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Supplementary Figure 1. Accuracy of latent variable recovery for additional combinations of

experimentally-relevant variables. Same conventions as Fig. 3d-g. These experimental variables are different

from Fig. 3 in the following ways: (a) a calcium decay constant matching the calcium indicator GCaMP6s

instead of GCaMP6f and (b) a smaller number of neurons (20 instead of 94). Overall CILDS extracts latent

variables that more closely match the ground truth simulated latent variables than the other two methods,

consistent with Fig. 3. Black circles represent the parameter settings that are fixed across all panels in each row.

Comparing to Fig. 3, there are two notable features. First, when the calcium indicator decay is slow, it becomes

even more important to deconvolve. Recall that CILDS and deconv-LDS both include deconvolution, whereas

LDS does not. CILDS performs similarly whether the calcium indicator is fast (Fig. 3d) or slow (here in panel

a). The same is true for deconv-LDS. By contrast, LDS performs worse for slow compared to fast calcium

indicator decay because it does not include deconvolution. Second with fewer neurons, the performance of all

methods goes down. And as a result, there is a smaller difference in performance between methods (here in

panel b). With less statistical power to leverage for separating calcium decay and latent timescale, the three

methods show less distinction in performance.
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Supplementary Figure 2. Accuracy of latent variable recovery in different simulated firing rate regimes.

Here we explored the sensitivity of the three dimensionality reduction approaches to neuron firing rates. In our

simulations, we defined firing rates as log(1+ exp(Wzt +µ)), where W ∈ Rq×p is the loading matrix, zt ∈ Rp×1

is the latent variable at each time point, µ ∈ Rq×1 is a constant offset vector, p is the number of latent variables,

and q is the number of neurons. Here the log and exp functions are performed element-by-element as a

rectifying nonlinearity. To specifically evaluate the sensitivity that the different dimensionality reduction

techniques might have to firing rate, we performed a new analysis in which we ran simulations with three

constant values of µ ∈{1,10,100}, where every element of µ was set to the same value. We label these values as

(a) low firing rate, (b) medium firing rate, and (c) high firing rate, respectively. We plot here the R2 measured

between the ground truth latent variables and the extracted latent variables, using the same conventions as in Fig.

3d. As in Fig. 3d, the simulation parameters were set to 94 neurons, a calcium decay corresponding to

GCaMP6f, and medium fluorescence noise. For context, in our main simulations (Figs. 3, 4, Supplementary

Figs. 1, 3, 4), (Supplementary Table 1) was estimated from electrophysiology recordings and was therefore

different for each neuron (14.0±6.8, mean ± standard deviation), similar to the medium firing rate regime here.

We found that CILDS continues to perform better than or equivalently to the other two approaches in accuracy

of latent variable recovery regardless of firing rate regime. We also note that there are differences in the overall

accuracy of latent variable recovery across firing rate regimes, with the highest accuracy of latent variable

recovery found at medium firing rates. When µ is small, the soft rectification represented by the

log(1+ exp(Wzt +µ)) term tends to squash changes in zt . As a result, the linear dimensionality reduction

methods are less able to recover the underlying latent variables zt . When µ is large, there would be greater

variance in the resulting inhomogeneous Poisson spike trains even though the variance of zt (which is the

“signal” being recovered) remains the same. This makes it more difficult for the dimensionality reduction

methods to recover the latent variables.
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Supplementary Figure 3. Comparison of CILDS and CIFA for different calcium indicators. Same

conventions as Fig. 4. Here we compare between CILDS and CIFA for (a) GCaMP6m and (b) GCaMP6s,

instead of GCaMP6f (Fig. 4). Consistent with Fig. 4, the overestimation of the calcium indicator decay time

constant for CIFA increases as the latent timescales increase. The overestimation also increases when

progressing from GCaMP6f (Fig. 4, note different vertical scale) to GCaMP6m (panel a) to GCaMP6s (panel b).
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Supplementary Figure 4. Accuracy of latent variable recovery for CILDS compared to standard

dimensionality reduction methods. (a) We assessed the performance of CILDS relative to standard

dimensionality reduction methods: factor analysis (FA), principal components analysis (PCA), and independent

components analysis (ICA). Similar to our treatment of LDS, we applied these dimensionality reduction

methods using two approaches. In the first approach, we apply the dimensionality reduction method directly to

the simulated fluorescence traces. In the second approach, we first deconvolve the fluorescence traces, then

apply dimensionality reduction, as in deconv-PCA, deconv-FA, and deconv-ICA. We then assessed the accuracy

of latent variable recovery over a range of latent timescales, shown here with the same conventions as Fig. 3d.

We found that CILDS outperforms these other dimensionality reduction methods across the range of latent

timescales. In addition, when the latent timescales are faster (left side), deconvolving first (deconv-PCA,

deconv-FA, and deconv-ICA) aids in better latent variable recovery than applying dimensionality reduction

directly to the fluorescence traces (PCA, FA, ICA). However, when the latent timescales are slower (right side),

methods which do not deconvolve (PCA, FA, ICA) outperform those which do deconvolve (deconv-PCA,

deconv-FA, and deconv-ICA). The reason is that, for the methods which do not deconvolve, the temporal

smoothing imposed by the calcium transients shows up in the latent variable estimates. This can be beneficial to

latent variable recovery if the latent variables happen to vary as slowly as the calcium transients. The CILDS

and deconv-LDS curves shown here are the same as in Fig. 3d. (b) To verify this intuition, we show latent

variables extracted by three representative methods FA (top, light blue), and deconv-FA (middle, dark blue),

deconv-LDS (bottom, purple) compared to the ground truth latent variables (black). In this case, the ground

truth latent variables have a timescale of 5000 ms. The latent variables estimated by FA are somewhat smooth

due to the calcium transients inherent to the fluorescence traces. By contrast, if we first deconvolve the

fluorescence before applying FA (deconv-FA), the estimated latent variables have no temporal smoothing. By

including a latent dynamical model (deconv-LDS), we first deconvolve to remove the temporal smoothing

imposed by calcium transients. The LDS then applies an appropriate degree of temporal smoothing to the latent

variables, as determined by the data. In this simulation, we used a setting of 94 neurons, GCaMP6f, and medium

noise. FA and PCA were implemented using custom MATLAB scripts. For ICA, we used MATLAB’s built-in

rica function.

35/52



a

b

c

Fish 1

Fish 2

Fish 3

one neuron

p < 0.05

Above diagonal: 80% 

LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 Above diagonal: 100% 

deconv-LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 Above diagonal: 100% 

CIFA

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Above diagonal: 33% 

LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Above diagonal: 100% 

deconv-LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Above diagonal: 75% 

CIFA

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Above diagonal: 60% 

LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Above diagonal: 100% 

deconv-LDS

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Above diagonal: 100% 

CIFA

C
IL

D
S

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

0

0.1

Fra
ct

io
n o

f t
ra

ce
s

p = 0.0109

-0.2

0

0.2

0

0.1

0.2

Fra
ct

io
n o

f t
ra

ce
s

p = 0.0031

-0.2

0

0.2

0

0.2

Fra
ct

io
n o

f t
ra

ce
s

p = 0.0187

-0.2

0

0.2

0

0.1

0.2

Fra
ct

io
n o

f t
ra

ce
s

p
= 0.00185

-0.2

0

0.2

0

0.1

0.2

Fra
ct

io
n o

f t
ra

ce
s

n.s -0.2

0

0.2

0

0.5

Fra
ct

io
n o

f t
ra

ce
s

n.s

-0.2

0

0.2

0

0.05

0.1

Fra
ct

io
n o

f t
ra

ce
s

n.s
-0.2

0

0.2

0

0.1

0.2

Fra
ct

io
n o

f t
ra

ce
s

p = 0.00435

-0.2

0

0.2

0

0.1

0.2

Fra
ct

io
n o

f t
ra

ce
s

n.s

Supplementary Figure 5. Performance comparison on individual larval zebrafish. Same conventions as Fig.

5c-e. (a) From left to right, correlations between recorded fluorescence and leave-neuron-out predicted

fluorescence, comparing CILDS to LDS, CILDS to deconv-LDS, and CILDS to CIFA for Fish 1. (b) Same as

(a), but for Fish 2. (c) Same as (a), but for Fish 3. These results are consistent with Fig. 5c-e. Indicated is the

percentage of significant neurons (i.e., percentage of red points) above the diagonal. Note that the threshold used

for the t-test means that we might expect 5% of the neurons to appear significant even if the effect is not real.
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Supplementary Figure 6. Performance comparison on larval zebrafish experiment with recordings from

hundreds of neurons spanning multiple brain areas. Neurons were imaged from a single plane of a larval

zebrafish brain while it engaged in “fictive swimming". Calcium imaging was performed using light-sheet

microscopy at 66 Hz in a single plane on Tg(elavl3:GCaMP6f)jf1 fish expressing GCaMP6f in the cytosol of

neurons63. The segmentation algorithm for cell identification was a modified version of a previously-proposed

method with multiple stages that goes from spatiotemporal denoising to demixing68. In the experiment, the

neurons were imaged in two conditions, randomly interleaved: (1) fictive swimming in closed loop with

backward visual flow to mimic “successful” swimming (95% of swims), and (2) swimming in open loop without

visual feedback to mimic “failed” swims (5% of swims). The imaging session was divided evenly into 10 trials,

each 76.4 seconds long. From the single plane imaging, we computed leave-neuron-out predictions using

10-fold cross-validation with 300 of the imaged neurons selected at random from the entire plane, spanning

multiple brain areas (35% from forebrain, 30% from midbrain, 35% from hindbrain). Same conventions as Fig.

5. (a) Representative fluorescence traces from seven of the imaged neurons. (b) Example recorded fluorescence

traces (black) and leave-neuron-out predicted fluorescence using CILDS (orange), deconv-LDS (purple), LDS

(cyan), and CIFA (brown). (c-e) Correlation between the recorded fluorescence and the leave-neuron-out

predicted fluorescence for CILDS versus each of the other methods. Each point represents one neuron, where

the correlation is computed for each trial (76.4 seconds long) then averaged across all 10 trials. Diagonal

histograms show the paired difference in performance between CILDS and one of the other methods, as

indicated. The correlation is higher for CILDS than (c) LDS (p < 1×10−8, n=300 neurons, paired two-tailed

t-test across the population of neurons), (d) deconv-LDS (p < 1×10−25, n = 300 neurons), and on par with (e)

CIFA (n.s., n = 300 neurons). This is consistent with the other zebrafish experiments in this paper when we

analyze each zebrafish individually (Supplementary Fig. 5). Note that the histograms are zoomed-in for visual

clarity, and therefore the ends of the histograms are not shown. The numbered points (black circles) correspond

to the examples shown in panel b. Red points indicate a statistically significant difference per neuron between

CILDS and the other method being compared using a paired two-tailed t-test across trials (p < 0.05, see

Methods). Note that the threshold used for the t-test means that we might expect 5% of the neurons to appear

significant even if the effect is not real. Here again we found that CILDS outperforms deconv-LDS (87% of red

points above the diagonal) and LDS (97% of red points above the diagonal), and performs similarly to CIFA

(47% of red points above the diagonal). To contextualize these findings, we found in simulation that even when

CILDS is substantially more accurate than CIFA at estimating the latent variables, the two methods can perform

similarly in terms of leave-neuron-out prediction (Supplementary Fig. 12). We have evidence that this may also

be the case for the calcium imaging recordings. The telltale sign is that, from these zebrafish recordings, CIFA

estimates a calcium decay constant of 9 seconds (median across 300 neurons), which is far greater than what is

expected of GCaMP6f in larval zebrafish. By contrast, CILDS estimates a calcium decay constant of 2 seconds

(median across 300 neurons), which is consistent with what would be expected of GCaMP6f in larval

zebrafish40.
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Supplementary Figure 7. Activity correlations between pairs of neurons for larval zebrafish DRN and

mouse V1. Pairwise correlations between neurons across trials for the (a) larval zebrafish DRN neurons

(0.50±0.07, mean ± standard deviation) and (b) mouse V1 neurons (0.0015±0.0005, mean ± standard

deviation). The mean is indicated by red triangles. Despite the small mean pairwise correlations in the mouse V1

data, there exists shared variability within the neural population44, 45, as indicated by the ability to reconstruct

fluorescence traces in the leave-one-out neuron analysis of Fig. 6c-e. Consistent with the difference in pairwise

correlations, the absolute level of predictability is lower for mouse V1 than for fish DRN (Fig. 5, 6).
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Supplementary Figure 8. Performance comparison on individual mice. Same conventions as Fig. 6c-e. (a)

From left to right, correlations between recorded fluorescence and leave-neuron-out predicted fluorescence,

comparing CILDS to LDS, CILDS to deconv-LDS, and CILDS to CIFA for Mouse 1. (b) Same as (a), but for

Mouse 2. (c) Same as (a), but for Mouse 3. These results are consistent with Fig. 6c-e, for each mouse

individually. Indicated is the percentage of significant neurons (i.e., percentage of red points) above the diagonal.

Note that the threshold used for the t-test means that we might expect 5% of the neurons to appear significant

even if the effect is not real.

40/52



0
45

90

Mouse 2Mouse 1 Mouse 3

Low gain High gain

Fish 1 Fish 2 Fish 3
a

b

-5 0 5
LDA 1

-15

-10

-5

0

5

10

L
D

A
 2

6

4

2

0

L
D

A
 3

-2

-4

-6

-8

LDA 1
-5 5 100 -5 0 5

LDA 1

-15

-10

-5

0

5

L
D

A
 2

0 10 20 30
Time (s)

-10

-5

0

5

10

15

20

LD
A

 1

0 10 20 30
Time (s)

-10

-5

0

5

10

15

20

LD
A

 1

0 10 20 30
Time (s)

-5

0

5

10

LD
A

 1

41/52



Supplementary Figure 9. Exploratory data analyses using CILDS. Here we visualize how the latent

variables extracted by CILDS vary with the behavioral context or sensory stimuli. We first applied CILDS to the

fluorescence traces of each animal to extract low-dimensional latent variables. For visualization, we then applied

linear discriminant analysis (LDA) to the latent variables extracted via CILDS. This allows us to find projections

that best separate neural activity with respect to different experimental variables. (a) For the larval zebrafish

DRN experiments, the variable being manipulated was the gain between the movement of the visual stimulus

and the fish’s motor response40. The fish experienced both a low gain setting to increase locomotor drive and a

high gain setting to attenuate their locomotor drive (see Methods). To demonstrate how the gain affected the

latent variables extracted by CILDS, we applied LDA to identify the axis that best separates low gain (light

green) and high gain (dark green). We see that there is a clear distinction in the latent activity from the low-gain

and high-gain conditions, indicating that CILDS is recovering experimentally-relevant modulations in neural

activity. For this analysis, we set the number of dimensions extracted by CILDS to be the mean of the optimal

latent dimensionality across outer folds for each fish (between 9 and 17, depending on fish) from nested

cross-validation (see Methods). (b) For the mouse V1 experiments, neural activity was driven by different

presented visual gratings (see Methods and Jeon et al. 201841 for more details). To visualize the latent variables

extracted by CILDS, we applied LDA to the latent variables to find the two-dimensional plane that best

separated the 12 different grating orientations (where recordings were combined across the different spatial

frequencies). Here we show three of these orientations, 0 (red), 45 (green), and 90 (blue). We observed distinct

orientation-specific clusters, indicating a reliable modulation of the CILDS-extracted latent variables with the

visual stimulus. For this analysis, we set the number of dimensions extracted by CILDS to be 50.
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Supplementary Figure 10. Accuracy of latent variable recovery while varying the number of extracted

latent variables. To understand how the accuracy of latent variable recovery is influenced by the choice of the

number of latent variables extracted by each method (i.e., latent dimensionality), we systematically varied the

latent dimensionality and evaluated the R2 between the ground truth and estimated latent variables using CILDS

(orange), deconv-LDS (purple), and LDS (cyan). In this simulation, the ground truth latent dimensionality was

fixed at 10, as in Fig. 3. If we extract too few latent variables (less than 10), the performance of all methods

degrades quickly. If we instead extract too many latent variables (greater than 10), the performance tends to be

stable. Note that when fitting more latent variables than the ground truth latent dimensionality, our

transformation matrix W has dimensions a× p, where a is the selected latent dimensionality and p is the ground

truth latent dimensionality (see Evaluation of dimensionality reduction methods in Methods). These simulations

are in a data rich regime (240,000 data points). Thus we tend to observe stable performance rather than

overfitting when the number of extracted latent variables is large.
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Supplementary Figure 11. Model selection to assess latent dimensionality. A common way of selecting the

latent dimensionality for dimensionality reduction is to vary the latent dimensionality and compute the data

likelihood (P({y}), defined based on equations (6) - (10)), in a cross-validated manner (see Methods for

cross-validation procedure). Here we show how the cross-validated data log-likelihood varies with latent

dimensionality for CILDS in (a) the larval zebrafish DRN and (b) mouse V1, with the peak data log-likelihood

marked in red.
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Supplementary Figure 12. Relationship between the two performance metrics: accuracy of latent variable

recovery and leave-neuron-out prediction. In simulation, CILDS tends to substantially outperform CIFA at

latent variable recovery (Fig. 4a). For experimental data, we do not have the ground truth latent variables, and so

we use a leave-neuron-out prediction of fluorescence. Across the zebrafish (Fig. 5) and mice experiments (Fig.

6), we found that the difference in leave-neuron-out prediction performance between CILDS and CIFA tends to

be small, in contrast to the simulation results. We wondered to what extent this could be due to the use of two

different performance metrics: accuracy of latent variable recovery for simulations and leave-neuron-out

prediction for experimental data. To better understand these differences, we computed the leave-neuron-out

prediction performance in the simulations. (a) Reproduced from Fig. 4a, shown here for reference. (b)

Leave-neuron-out prediction performance across latent timescales for CILDS (orange) and CIFA (brown) for the

same simulated data as in panel a. See Methods for details on the leave-neuron-out prediction procedure. We

found that the accuracy of latent variable recovery between CILDS and CIFA can be substantial (panel a) even

though the difference in leave-neuron-out performance is small (panel b). To understand this, recall that CIFA

erroneously attributes the slower varying fluorescence to a slower calcium decay, rather than to a longer latent

timescale (Fig. 4b). This error leads to less accurate latent variable recovery. However, when reconstructing

fluorescence, CIFA can utilize an overly-slow calcium decay to compensate for misestimated latent variables,

allowing it to perform similarly to CILDS in the leave-neuron-out correlation metric.
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Parameters Variables

q: No. of neurons 20, 50, 94

p: No. of latent variables 10

N: No. of trials 200

T : Length of trial 60 seconds

W : Loading matrix Estimated from electrophysiological recordings using FA6

µ: Mean firing rate Estimated from electrophysiological recordings data using FA6

B: Non-negative diagonal matrix I

bbb: Baseline fluorescence 000

τ: Latent timescale 50, 100, 200, 1000, 5000 ms

Γ: GCaMP6 decay f: (0.9985)I, m: (0.9993)I, s: (0.9996)I

R: Fluorescence noise low:(0.15)I, medium: (1.5)I, high: (15)I

Supplementary Table 1. Parameter values used for simulations. Parameters within the simulation framework

that were varied, and the range of parameter values tested. We chose parameter values to mimic those in real

data.
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Supplemental Information

Practical considerations

Approximating a long Gaussian process

To carry out computations using a GP, one would need to represent a covariance matrix of size T ×T in memory,

where T =6,000,000 in our simulations. For such values of T , the memory requirement can exceed the memory

capacity of the computer. To overcome this, we employed two strategies in tandem. First, we generated the

GPs one segment at a time, rather than all T time points at once. For example, to generate a GP with 6,000,000

time points, we can first generate a GP with 5,000 time points according to equations (12) and (13). Then,

we can generate a GP for the next 5,000 time points conditioned on the first 5,000 time points using Gaussian

conditioning

xxx

yyy

∼ N

000

000

 ,
 A C

CT B

 (19)

xxx|yyy ∼ N (CB−1yyy,A−CB−1CT ) (20)

where A ∈ R5000×5000 and B ∈ R5000×5000 are the covariances of the second and first half of the GP, respectively.

C ∈ R5000×5000 is the covariance between the first and second half of the GP. We can continue this procedure,

where for each new segment we condition on all of the segments that have been generated thus far. Statistically

this procedure is equivalent to if we had generated the entire GP time series at once.

As we continue this procedure, the number of time points being conditioned on will grow and the matrices B

and C in equations (19) and (20) can exceed the memory capacity of the computer. We thus employ a second

strategy that leverages the fact that, according to the squared exponential covariance (13), two time points covary

highly when they are close in time and almost independent when they are far apart in time. Thus, we make the

approximation that in equations (19) and (20), we condition only on the most recent 5,000 time points.

Computational running time

The following are representative running times to fit the different dimensionality reduction models. These

running times are based on single threads run on Matlab (2019a) using Intel(R) Xeon(R) CPU processors (Gold

6230, 2.1 GHz) with 250 GB of RAM. First, consider one cross-validation fold of the zebrafish recordings with

4 trials, 22 neurons, 10 latent variables, and 1950 time points per trial. For each EM iteration, CILDS takes on

average approximately 0.9 s, LDS (as well as the second-stage of deconv-LDS) takes 0.4 s. Second, consider

one cross-validation fold of the mouse recordings with 12 trials, 319 neurons, 30 latent variables, and 3049

time points per trial. For each EM iteration, CILDS takes on average approximately 110 s, and LDS (as well as

the second-stage of deconv-LDS) takes 10 s. For all methods, the most expensive computations are the matrix
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inversions in the expectation step of the EM algorithm. There is a p× p matrix inversion at each time point for

LDS (and deconv-LDS), and a (p+q)× (p+q) matrix inversion at each time point for CILDS, where p is the

latent dimensionality and q is the number of neurons.

EM algorithm for CILDS

The CILDS model is defined by equations (6) - (10). Only the fluorescence values yyyt are observed, whereas the

calcium concentrations ccct and latent variables zzzt are not observed.

The goal of the EM algorithm is to maximise the probability of the observed fluorescence traces P({yyy}) with

respect to the model parameters θ := {D,P,hhh2,G2,Γ,A,bbb,Q,B,R,µµµ111,V1}, where {yyy} is shorthand for yyy1, ...,yyyT .

To perform this maximization, we iteratively perform an expectation step (E-step), then a maximization step

(M-step), as detailed below.

1 Expectation Step

The goal of the E-step is to compute the posterior distribution s := P({ccc},{zzz}|{yyy}). Using this posterior

distribution, we can compute the following expectations

Es

[
ccc(i)t−1

]
,Es

[
ccc(i)t

]
,Es

[
ccc(i)t ccc(i)

′

t

]
,Es

[
ccc(i)t ccc(i)

′

t−1

]
,Es

[
ccc(i)t zzz(i)

′

t

]
Es

[
ccc(i)t−1zzz(i)

′

t

]
,Es

[
zzz(i)t zzz(i)

′

t

]
,Es

[
zzz(i)t zzz(i)

′

t−1

]
,Es

[
zzz(i)t

]
,Es

[
zzz(i)t−1

]
which are needed in the M-step. We start by rewriting equations (7) and (9) in block matrix notation

 ccct

zzzt+1

=

Γ A

0 D

ccct−1

zzzt

+
bbb

000

+
 wwwt

vvvt+1

 .
The observation model (6) can be written as

yyyt = Φ

 ccct

zzzt+1

+ εεε t , where Φ :=
[
B 0

]
.

We define lllt :=

 ccct

zzzt+1

, Λ :=

Γ A

0 D

, mmm :=

bbb

000

, nnnt :=

 wwwt

vvvt+1

, S :=

Q 0

0 P

, ηηη1 :=

µµµ1

hhh2

, Σ1 :=

V1 0

0 G2

.

The CILDS model can thus be written in block matrix notation as

yyyt = Φlllt + εεε t (21)

lllt = Λlllt−1 +mmm+nnnt (22)
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where lll1 ∼ N(ηηη1,Σ1), nnnt ∼ N(000,S), and t = 1, . . . ,T . In other words, CILDS can be written as an LDS whose

parameters are constrained in a specific way. We seek to compute P(lllt , lllt−1|{yyy}T
1 ) for t = 2, . . . ,T . This

distribution is Gaussian, and thus it is sufficient to find its mean and covariance. We denote E
[
lllt |{yyy}τ

1
]

by lllτ

t

and Var
[
lllt |{yyy}τ

1
]

by V τ
t . For brevity, we only show the results of the derivations below.

1.1 Forward Recursions

To obtain lllt
t and V t

t , we recursively compute the following equations from t = 1 to t = T

lllt−1
t = Λlllt−1

t−1 +mmm

V t−1
t = ΛV t−1

t−1 Λ
′
+S

Kt =V t−1
t Φ

′
(

R+ΦV t−1
t Φ

′
)−1

lllt
t = lllt−1

t +Kt

(
yyyt −Φlllt−1

t

)
V t

t =V t−1
t −KtΦV t−1

t .

The recursions are initialized with lll0
1 = η1, V 0

1 = Σ1.

1.2 Backward Recursions

To obtain lllT
t and V T

t , we recursively compute the following equations from t = T to t = 2. We also compute the

covariance of the joint posterior distribution P(lllt , lllt−1|{yyy}T
1 ), denoted as V T

t,t−1

Jt−1 =V t−1
t−1 Λ

′ (
V t−1

t
)−1

lllT
t−1 = lllt−1

t−1 + Jt−1

(
lllT
t −Λlllt−1

t−1 −mmm
)

V T
t−1 =V t−1

t−1 + Jt−1
(
V T

t −V t−1
t
)

J
′
t−1

V T
t,t−1 =V T

t J
′
t−1.

2 Maximization Step

In the M-step, we seek to maximize the expected log joint distribution

Q := Es

[
logP

(
{yyy}N ,{ccc}N ,{zzz}N

)]
with respect to the model parameters, where s := P({ccc}N ,{zzz}N |{yyy}N ;θ) and {}N represents all T time points

across all N trials. The joint distribution for one trial can be factorized as
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P({yyy} ,{ccc} ,{zzz}) = P({yyy}|{ccc} ,{zzz})P({ccc} ,{zzz})

= P({yyy}|{ccc})P({ccc}|{zzz})P({zzz})

=
T

∏
t=1

P(yyyt |ccct)
T

∏
t=2

P(ccct |ccct−1,zzzt)
T

∏
t=3

P(zzzt |zzzt−1)P(ccc1)P(zzz2)

(23)

where these distributions are defined in equations (6) - (10).

Q = Es

[
log

N

∏
i=1

P
(
{yyy}(i) ,{ccc}(i) ,{zzz}(i)

)]

= Es

[
N

∑
i=1

(
−1

2

T

∑
t=1

[
yyy(i)t −Bccc(i)t

]′
R−1

[
yyy(i)t −Bccc(i)t

]
− T

2
log |R|

−1
2

T

∑
t=2

[
ccc(i)t −Γccc(i)t−1 −Azzz(i)t −bbb

]′
Q−1

[
ccc(i)t −Γccc(i)t−1 −Azzz(i)t −bbb

]
− T −1

2
log |Q|

−1
2

T

∑
t=3

[
zzz(i)t −Dzzz(i)t−1

]′
P−1

[
zzz(i)t −Dzzz(i)t−1

]
− T −2

2
log |P|

−1
2

[
(zzz(i)2 −hhh2)

′G−1(zzz(i)2 −hhh2)
]
− 1

2
log |G|− 1

2

[
ccc(i)1 −µµµ1

]′
V−1

1

[
ccc(i)1 −µµµ1

]
− 1

2
log |V1|−

T (2q+ p)
2

log2π

)]
.

To maximize Q with respect to the model parameters θ , we compute the following partial derivatives

∂Q

∂B
,

∂Q

∂R−1 ,
∂Q

∂Γ
,
∂Q

∂A
,
∂Q

∂bbb
,

∂Q

∂Q−1 ,
∂Q

∂D
,

∂Q

∂P−1 ,
∂Q

∂ µµµ1
,

∂Q

∂V−1
1

,
∂Q

∂hhh2
,

∂Q

∂G−1
2

and set them to zero to solve for the parameters. Doing so results in the following M-step parameter updates, all

of which can be expressed in closed form.

Bnew =

(
N

∑
i=1

T

∑
t=1

diag{yyy(i)t Es

[
ccc(i)

′

t

]
}

)(
N

∑
i=1

T

∑
t=1

diag{Es

[
ccc(i)t ccc(i)

′

t

]
}

)−1

Rnew =
1

NT

N

∑
i=1

T

∑
t=1

(
diag{yyy(i)t yyy(i)

′

t }−2diag{BEs

[
ccc(i)t

]
yyy(i)

′

t }+diag{BEs

[
ccc(i)t ccc(i)

′

t

]
B

′}
)

Γ
new =

(
N

∑
i=1

T

∑
t=2

diag{
(

Es

[
ccc(i)t ccc(i)

′

t−1

]
}−diag{AEs

[
zzz(i)t ccc(i)

′

t−1

]
}−diag{bbbEs

[
ccc(i)

′

t−1

]
}
))( N

∑
i=1

T

∑
t=2

diag{(Es

[
ccc(i)t−1ccc(i)

′

t−1

]
}

)−1

Anew =

(
N

∑
i=1

T

∑
t=2

(
Es

[
ccc(i)t zzz(i)

′

t

]
−ΓEs

[
ccc(i)t−1zzz(i)

′

t

]
−bbbEs

[
zzz(i)

′

t

]))( N

∑
i=1

T

∑
t=2

Es

[
zzz(i)t zzz(i)

′

t

])−1
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bbbnew =
1

N(T −1)

N

∑
i=1

T

∑
t=2

(
Es

[
ccc(i)t

]
−ΓEs

[
ccc(i)t−1

]
−AEs

[
zzz(i)t

])

Qnew =
1

N(T −1)

N

∑
i=1

T

∑
t=2

(
diag{Es

[
ccc(i)t ccc(i)

′

t

]
}−2diag{ΓEs

[
ccc(i)t−1ccc(i)

′

t

]
}−2diag{AEs

[
zzz(i)t ccc(i)

′

t

]
}

−2diag{bbbEs

[
ccc(i)

′

t

]
}+2diag{AEs

[
zzz(i)t ccc(i)

′

t−1

]
Γ

′}+diag{ΓEs

[
ccc(i)t−1ccc(i)

′

t−1

]
Γ

′}+2diag{bbbEs

[
ccc(i)

′

t−1

]
Γ

′}

+diag{AEs

[
zzz(i)t zzz(i)

′

t

]
A

′}+2diag{bbbEs

[
zzz(i)

′

t

]
A

′}+diag{bbbbbb
′
}
)

Dnew =

(
N

∑
i=1

T

∑
t=3

(
diag{Es

[
zzz(i)t zzz(i)

′

t−1

]
}
))( N

∑
i=1

T

∑
t=3

diag{Es

[
zzz(i)t−1zzz(i)

′

t−1

]
}

)−1

Pnew =
1

N(T −2)

N

∑
i=1

T

∑
t=3

(
diag{Es

[
zzz(i)t zzz(i)

′

t

]
}−2diag{DEs

[
zzz(i)t−1zzz(i)

′

t

]
}+diag{DEs

[
zzz(i)t−1zzz(i)

′

t−1

]
D

′}
)

µµµ
new
1 =

1
N

N

∑
i=1

Es

[
ccc(i)1

]

V new
1 =

1
N

N

∑
i=1

Var
[
ccc(i)1

]
+

1
N

N

∑
i=1

(
Es

[
ccc(i)1

]
−µµµ1

)(
Es

[
ccc(i)1

]
−µµµ1

)′

hhhnew
2 =

1
N

N

∑
i=1

Es

[
zzz(i)2

]

Gnew
2 =

1
N

N

∑
i=1

Var
[
zzz(i)2

]
+

1
N

N

∑
i=1

(
Es

[
zzz(i)2

]
−hhh2

)(
Es

[
zzz(i)2

]
−hhh2

)′
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