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Abstract— Model-based decoding of neural activity for neu-
roprosthetic systems has been shown, in simulation, to provide
significant gain over traditional linear filter approaches. We
tested the model-based decoding approach with real neural
and behavioral data and found a 18% reduction in trajectory
reconstruction error compared with a linear filter. This
corresponds to a 40% reduction in the number of neurons
required for equivalent performance. The model-based ap-
proach further permits the combination of target-tuned plan
activity with movement activity. The addition of plan activity
reduced reconstruction error by 23% relative to the linear filter,
corresponding to 55% reduction in the number of neurons
required. Taken together, these results indicate that a decoding
algorithm employing a prior model of reaching kinematics can
substantially improve trajectory estimates, thereby improving
prosthetic system performance.
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I. INTRODUCTION

THE idea of enabling paralyzed or locked-in patients
to control their limbs through direct brain interfaces is

not a new one, but it may be that the next decade will see
its realization. To this end, we have previously presented a
technique for increasing the performance of neural prosthetic
systems [1], [2] through the use of prior statistical movement
models. In this work, we use a modified version of the
model-based technique to validate our simulation results
using experimentally gathered neural and movement data.

A. Goal-Directed Movements

An important and prevalent class of arm movements is
end-point directed “reaches.” The trajectories of repeated
reaches to a given target are stereotyped. For a prosthetic
control system, the consequence of this observation is that
expected reach trajectories fall on a limited manifold within
the larger space of all potential trajectories. The probability
distribution defined by this subspace constrains the model-
based decoder as it reconstructs an intended trajectory from
motor-related neural activity.
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Fig. 1. Left: Spike histograms showing plan and peri-movement activity to
7 peripheral targets shown in red (Unit G20040203.21.3). A model-based
prosthetic decoder reconstructs a given trajectory from the neural activity
of an ensemble of neurons using a prior model of reaching movements
generated from data. The blue targets are those for the 22-target task used
in this study. Right: The stereotyping of reaches is shown in the radial hand
position for 50 reaches to the up-right target. The corresponding neural
activity displays movement-related modulation on a trial-by-trial basis.

B. Plan and Peri-Movement Neural Activity

In motor-control regions of cortex (e.g., M1 and PMd),
movement-related neural activity is typically divided into
two categories. The first category, “plan” activity, is thought
to arise from the initial stages of movement preparation.
During the period between target presentation and movement
cue in a delayed-reach paradigm, this type of activity varies
with task-related aspects of the impending movement –
target direction, distance, and speed [3], [4]. In tasks in
which there is not an enforced delay period, similar patterns
often arise during the period following the simultaneous tar-
get/movement cue [4]. The second category of neural motor
activity, “movement” activity, is neural activity exhibited
during on-going movements. Movement activity is thought
to relate directly to the signals sent to muscles.

Functional magnetic resonance (fMRI) studies have
shown that tetraplegic patients can generate similar pat-
terns of activity as those observed in the motor cortex
of healthy patients during movements [5]. While there is
no evidence that the fine temporal structure of this neural
activity remains unaffected by the loss of motor function, it
seems reasonable to expect that plan and movement activity
remain differentiated. Most work on prosthetic decoding,
however, has not distinguished between these two types
of activity. We have shown that the addition of plan
activity to a movement activity-based decoding system can



result in significant performance gain [1], [2], [6]. In this
report, we validate these previous simulation results using
experimentally gathered neural and behavioral data.

II. NEUROPROSTHETIC DECODER ALGORITHMS

The goal of the prosthetic decoder is to reconstruct the
trajectory of an intended movement, x(t), from the neural
activity, ηn(t) observed in an ensemble of N neurons,
N(t) = [ηn(t)], n = {1, ..., N}. The movement-related
modulation of the neural units in our population led us
to reconstruct trajectories in the velocity domain and then
integrate the results to produce the final trajectory. We
collect neural activity during measured physical reaches.
Algorithm performance is computed by comparing the tra-
jectory reconstructed from the neural activity to the recorded
physical one.

A. Model-less Trajectory Reconstruction

The primary reconstruction algorithm in the neuropros-
thetic literature is the linear filter or the closely related
“population vector” [7]–[9]. The reconstructed trajectory,
x̂f (t), is

x̂f (t) =
N
∑

n=1

Nf−1
∑

k=0

Hknηn(t− k) (1)

where the inner sum represents the convolution of the neural
activity of neuron n with the (Nf )-tap subfilter in filter
matrix H. During training, we calculate the mean firing rate
for each neuron and form a zero-mean value by subtracting it
from each observation. We found empirically that the linear
filter algorithm performed better if trained and implemented
using the mean-subtracted firing rate in place of the basic
observations. Methods for estimating the minimum mean-
square error (MMSE) optimal filter coefficients from training
data have been presented elsewhere [8]. In this work, we
used a 10 tap filter, which corresponded to a 250 ms history.

B. Model-Based Trajectory Reconstruction

In model-based decoding, a prior model for reaching
movements is used to constrain the reconstruction process.
Define x(t) as the hand trajectory at time t, and Mt and
Pt as the history of observed neural movement and plan
activity up to time t, respectively. The MMSE model-based
estimate can be written as

x̂(t) =
∑

r∈R

E (x(t) | r,Mt,Pt) Pr (r |Mt,Pt) , (2)

where the sum is taken over all reach goals, r, from the
family of possible goals, R. The two elements within the
sum correspond to the estimate conditioned on a particular
reach goal and the likelihood of that goal given the data.
In [6], we described the use of a hidden Markov model
(HMM) for reaches in concert with a vector velocity, or
“cosine-tuning”, model for neural activity. However, the

neural data set we use in this work did not support this
type of simple instantaneous model for relating neural firing
to hand kinematics. Thus, we had to modify the previous
algorithm. In the Appendix we describe the data-based
method used for estimating the likelihood Pr (r |Mt,Pt).
In addition, we found the following approximation to the
optimal conditional estimate performed quite well.

E (x(t) | r,Mt,Pt) ≈
(

C−1
r (t) + C−1

f

)−1 (

C−1
r (t)µr(t) + C−1

f x̂f (t)
) (3)

where Cf is the covariance of the linear filter estimate, and
µr(t) and Cr(t), are the parameters for the time dependent
distribution which describes the reach model for endpoint r.

III. EXPERIMENTAL DATA

A rhesus monkey (Macaca mulatta) was trained to per-
form center-out delayed reaching tasks to visual targets
projected on a fronto-parallel screen. Each trial began with
the monkey touching a central target. The monkey was
then shown a target between 50 and 100 mm from center.
Following a random 200 to 1000 ms “plan period,” a second
visual cue instructed him to reach to the target. After holding
the target for 200 ms, he was given a liquid reward. This
trial structure is presented in Fig. 1.

A commercially available 96-channel silicon electrode
array (Cyberkinetics Inc., Foxborough, MA, USA) was mi-
crosurgically implanted into the right hemisphere premotor
cortex with standard neurosurgical techniques. The array is
connected to a data acquisition system (Cerebus, Cyberki-
netics Inc.) that provides online recording and processing of
neural signals. Online manual spike sorting was performed
by setting a voltage threshold trigger to obtain waveforms
and time-amplitude hoops to isolate sets of waveforms
defined as units. Multiple units, both single-neuron and
multi-neuron units, could be isolated from each channel.
We also recorded 3D arm position (60 samples/s, 0.1 mm
resolution) using an infrared optical tracking system (Polaris,
Northern Digital, Inc., Waterloo, ON, CA). After smoothing
the hand trajectories with a 20-tap low-pass FIR filter (20 Hz
cutoff) and binning neural activity, we discretized our time
base at 25 ms. Protocols were approved by the Stanford
University Institutional Animal Care and Use Committee.

IV. RESULTS

We tested the model-based decoding paradigm on data
gathered during center-out reaches to 22 endpoints arranged
in a square grid (blue circles in Fig. 1). Since the position
of the hand was calculated by integrating the reconstructed
velocity and the monkey did not center his hand identically
at the beginning of each trial, we aligned each trajectory
used for both training and testing by subtracting the initial
hand location from the recorded movement. To test the
algorithms, we used “N-fold cross-validation,” where 40
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Fig. 2. Linear filter and model-based (M+P) reconstructions of an actual
trajectory (Trial G20040119.697, MSE for LF and model-based are 3.5
and 2.1 cm2). Line markers represent 25 ms steps. In the background are
canonical trajectories for targets in the upper-right quadrant.

randomly selected trials were used for testing and the re-
mainder, about 400, for training. For statistical significance,
the process was repeated 30 times.

An example comparison of a model-based and linear
filter reconstruction illustrating performance improvement is
shown in Fig. 2. Comparing the first and second rows in
Table I, the full model-based decoding algorithm reduces
mean square reconstruction error by 18%, from 6.0 to 4.9
cm2). To highlight the significance of this decrease, we
randomly subsampled our neural population to yield smaller
ensembles. Fig. 3 shows reconstruction error as the number
of available units increases. To achieve the maximum
performance of the linear filter (6 cm2 with 111 units), the
model-based decoder requires only 65 neural units (green
solid line in Fig. 3.

TABLE I

TRAJECTORY RECONSTRUCTION MSE (CM2)

Data Set [# units]

Grid 7-Direction
Algorithm [111] [65] [130]

Linear Filter 6.0 11.6 9.7
Model-Based (M) 4.9 2.7 2.1
Model-Based (M+P) 4.6 2.4 2.6
Plan Only 5.8 4.6 2.4
(Accuracy) (64%) (92%) (97%)
Error Floor 1.6 1.5 1.5

We can establish an error floor for the portion of the
model-based decoder purely derived from the reach model.
The average MSE of the appropriate time-aligned canonical
trajectory for a given reach is shown as the purple dashed
line in Fig. 3 and the last row of Table I.

The addition of well-tuned plan activity should always
assist reconstruction if the error of the movement-activity-
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Fig. 3. Comparison of algorithms (mean ± sem) as the quantity of
neural information varies. Smaller ensembles of neural units were formed
randomly, and performance was averaged (30 repetitions) over 40 randomly
selected test trials and 400 training trials.

only decoder is above this level. The pink dotted line in
Fig. 3 depicts the performance of the system when informa-
tion from the plan period is added. While the addition of
plan activity does reduce the average MSE an additional 5%,
it does not aid the decoding process as much as expected.
Furthermore, the cyan dashed line in Fig. 3 represents the
reconstruction error when the decoder chooses the optimally
aligned canonical trajectory from only plan activity. Notice
that it lies well above the error floor. In examining the plan
activity for the 22-target grid task, we found that the plan
activity alone only predicted the proper endpoint with about
64% accuracy. Thus, to further investigate the utility of
integrated plan activity, we tested the algorithm on a data set
in which the plan activity was able to predict the movement
endpoint with probability greater than 90%. This is shown
as the last column in Table I.

The experimental paradigm for this second data set was
center-out reaches to 7 targets arranged radially 10 cm from
center (red circles in Fig. 1). In this data set, both plan and
movement activity were able to accurately predict the correct
endpoint. Thus, we see that the performance of the decoder
with only plan or only movement activity was quite close
to the error floor (2.1 and 2.4 cm2 vs. 1.5 cm2 error floor).
However, because the movement activity was already very
accurate, combining it with plan activity which was less
accurate yielded poorer performance. The middle column
presents the results of the same data set when only 65
randomly chosen units were made available to the decoder.
In this case, the movement activity was less accurate, and
thus the benefit of the addition of plan activity is apparent,
as it was for the 22-target task. In a motor area in which plan
activity dominated movement activity in decoding accuracy,
the benefits of combined decoding could be more dramatic.

V. CONCLUSION

The performance of neuroprosthetic interfaces can be
improved significantly through the use of a prior model



of reaching movements. There are two qualitative reasons
for the increase in performance. First, the model-based
decoder is aware of the distinction between reaching and
not-reaching states. Thus, it is effective at reproducing the
initial stationary portions of a reach. In contrast, the linear
filter decodes the constant background of neural activity as
small background movements. The second advantage of the
model-based decoding paradigm is that, despite using the
linear filter output, the prior reach model makes it more
robust to the non-linearity of neural tuning. In the case of
very linear and Gaussian neural activity, we would expect
the performance gain over linear filters to be smaller. While
these advantages do come at the cost of increased compu-
tation, for prosthetic interfaces this cost is relatively small
when compared to the cost and risk of interfacing double the
number of neural units. Thus, for neuroprosthetic interfaces
which primarily decode reaching movements, the model-
based approach, along with combining plan and movement
activity, is an attractive option.

VI. APPENDIX: MODEL-BASED DERIVATION

We begin by assuming that the trajectory of the intended at
time t, x(t), arises from a family of goal-directed reaching
movements, R, and thus the a posteriori density can be
written as

Pr (x(t) | Nt) =
∑

r∈R

Pr (x(t) | r,Mt,Pt) Pr (r |Mt,Pt) .

(4)
where N(t) = {Mt,Pt} = [{M(τ),P(τ)}], τ = {0, ..., t}
are the movement and plan activity observed up to time t.
For many reaches, the goal, r, is simply the endpoint of the
movement. In general, however, it could include planned
variations in path or speed.

The standard understanding of motor cortical activity is
that it is the culmination of a serially ordered control system
[4]. Thus, we have the following dependency model.

r
Pt

x(t) Mt

(5)

There are two important consequences of this structure.
First, the actual movement is independent of the plan activity
given the movement goal.

Pr (x(t) | r,Mt,P) = Pr (x(t) | r,Mt) (6)

Secondly, the implication of the lower path (5) is that
movement activity is conditionally independent of the goal,
given the actual movement.

Pr (Mt | x(t), r) = Pr (Mt | x(t)) (7)

Therefore, using Bayes’ rule, we can write

Pr (x(t) | r,Mt) =
Pr (Mt | x(t)) Pr (x(t) | r)

∫

x
Pr (x(t),Mt | r)

. (8)

To proceed, the model-likelihood density,
Pr (r |Mt,Pt), and the densities relating neural activity to

movement (the “neural tuning” density) and movement to
goal (the “reach model” density) are required.

Reach Model Density: We estimated the reach model
density, Pr (x(t) | r), directly from our data. For each
endpoint, a canonical reach was generated. Specifically, the
mean and covariance of the velocity at each point along
the movement were calculated, beginning 150 ms before the
movement onset. To account for a variable reaction time, we
assume that the arm can remain at time “0” for an arbitrarily
long period. Thus, for all t,

Pr (x(t− τ0) | r, τ0) ∼ N (µr(t− τ0), Cr(t− τ0)), (9)

where µr(s) and Cr(s) are the canonical mean and covari-
ance at time s in the canonical movement to endpoint r, and
τ0 represents the reaction time.

Neural Tuning Density: In the case of the “cosine-tuning”
model used in our previous work,

Ñ(t) ≈ Gx(t) + w(t), (10)

where G represents the preferred movement directions of the
neuron ensemble, and Ñ(t) is the mean subtracted firing of
the ensemble. If w(t) is normally distributed with mean zero
and covariance Ω, and x(t) has a prior normal distribution
with mean µ and covariance Cx, the MMSE estimate is

x̆(t) = µ+ CxG
T
(

GΩG
T + Cx

)−1
(N(t)−Gµ)

=
(

C−1
x + C−1

)−1 (

C−1
x µ+ C−1x̂(t)

)

,
(11)

where x̂(t) and C are the mean and covariance of the
minimum variance unbiased (MVU) estimator for x(t) in
the absence of a prior.

Our data did not strongly support a simple instantaneous
linear model. Unfortunately, as the reach model is time
dependent, the use of tuning models with more complex
time relationships (i.e., which relate firing to more than just
instantaneous kinematic variables) would require computa-
tionally intensive variational methods to numerically solve
(8). However, the second form of (11) does not depend
explicitly on the observed neural activity. The activity is
first linearly transformed into the reconstruction space, then
combined with the prior. Replacing the MVU estimator
in (11) with the output of the linear filter, x̂f , and its
covariance, Cf , yields (3),

E (x(t) | r,Mt,Pt) ≈
(

C−1
r (t)+C−1

f

)−1 (

C−1
r (t)µr(t) + C−1

f x̂f (t)
)

,

which results in a weighted combination of the linear filter
output and the model prediction.

Model-Likelihood Density: The model-likelihood density,
Pr (r |Mt,Pt), relates the observed neural activity to a
particular canonical reach, and thus is the foundation of
the model-based decoder. The likelihood of an observation
given an endpoint, Pr (r | Pt,Mt), is simply the normalized
product of the probabilities of the observed plan activity



and the observed movement activity calculated using the
statistics for endpoint r.

Pr (r | Pt,Mt) =
Pr (Pt | r) Pr (Mt | r)

∑

r∈R

Pr (Pt | r) Pr (Mt | r)
(12)

We estimated canonical movement activity vectors for
each neuron using a method similar to that used for the
canonical trajectories. For each neuron and each endpoint,
we calculated the mean smoothed time-dependent firing rate
for the movement period. We assumed that the movement
activity follows a Poisson process with this time-dependent
rate vector. As above, we account for the reaction time by
allowing the rate corresponding to the initial window to be
repeated. For each possible endpoint, the reaction time offset
which maximizes the likelihood of the reach is chosen.

Pr (Mt | r) = max
τ0

Pr
Poiss

(

Mt | λt = M
r

t+τ0

)

, (13)

where the probability function on the right-hand side is in
vectorized form: λt is mean of the Poisson distribution, and
M

r

t is the average binned firing rates for movement activity
up to time t in a reach to endpoint r.

We modeled the rate of plan activity (spikes/s) over the
entire interval from the target onset until and the presentation
of the go cue – excluding the initial 150 ms to account for
a potential visual transient – with a normal distribution.

Pr (Pt | r) ∼ N (µr, Cr), (14)

where µr and Cr are the mean and covariance of firing rate
of plan activity before movements to endpoint r.

The model-based estimate in (2) can thus be found using
(12) and the approximation in (11).
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