to identify spike
events. These events are “snipped” from the signal waveform,
forming a set of ∼1 ms (32 sample) spike snippets. Segments
that do not exceed the threshold are also collected and used to
estimate the background noise process. The characterization of

[FIG2] Sahani spike sorting algorithm (a) Block diagram showing signal flow for Sahani spike sorting algorithm. Both training and real
time classification paths are shown. (b) Aggregate error rate versus neuron signal-to-noise ratio (SNR) for Sahani algorithm (blue) and
K-means/PCA based sorting (green). Adapted from [14].
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the background noise enables the projection of the spike wave-
forms into a robust noise-whitened principal components
(NWrPCA) space. During training, relaxation expectation-maxi-
mization (REM) and cascading model selection (CMS) are used
to cluster the data and fit the clusters to a mixture model. The
mixture model represents the prior probability of observing
each neuron identified as well as the probability of threshold
crossings corresponding to noise rather than neural activity.

While computationally complex, the Sahani algorithm
(and other similar algorithms) offer significant performance
improvement. In comparing performance with a much sim-
pler K-means/PCA-based technique, two critical aspects are
made apparent. By using cascading model selection, the
Sahani algorithm can typically determine the correct number
of neurons autonomously, a crucial feature for an unsuper-
vised spike sorter. Furthermore, the mixture model approach
provides a well-founded technique for rejecting threshold-
crossing events that do not actually
correspond to neural spikes. Figure
2(b) shows the aggregate error rate
of the Sahani algorithm (blue) and a
K-means/PCA based sorting
approach (green) for a synthetically
generated data set [14]. The aggre-
gate error rate is defined as the sum
of false positives and false negatives
divided by the total number of spikes
generated. The hollow circles indi-
cate missed neurons or error rates
greater than 100%. The median aggregate classification error
rate (false positive and false negative) for the Sahani algo-
rithm is 3.7%. In contrast, the K-means/PCA approach, which
assumed three unique neuron per electrode, misclassified
many neurons entirely. Even if these misclassified neurons
are removed, the aggregate median error rate is 20%. (See
[14] for description of synthetic data generation and the K-
means/PCA sorting methodology.) 

NEURAL DECODING
The intended movement can be estimated from the neural activ-
ity (as identified by the spike sorter) using parameterized mod-
els. Examples of decoding algorithms currently in use include
population vectors [3] and linear filters, [2], [4], [6]. Both of
these decoders assume a linear relationship between the neural
activity and intended movement. The linear algorithms are
effective, and attractive due to their low latency and simple
implementations, but more accurate movement estimation can
be obtained using recursive Bayesian decoders [21]–[23]. Unlike
the linear decoders, the probabilistic methods allow for nonlin-
ear relationships between the neural activity and the intended
movement and provide confidence regions for the movement
estimates. And although the probabilistic decoders tend to be
more complex than the linear methods, the latency can be kept
low by combining the results of many simple probabilistic
decoders running in parallel [10].

As discussed previously, the plan activity reliably indicates
the intended reach goal and can serve either as the primary
source of information (for a communication prosthesis) or as a
probabilistic prior constraining movement estimation [2]. Let z
be a q × 1 vector of spike counts across the q simultaneously
recorded neurons in a prespecified time window (e.g., 100 ms)
during the delay period preceding the reach. The distribution of
spike counts (from training data) for each reach goal m can be
fit to either a product of Gaussians or a product of Poissons. In
both models the neurons are assumed to be independent given
the reach goal.

For any test trial, the probability that the upcoming reach
goal is m given the plan activity z can be computed by applying
Bayes’ rule

P(m|z) = P(z|m)P(m)

P(z)
= P(z|m)

∑
m ′ P(z|m ′)

(1)

where P(m) is assumed to be uni-
form. The most likely reach goal (i.e.,
the one with the largest P(m|z)) is
taken to be the decoded reach goal.

The accuracy of the goal decoder
varies with the duration and place-
ment of the time window in which
spikes are counted, as well as the pre-
cise spike count model P(z|m) that is
used. The 6.5 b/s communication
prosthetic performance cited earlier

is achieved in large part by optimizing the configuration of the
time window with respect to overall prosthetic performance [7].
Earlier placement with respect to target appearance and shorter
duration enables more trials in a fixed unit of time, but with
reduced accuracy, with the opposite true for longer duration.
The maximum information transfer rate capacity (ITRC) actual-
ly occurs using eight targets at short window durations (∼70
ms, corresponding to short trials), despite the relatively low sin-
gle-trial accuracy at these durations (∼70% versus ∼90%
achieved with long windows).

The results of goal decoding can be used to constrain trajec-
tory estimation for motor prosthesis in several ways. Goal
directed reaches are observed to be highly stereotyped and thus
can be recreated with high accuracy using a set of canonical
trajectories selected by a goal decoder [15]. Alternately, P(m|z)
can be incorporated into a probabilistic trajectory estimator in
place of the otherwise uniform probability of a given target on a
given trial [10]. 

BUILDING AN IPP
Current neural prosthetic systems, which use microconnectors
to bring neural signals out of the body and a rack full of com-
puters and specialized post-processing hardware, are not clini-
cally viable in the long term. Although already in use for human
clinical trials [6], these systems, all of which required skilled
operators, will not scale for use outside laboratory settings. In
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previous sections we described algorithms, like unsupervised
spike sorting, which reduce the need for a trained operator.
Equally as important is reducing the physical system footprint,
cost, and surgical risk. By integrating the entire prosthetic sys-
tem, or a large portion thereof, into a single unit with wireless
telemetry and powering, the cost and size can be reduced and
the transcutaneous connector, a potential source of infection,
can be eliminated. To address these needs we propose an inte-
grated IPP, which combines a variable precision analog-to-digi-
tal converter array (ADC) [13], a digital spike sorter [14],
maximum-likelihood neural decoder [15], and a wireless data
and power transceiver (an integrated analog front end with
wireless transceiver is described in [12]).

The IPP described here is not the only approach for building
an implantable neural prosthetic system. Other low power
designs have been proposed. In [12] and [20], described earlier,
the authors proposed analog comparator-based spike identifica-
tion. However this system does not
differentiate between different neu-
rons recorded on the same channel,
thereby reducing the amount of infor-
mation extracted. In [24], the authors
limited the number of channels, ADC
resolution and sophistication of the
spike sorting algorithm to reduce
power consumption. In [25], a lossy
wavelet encoding scheme is used to
reduce the necessary data bandwidth
(and thus reducing transmitter
power). The shapes of the action
potentials are preserved and post-pro-
cessing can be used perform spike
sorting. However the data bandwidth
reduction is smaller than can be achieved with integrated sort-
ing and decoding. Furthermore, the effect of the compression
loss on the ability to distinguish spikes from different neurons
is unknown. 

In all the systems described above, the designers were
forced to make tradeoffs to reduce power consumption.
However, we argue that such concessions are not necessary.
Instead, current laboratory class capabilities can be retained by
implementing the digital post processing in hardware as part
of the implantable system. Using a metric of 1 GOPS/mW, the
sorting and decoding algorithms described previously, along
with the ADC and amplifiers are estimated to consume less
than 10 μW per channel [14], well below the limit for safe
power dissipation into the brain (80 mW/cm2 [26]). The ADC
array is a large power consumer, and reducing its power dissi-
pation is key to minimizing overall power consumption; the
per channel power consumption is: ADC: 4.2 μW, digital filter
and threshold: 1.32 μW, real-time sorting: .1 μW, spike-sorter
training: 2.8 μW [14]. ADC power consumption can be
reduced by 3.6× to 1.16 μW using a variable precision ADC
array [13], which sets the optimal bit depth of each ADC (no
higher than necessary to save power, but no lower than neces-

sary to maintain spike sorting accuracy) using the results of
the downstream spike sorter. The current focus is on designing
more power-efficient implementations for the digital filtering
and spike sorter training, efforts that would benefit from signal
processing expertise. In the case of the spike sorter training,
the solution might lie in similar forms synergy, such as the
neural decoder feeding back to the spike sorter, an as of yet
largely unexplored but potentially bountiful source of perform-
ance improvements. 

NEW CHALLENGES FOR NEURAL PROSTHESES
The spike sorting and decoding techniques described above are
relatively mature and ready for research into low-power imple-
mentations. The transition from experimental to clinical set-
tings, however, requires prosthetic systems to be more robust
and autonomous, challenges not addressed by the established
techniques. Although some solutions have been proposed, most

are in their infancy, and thus the primary
research focus is the development of prin-
cipled algorithms. The following sections
describe some of the signal processing
research underway to provide robust spike
sorting and autonomous prosthetic con-
trol and neural decoding.

CONTEXT DETECTION
A typical, daily, laboratory prosthetic ses-
sion lasts two to three hours and is con-
ducted by highly trained researchers. A
clinical prosthetic system, however, will
need to operate continuously (24 h/day,
everyday) with minimal outside assis-
tance. Reliable prosthetic performance

across different behavioral contexts is imperative. Prosthetic sys-
tems will need to interpret the user’s current behavioral context
(i.e., sleeping versus active) so as to most efficiently use
resources, by going into low-power sleep mode for example, and,
perhaps, more importantly, so as to not generate undesired
actions, such as arm movements while sleeping. Any approach
that utilizes outside assistance to identify these various contexts
will not be clinically viable due to cost and scalability, and sys-
tems that rely on the user to manually select modes might have
basic technological problems (e.g., how does a user reliant on a
prosthetic system for movement wake it up?). As neural pros-
thetic systems transition from the laboratory to the clinical set-
ting, new types of information beyond just reaching control and
discrete target selection will be required.

Although such topics are only beginning to be examined,
there is strong evidence that these macro-behavioral contexts
can, and must, be determined form the same neural activity
used to drive the prosthetic systems. Using an autonomous,
long-duration neural recording system for freely behaving
primates that we developed, called HermesB, we recorded
numerous neural channels nearly continuously over 54 h (5-
min recording periods separated with 2.5-min break) [27]. With

MOTOR PROSTHESES AIM
TO PROVIDE NEURAL

CONTROL OF THE
PARALYZED LIMB, 

WHILE COMMUNICATION
PROSTHESES AIM TO

PROVIDE A
COMMUNICATION

CHANNEL EQUIVALENT 
TO “TYPING” 

ON A COMPUTER.
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the accelerometer built into the HermesB system, the recording
blocks could be classified as active or inactive. We noticed that
while the spiking statistics were not a good indicator of behav-
ioral context, the LFP power in 5–25 Hz band was different in
the two contexts. Using a simple LFP power threshold, >89% of
5-min blocks were correctly classified as active/inactive, suggest-
ing that using a small subset of the neural information (just one
channel in this case) we could accurately monitor the subject’s
behavioral context. Although a simple example, this type of
analysis highlights the types of additional information that will
be useful in developing responsive, intuitive clinical prostheses.

ROBUST SPIKE SORTING
Part of reducing outside assistance is making prosthetic systems
more robust. In most experimental protocols the parameters
used in spike sorting and decoding are regenerated at the begin-
ning of the session and then assumed to remain constant for the
duration of the session. Daily parameter regeneration is
required to compensate for changes in the neural signals
observed between recording sessions. However, the timescales at
which these changes occur are much shorter than one day [27],
suggesting that prosthetic systems will need to regenerate their
parameters (termed retraining) more often. Using the long
duration recordings made with the HermesB system we charac-
terized the stability of neural recordings at the intermediate
timescales (i.e., between discrete daily recording periods) inac-
cessible with traditional experimental protocols. We observed

variations of up to 30% in mean waveform amplitude over peri-
ods ranging from 5 min to several hours, up to 5 μV change in
background RMS voltage, and abrupt changes in waveform
amplitude of up to 25% (V after

pp /V before
pp ) in response to high

acceleration movements of the subject’s head.
Figure 3(a) shows the waveform amplitude for two neu-

rons for selected 5-min blocks across 54 h recorded from a
freely behaving subject. The lines of constant voltage provide
a reference against which one can see the large changes in the
waveform amplitude. These changes in action potential shape
have been previously observed across once-daily recordings
[28]. Here, the results gathered with HermesB from a freely
behaving primate indicates substantial variation in spikes
waveforms over intermediate timescales as well. Figure 3(b)
shows the local change in waveform amplitude
(V after

pp /V before
pp ) when the head mounted accelerometer meas-

ured a > 3G acceleration event. Most of ∼1,700 events show
little or no change in waveform amplitude, however, two
events (indicated by arrows) show much larger, abrupt
changes in waveform amplitude. Figure 3(c) shows the wave-
form amplitude as a function of time for the 5-min block dur-
ing which event 1 occurred. The red vertical line marks the
the >3 G acceleration. The close alignment between the
acceleration event and the step change in waveform ampli-
tude strongly suggests that the relationship between the
waveform variation and acceleration event is not coincidental.
The profile is consistent with an abrupt change in array posi-
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[FIG3] Neural recording stability for freely behaving primate. (a) Spike waveforms of two neurons for selected five-min blocks across 54
h. Colored regions indicate 10–90th percentile in amplitude. Horizontal lines indicate maximum and minimum voltages for each neuron.
(b) Local change in mean waveform amplitude (V after

pp /V before
pp ) (red + symbols) for 200 snippets before and after 3G acceleration events.

(c) Waveform Vpp moving average (over 200 snippets) centered about the time indicated for the 5-min block containing event 1 from
panel (b). Time of event 1 is indicated with red vertical bar. In (b) the wide grey regions indicate night and the thin pink regions indicate
“pit stops” when the monkey was taken form the home cage and placed in the primate chair to service the recording equipment.
Adapted from [27].
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tion. The second event shows similar behavior but is not
shown. Variations in waveform amplitude and background
noise can both have adverse affects on spike sorting perform-
ance, either through the use of inappropriate threshold or out-
right misclassification. The spike identification threshold is
typically set as a multiple of the rms noise (typically 3×), thus
a 5 μV change in the RMS noise will translate into a much
larger change in the threshold, potentially resulting in missed
spikes, or an increase in noise generated, nonneural snippets.
Spike classification is based on the waveform shape, and in
particular the amplitude, and so changes in the waveform
amplitude will result in misclassification. Using the types of
variations shown in Figure 3, recorded neural waveforms were
artificially perturbed (either to increase or decrease amplitude)
prior to spike sorting and decoding. As would be expected, as
the number of neurons and the extent of perturbation increas-
es, the decoding accuracy in commu-
nication prosthetic experiments
decreases. For the particular experi-
mental data (taken from [7]) used in
this simulation, the 30% variation in
waveform amplitude observed with
HermesB translated to a reduction in
decoding accuracy from 92% to 62%
(unpublished observation, V. Gilja).

Tolerance to some variations in
neural recordings has already been
incorporated into sorting algorithms.
Firing rate dependent changes in
spike shape can be addressed by incorporating firing statistics
into the spike sorting algorithm [29] and changes in rms volt-
age can be addressed through adaptive thresholding [20]. Long
time-scale variations, however, may require periodic retraining
of the spike sorting parameters. There does not appear to be a
consensus on exactly what retraining period is required.
Experiments that use discrete daily recording periods typically
only update once per day, but future prosthetic systems that
operate continuously will likely need to retrain more regularly.
If the necessary retraining interval is short enough, adaptive
approaches, which link together otherwise independent retrain-
ing operations might be appropriate. 

In [30], the authors propose an algorithm that divides the
data into a set of short frames, sorts each frame independently,
and then performs a second global clustering operation. Each
frame (∼1,000 spikes) is assumed stationary, allowing all varia-
tions to be addressed at the global level. In [31], the authors
propose tracking changes in waveform shape by linking high-
dimensional spike clusters between frames, essentially follow-
ing the “crumbs” of shifting clusters. The tradeoffs for both
approaches is the computational overhead of continually
retraining and the large memory footprint of maintaining
global information over long time scales. For these reasons it
is unlikely that these algorithms could be successfully imple-
mented on a clinical IPP. Instead, a truly adaptive approach,
which continuously integrates and updates the parameters

might be the best approach. A suitable algorithm would have
an effective training interval short enough to track variations
in waveform shape and background process, without the cost
of discrete retraining, and long duration global waveform
shape tracking. 

AUTONOMOUS DECODE CONTROL
The macro-behavioral introspection described previously can
provide insight into the general behavioral context (e.g.,
awake versus sleeping) but is insufficiently precise for guiding
the decoding of a particular movement. During each move-
ment, motor cortical firing rates transition through a
sequence of discrete and stable states, termed “epochs,” such
as baseline, prepare, and execute (the latter two corresponding
to the plan and movement periods). Most prosthetic systems,
including those described previously, require knowing when

one or both of plan and movement
activity is present. When the transi-
tion between epochs is not detected,
and neural activity is incorrectly or
imprecisely “labeled,” decoding per-
formance suffers. Current experimen-
tal protocols require human
intervention to differentiate between
epochs; to be useful outside the labo-
ratory, however, prosthetic systems
will need to determine the epoch
autonomously. Researchers have
begun to tackle this problem; a finite

state machine (FSM)-based state detector was recently pro-
posed in [32]. This approach uses a sliding-window maxi-
mum-likelihood state classifier coupled to a finite state
machine (FSM) to estimate the current epoch.

The state transition can be modeled as a Markov process
in which the hidden state transitions through three epochs
identified above. Using the moment-by-moment a posteriori
likelihoods of the states of the resultant hidden Markov
model (HMM), the current epoch (baseline, preparatory, or
execution) can be accurately, and autonomously, estimated
[15]. Compared to the ad-hoc FSM-based approach, the
HMM-based epoch estimator provides increased accuracy,
and offers a principled approach that can leverage the exist-
ing body of work on HMMs; can more readily be extended to
incorporate other classes of neural data, such as LFP; and
can potentially adapt to the nonstationarities in neural
recordings described previously [27]. A simplified, didactic
version, of the HMM-based decoder using two targets and
ten neurons is shown in Figure 4. During the baseline phase,
a small number of states (drawn as one for simplicity) model
the variation in background of neural activity. For each pos-
sible target, one state models plan activity and second mod-
els execution, or movement, activity. The HMM structure
enables the inference of state likelihoods using a simple,
well-known recursive computation in which the a priori esti-
mate and the newest observation are used to compute an a

THERE ARE FOUR MAJOR
COMPONENTS—NEURAL

SIGNAL ACQUISITION, SPIKE
SORTING, NEURAL DECODING

AND CONTROL SIGNAL
GENERATION—THAT CAN BE
ENGINEERED TO IMPROVED

PROSTHETIC 
SYSTEM PERFORMANCE. 
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posteriori estimate (abbreviated APL and defined specifically
as L(i, t), the likelihood of being in state i at time t ). Figure
4(c) depicts the estimated APL for this trial. In this example,
the transitions form the baseline to plan to movement
regimes of activity are quite apparent in the spikes, and as
expected, the estimated state probabilities track these transi-
tions accurately and closely.

The state probabilities can be used in two ways. First, as
described earlier, the epoch can be determined by combining
the APL of activity regimes across goals. For plan activity,

Pr (preparatory regime | n0:t ) =
∑

i ∈P L(i, t)
∑

jL( j, t)
, (2)

where n0:t is the neural activity up until time t and P repre-
sents plan states (in this case planning left or right). The proba-
bility of movement states can be found similarly. The time at
which the probability crosses a predetermined threshold is an
estimate of the time of transition between epochs. An

autonomous neural prosthesis can be formed by combining
this epoch estimation with the recursive Bayesian decoder
described previously. The second use for the state probabilities
is as a decoder and not just an epoch detector. At any moment
during the trial, it is possible to estimate the target of the
intended movement as the target whose combined preparatory
and movement APL is highest.

CONCLUSIONS
The success of laboratory-based neural prosthetic systems pro-
vide proof of concept and motivate the continued development
of clinical prostheses. Although the basic neuroscience
research will always be ongoing, many of the obstacles facing
the prosthetics community as it develops a clinically viable
implantable prosthetic processor are primarily engineering
challenges. In this article we identified some of these chal-
lenges, namely improving the robustness, autonomy and power
efficiency of the prosthetics systems, along with potential solu-
tions. The challenges are formidable, but familiar to the engi-
neering community, and the field of neural prosthetics will
benefit greatly from the early and continued involvement of
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[FIG4] HMM regime detection. (a) Simple five-state reaching movement HMM. (b) An example of the neural activity for a rightward
movement. Ten neurons, recorded simultaneously are shown. Black bars indicate spike times. (c) Time series of state likelihoods for each
HMM state. The arrow depicts the estimated time of the beginning of the planning regime for the threshold value depicted. Adapted
from [15].
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experts in signal acquisition, signal processing and analog and
digital system design. 
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