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Gaussian processes are now commonly used in dimensionality reduction
approaches tailored to neuroscience, especially to describe changes in
high-dimensional neural activity over time. As recording capabilities
expand to include neuronal populations across multiple brain areas,
cortical layers, and cell types, interest in extending gaussian process
factor models to characterize multipopulation interactions has grown.
However, the cubic runtime scaling of current methods with the length
of experimental trials and the number of recorded populations (groups)
precludes their application to large-scale multipopulation recordings.
Here, we improve this scaling from cubic to linear in both trial length
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and group number. We present two approximate approaches to fitting
multigroup gaussian process factor models based on inducing variables
and the frequency domain. Empirically, both methods achieved orders of
magnitude speed-up with minimal impact on statistical performance, in
simulation and on neural recordings of hundreds of neurons across three
brain areas. The frequency domain approach, in particular, consistently
provided the greatest runtime benefits with the fewest trade-offs in
statistical performance. We further characterize the estimation biases
introduced by the frequency domain approach and demonstrate effective
strategies to mitigate them. This work enables a powerful class of anal-
ysis techniques to keep pace with the growing scale of multipopulation
recordings, opening new avenues for exploring brain function.

1 Introduction

With the proliferation of high-dimensional neuronal population record-
ings, dimensionality reduction has become a widely used class of multi-
variate statistical techniques (Cunningham & Yu, 2014). Increasingly, these
recordings capture not only many neurons but many distinct neuronal pop-
ulations, spanning brain areas, cortical layers, and cell types (Ahrens et al.,
2012; Steinmetz et al., 2021; Yang & Yuste, 2017). Interest has grown, there-
fore, in dimensionality reduction methods capable of characterizing the
interactions among these recorded populations (Kang & Druckmann, 2020;
Keeley, Zoltowski, Aoi etal., 2020; Machado et al., 2022; Semedo et al., 2020).

Recent development efforts have focused, in particular, on methods
that characterize multipopulation, or multigroup, interactions over time.
These approaches incorporate latent variables, or factors, that follow a
time series model, based typically on a dynamical system (state-space
model; Bong et al., 2020; Glaser et al., 2020; Karniol-Tambour et al., 2024;
Semedo et al., 2014) or a gaussian process (GP; Balzani et al., 2023; Gokcen
et al.,, 2022; Gondur et al., 2024; Keeley, Aoi et al., 2020; Li, Li et al., 2024).
GP-based approaches can be especially useful for exploratory analyses of
neural recordings, where an appropriate parametric dynamical model is
unknown a priori.

The delayed latents across groups (DLAG) framework (Gokcen et al.,
2022) is a representative member of this class of multigroup GP factor mod-
els. DLAG leverages latent variables with time delays to disentangle the
bidirectional, concurrent interactions between two neuronal populations.
DLAG'’s recent extension to more than two populations, mDLAG (Gokcen
et al.,, 2023), determines (1) the subset of populations described by each
latent dimension, (2) the direction of signal flow among those populations,
and (3) how those signals evolve over time within and across experimental
trials. While multigroup GP factor models like mDLAG could advance the
study of concurrent signaling throughout the brain, they are ultimately
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Fast Multigroup Gaussian Process Factor Models 1711

limited by computational scalability. The multi-output GP kernels (Alvarez
etal., 2012) at their core lead to runtimes that scale cubicly in the number of
time points per experimental trial and in the number of analyzed neuronal
populations, or groups.

Addressing this computational challenge is thus critical for these statisti-
cal methods to remain a practical tool for analyzing recordings that already
span dozens of brain areas (Steinmetz et al., 2019) and continue to grow in
scale. Here, we develop two approximate methods to accelerate the fitting
of multigroup GP factor models (specifically, mDLAG) based on inducing
variables and the frequency domain. To our knowledge, these methods are
the first for this class of models to achieve linear scaling in both trial length
and group number. This work thus enables a broad class of dimensionality
reduction techniques to keep pace with the rapidly growing scale of multi-
population neural recordings.

We begin with a synthesis of the diverse array of existing approaches
to accelerating GP inference and estimation (section 2). Then we provide a
mathematical overview of the core methods considered and developed in
this work: the baseline mDLAG formulation (section 3.1) and the two accel-
erated methods, mDLAG with inducing variables (section 3.2) and mDLAG
in the frequency domain (section 3.3). We demonstrate empirically, in sim-
ulation and on neural recordings of hundreds of neurons across three brain
areas, that both accelerated methods achieve orders of magnitude speed-up
over baseline with minimal impact on statistical performance (sections 4.1-
4.4). The frequency domain approach, in particular, consistently provided
the greatest runtime benefits with the fewest trade-offs in statistical per-
formance. We further characterize the estimation biases introduced by the
frequency domain approach and demonstrate straightforward but effective
strategies to mitigate those biases (section 4.5).

2 Related Work: Fast Methods for Gaussian Processes

The computational challenges associated with GP posterior inference and
(hyper)parameter estimation are particularly pronounced when GPs are
used in latent variable models. Model fitting is iterative, and GP inference
steps therefore require hundreds to thousands of reevaluations. In turn, the
potential runtime benefits are that much more pronounced for methods that
accelerate those computationally intensive steps.

Methods for fast GP inference have an extensive history, spanning sev-
eral decades and disciplines. Much of that work has origins in GP regression
(Rasmussen & Williams, 2006), without any appeal to the class of multi-
group latent variable models described above. In sections 2.1 to 2.4, we re-
view a selection of approaches relevant to the scope of this work: multi-
output GPs for time series (i.e., GPs with one input dimension), as an ingre-
dient in latent variable models.
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2.1 Numerical Methods That Exploit Matrix Structure. In specific ap-
plications of single-group latent variable models (and single-output GPs),
the cubic scaling in the number of time points, T, can be alleviated by
exploiting matrix structure. Stationary GP kernels, for instance (a stan-
dard modeling choice), give rise to a GP covariance matrix and its deriva-
tives (the source of computational bottlenecks in GP inference and param-
eter estimation) with Toeplitz structure. Certain computations involving
Toeplitz matrices (matrix inversion, matrix products) can be implemented
in O(T?) operations (Golub & Van Loan, 2013) and even O(T) storage
(Zhang et al., 2005). The fast Fourier transform (FFT) can also be leveraged
to reduce Toeplitz matrix products to O(T logT) operations (Silverman,
1982). Many GP-based methods thus seek out advantageous matrix struc-
ture (e.g., Toeplitz, Kronecker), through careful model structural choices or
a series of approximations during model fitting (Aoi & Pillow, 2017; Cun-
ningham et al., 2008; Foreman-Mackey et al., 2017; Jensen et al., 2021). These
bespoke approaches are not as broadly applicable as the approaches that
follow, particularly in the multigroup context.

2.2 State-Space Representations. The first more general class of ap-
proaches to GP acceleration exploits the deep mathematical relationship
between GPs and state-space models (i.e., linear dynamical systems). Any
well-behaved stationary GP time series can be approximated by an appro-
priate linear-gaussian state-space model with a sufficiently expanded state
dimension, p (Loper et al., 2021). Many paths can be taken to parameterize
a GP as a state-space model. Approaches that rely on spectral factorization
are particularly well known (Sayed & Kailath, 2001; Hartikainen & Sarkka,
2010) and have also been extended to the multi-output case (Li, Li et al,,
2024). Alternative parameterizations can be obtained via the latent expo-
nentially generated (LEG) family of state-space models (Loper et al., 2021)
or regression between the state-space model parameters and the GP covari-
ance function (kernel) itself (Li, Wang et al., 2024). Li, Li et al. (2024) and
Li, Wang et al. (2024) have applied this state-space representation directly
to DLAG. In a slightly different approach, Dowling et al. (2023) arrive at
an arbitrarily expressive state-space representation by leveraging the Hida-
Matérn class of GP covariance functions.

Regardless of the path one takes to a state-space formulation of a GP,
the goal is the same: inference of the GP posterior can be carried out via
dynamic programming, most commonly Kalman filtering (Kalman & Bucy,
1961) and Rauch-Tung-Striebel smoothing (Rauch et al., 1965) algorithms
or information filtering (Dowling et al., 2023). The complexity of poste-
rior inference is then reduced from O(T?) operations and O(T?) storage to
O(p°T) operations and O(p?T) storage: linear in the number of time points
per trial, T, at the added cost of cubic scaling in the number of expanded
states in the state-space approximation, p. In practice, however, it appears
that common GP covariance functions are well approximated by only a
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handful of terms, p (Hartikainen & Sérkké, 2010; Li, Wang et al., 2024; Loper
et al., 2021; Solin & Sdrkkd, 2014), and hence the added cost is effectively a
modest constant factor. Additional approximations can ameliorate the cubic
scaling in the number of state dimensions to quadratic, in both the single-
output GP (Solin et al., 2018) and multi-output GP cases (Lim et al., 2021).
As an ingredient in multigroup GP factor models, however, the state-space
approach still leads to cubic scaling in the number of groups M—O(p*M>T)
operations (Li, Wang et al., 2024)—where we would like to achieve linear
scaling if possible.

2.3 Sparsity via Inducing Variables. The second general class of ap-
proaches relies on sparse approximations, specifically by inducing vari-
ables (Quifionero-Candela & Rasmussen, 2005). Inducing variable methods
leverage a straightforward insight: for sufficiently smooth signals, perhaps
only some smaller number of samples, Ti,g < T, are needed to carry out
accurate inference. In a useful mathematical abstraction, these T,q induc-
ing variables need not belong to the set of T original samples, but can in-
stead be defined at arbitrary inducing points or “pseudo-inputs” (Snelson
& Ghahramani, 2005) in the same domain as that of the original samples
(time, for time series data).

These approaches pass the computational burden to the smaller set of
inducing points: O(TT2,) operations and O(TTy,g) storage—linear in the
original number of samples (see also Hensman et al., 2013, for a formula-
tion that achieves (Q(Tfr’1 4) operations). Titsias (2009) developed a variational
formulation of inducing variables that facilitated their use in extended ver-
sions of the single-group dimensionality reduction method gaussian pro-
cess factor analysis (GPFA; Duncker & Sahani, 2018; Yu et al., 2009). Alvarez
etal. (2010) extended this approach to multi-output GP regression, suggest-
ing that as an ingredient in multigroup GP factor models, inducing vari-
ables could produce O(MTT? ) scaling—linear in both the number of time
points T and the number of groups M. To date, the efficacy of assimilating
inducing variables into multigroup GP factor models has not been explored.
Here, we develop an mDLAG model with inducing variables (mDLAG-
inducing) that achieves the desired linear scaling properties.

2.4 Frequency Domain Representations. The final class of approaches
invokes the frequency domain (Fourier basis) representation of stationary
GPs (these ideas can be combined with inducing variable approaches with
some success; see, for example, Hensman et al., 2018). In the large T limit,
any well-behaved stationary GP can be represented as a spectral process
with independent frequency components (Kolmogorov et al., 1941; Priest-
ley, 1981). In practical terms, this theoretical result suggests that if we work
with a frequency domain representation of observed time series, we can
perform approximate GP inference and parameter estimation with a diag-
onal GP covariance matrix rather than the dense GP covariance matrix in
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the time domain (see section 3.3 for details). Computations involving this
diagonal matrix could thus scale linearly in the number of time points, T,
or atleast O(T log T) if a FFT of the data need be calculated first. In spectral
estimation, this approach dates back at least to Whittle (1951). The Whittle
likelihood (a “quasi-likelihood”) is a biased approximation to gaussian like-
lihoods of time domain signals, computed efficiently from the periodogram
of the data (Rao & Yang, 2021; Sykulski et al., 2019).

More recently, frequency domain GP representations have been lever-
aged for runtime benefits in several latent variable modeling applications.
Applications include Bayesian smoothing for spatial modeling (Paciorek,
2007), modeling of natural sounds (Turner, 2010), and certain single-group
GP factor models for neuroscience. For example, Keeley, Aoi et al. (2020)
proposed a frequency domain quasi-likelihood for a GPFA model with Pois-
son observation noise, enabling O(T log T') scaling. Similar ideas have been
incorporated into multimodal GP variational autoencoders (Gondur et al.,
2024). Dowling et al. (2023) explicitly incorporated the Whittle likelihood
into GPFA-related models as a subroutine of fitting, to accelerate GP hyper-
pameter updates (like GP inference, naively O(T?) operations) to O(T log T)
operations.

These studies were limited to GP factor models that employed single-
output GPs. The cross-spectral factor analysis method of Gallagher et al.
(2017) employed multi-output GPs to describe interactions across univari-
ate recording channels (analogously, single neurons). Drawing directly
from Ulrich et al. (2015), Gallagher et al. (2017) employed a frequency do-
main quasi-likelihood that produced linear scaling in T but still maintained
cubic scaling in the number of recording channels (analogously, O(M>T)
operations for M neuronal populations or groups). Here, we develop an
approximate formulation of mDLAG (mDLAG-frequency) fully in the fre-
quency domain, from the generative model to posterior inference and fit-
ting. By performing posterior inference and fitting completely in the fre-
quency domain, the approach effectively achieves linear scaling in both the
number of time points per trial and the number of groups, O(MT).

3 Model and Algorithmic Overviews

3.1 Delayed Latents across Multiple Groups (mDLAG-Time). We
start with an overview of the mDLAG model and fitting procedure from
Gokcen et al. (2023), which will serve as the baseline for the other two ap-
proaches developed in sections 3.2 and 3.3. These sections constitute the
core contributions of this work. Since the baseline mDLAG approach relies
fully on the time domain (without invoking inducing variables), we refer
to it as mDLAG-time, to disambiguate it from those that follow. Note that
we explicitly define all variables and parameters as they appear, but for ref-
erence, we include an explanation of notation and a glossary of common
variables and parameters in Tables 2 to 5.
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In brief, analyzing multipopulation neural recordings presents two key
challenges: identifying network-level interactions and disentangling con-
current signal flow. These interactions are difficult to unravel from raw
neural activity but can be pinpointed along certain latent dimensions. mD-
LAG leverages that insight and addresses each of the two challenges with
a dedicated model component. For the first, mDLAG employs automatic
relevance determination (ARD) to promote group-wise sparsity for each
estimated latent dimension and identify the groups involved in each inter-
action (see section 3.1.1). For the second, mDLAG recognizes that commu-
nication between neuronal populations is not instantaneous and estimates
for each latent variable a set of time delays that describes the signal flow
across the involved groups (see section 3.1.2).

3.1.1 Observation Model and Automatic Relevance Determination. For group
m (comprising g,, units) at time ¢ on trial 7, we define a linear relationship
between observed activity, y}', € R, and latent variables (latents), x}, € R?
(see Figure 1A): '

yi =C"x), 4+ d" + e, (3.1)
" ~ N(0, (@™, (3.2)

where the loading matrix C" € R%*? and mean parameter d” € R are
model parameters. The vector &” is a zero-mean gaussian random variable
with noise precision matrix ®" e S»*n (§9*4» is the set of q,, x g,, sym-
metric matrices). We constrain the precision matrix " = diag(¢{", ..., ¢;' )
to be diagonal to capture variance that is independent to each unit. This
constraint encourages the latents to explain as much of the shared variance
among units as possible.

As we will describe, at time point ¢, latents x;',, m =1, ..., M are cou-
pled across groups, and thus each group has the same number of latents,
p- Because we seek a low-dimensional description of observed activity, the
number of latents is fewer than the total number of units, that is, p < g,
whereq =", qm-

mDLAG seeks to identify multiple network-level interactions across the
observed groups. To do so requires estimating the number of latents across
all groups and which subset of groups each latent involves. This estimation
problem needs to scale tractably with the number of groups. mDLAG there-
fore takes a Bayesian approach to the problem, where d”, ™, and C" are
taken to be probabilistic parameters with prior distributions.

The parameter d” describes the mean activity of each unit over time and
trials. We set a gaussian prior over d”:

P(d") =N(@"0,87'L,) (3.3)
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Figure 1: Summary of generative models and covariance structures. (A)
Delayed latents across multiple groups (mDLAG) in the time domain
(mDLAG-time; Gokcen et al., 2023). Filled circles represent observed vari-
ables. Unfilled circles represent probabilistic latent variables and parameters.
Black dots represent deterministic parameters. Arrows indicate conditional
dependence relationships between variables. Boxes indicate repetition of
the enclosed variables or parameters over a particular index (n=1,...,N
trials or m =1, ..., M groups), where those repetitions are mutually inde-
pendent. (B) An example GP covariance matrix (K;, for a latent j =1, ..., p),
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where B € R. is a hyperparameter and I, is the g,, x g, identity matrix.
We set the conjugate gamma prior over each ¢/, for each unitr =1, ..., gu:

P(¢)") =T(¢)" | ag, by), (3.4)

where a4, by € R.o are hyperparameters.

The loading matrix C" linearly combines latents and maps them to ob-
served neural activity. In particular, the jth column of C", ¢ € R, maps
the jth latent x}/ j+ to group m. To determine which subset of groups is de-
scribed by each latent, mDLAG employs ARD (MacKay, 1994; Neal, 1995).
Specifically, we define the following prior over the columns of each C"
(Klami et al., 2015):

P(c] ) = N(c]' 10, (@)1, (3.5)
P(a}') = T(ef | g, by), (3.6)

where o € R ¢ is the ARD parameter for latent j and group m, and ., by €
R.o are hyperparameters. As o' becomes large, the magnitude of ¢ be-
comes concentrated around 0, and hence the jth latent x:f it
vanishing influence on group m. The ARD prior encourages group-wise
sparsity for each latent during model fitting, where the loading matrix coef-
ficients will be pushed toward zero for latents that explain an insignificant
amount of shared variance within a group and remain nonzero otherwise.

will have a

corresponding to the mDLAG-time model. The matrix K; was generated with
squared exponential GP timescale = 100 ms and time delay D = 80 ms, for
trial length T = 25 time points (with 20 ms sampling period) and M = 2 groups.
(C) mDLAG with inducing variables (mDLAG-inducing). Same conventions
as in panel A. (D) Top: An example inducing variable covariance matrix (K}").
Bottom: Corresponding covariance matrix between latent j and its inducing
variable (K7"). Both K and K7" were generated with the same GP parameters
as K; in panel A, with Tjnqg = 10 inducing points. (E) mDLAG in the frequency
domain (mDLAG-frequency). Same conventions as in panel A. Note the box
indicating independence across not only trials but also I =1, ..., T frequency
components (fregs.). (F) Top: An example (diagonal) GP power spectral density
(PSD) matrix (S;, displayed on a log scale). Bottom: An example (diagonal)
phase-shift matrix from latent j to an observed group m (H}', displayed in
degrees, AH}”). The PSD matrix S; was generated with GP timescale = 100 ms,
for trial length T = 25 time points. The phase-shift matrix H}" was generated
with time delay D7 = 10 ms. Frequency f; = 0is the zero frequency, frequencies
f» through fi3 are increasing positive frequencies, and frequencies f14 through
f2s (fr) are negative frequencies increasing toward zero (see section 3.3.1).
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Intuitively, dimensions that appear in two or more groups indicate the pres-
ence of correlated activity across those groups.

3.1.2 Gaussian Process State Model. For each latent, mDLAG seeks to char-
acterize the direction of signal flow among the involved groups (deter-
mined by ARD) and how those signals evolve over time within and across
trials. We therefore employ GPs (Rasmussen & Williams, 2006) and define
a GP over all time pointst =1, ..., T for each latent j =1, ..., p as follows
(see Figure 1B):

1

X, Kiij - Kimj
Co~Nfo ] s . (37)
X Ku1,j -+ K

Under equation 3.7, latents are independent and identically distributed
across trials. The diagonal blocks Ky 1 j = --- = Kyym j € ST*T describe the
autocovariance of each latent, and each T-by-T off-diagonal block describes
the cross-covariance that couples two groups.

To define these matrices, we introduce additional notation. Specifically,
we indicate groups with two subscripts, m; =1,...,Mandm, =1,..., M.
Then we define K, 1, ; € R™ to be either the auto- or cross-covariance
matrix between latent x;'“j € RT in group m; and latent x?j € RT in group
my on trial n. mDLAG is immediately compatible with any stationary co-
variance function. Here, we explore in depth the commonly used squared
exponential function for GP covariances. Therefore, element (t1, t;) of each
Kiny.m,,j can be computed as follows (Gokcen et al., 2022; Lakshmanan et al.,
2015):

k () = (1-0? (an? 2.8 3.8
o (1. 12) = (1= 07 ) exp( =2 | 07 -8, (3.8)
]

At:QrJﬁﬂ—(h—D?y (3.9)

where the characteristic timescale, 7; € R.o is a deterministic model pa-
rameter to be estimated from observed activity. The GP noise variance,
0]2 € (0, 1), is conventionally fixed to a small value (1073). §,; is the Kro-
necker delta, which is 1 for At = 0 and 0 otherwise. The GP is normalized
so that ky,, i, j(t1, t2) = 1 if At = 0, thereby removing model redundancy in
the scaling of the latents and loading matrices C".

Two parameters, the time delay to group my, D';.“ € R, and the time de-

lay to group m,, D’;” € R, are key to describing signal flow across groups.

First notice that when computing the autocovariance for group m (i.e.,
when m; = my = m; see Figure 1B, diagonal blocks of K;), the time delay
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Fast Multigroup Gaussian Process Factor Models 1719

parameters D'}” and D;f“ are equal, and so At (see equation 3.9) reduces sim-
ply to the time difference (t, — t1). Time delays are therefore only relevant
when computing the cross-covariance between distinct groups m; and m,.
The time delay to group m;, D", and the time delay to group m», D%, by
themselves have no physically meaningful interpretation. Their difference,
D';” — D}"l, however, represents a well-defined, continuous-valued time
delay from group m; to group m; (see Figure 1B, off-diagonal blocks of K;).
The sign of the relative time delay indicates the directionality of the lead-lag
relationship between groups captured by latent j (positive: group m; leads
group my; negative: group m, leads group my), which we interpret as a de-
scription of signal flow. Note that time delays need not be integer multiples
of the sampling period or spike count bin width of recorded neural activity.
Without loss of generality, we designate group m = 1 as the reference area
and fix the delays for group 1 at 0 (i.e., D} =0foralllatents j =1,..., p).

3.1.3 Posterior Inference, Fitting, and Computational Scaling. Let Y and X
be collections of all observed and latent variables, respectively, across all
time points and trials. Similarly, let d, ¢, C, A, 7, and D be collections of
the mean parameters, noise precisions, loading matrices, ARD parameters,
GP timescales, and time delays, respectively. From the observed activity, we
seek to estimate posterior distributions over the probabilistic model com-
ponents 6 = {X, d, ¢, C, A} and point estimates of the deterministic GP
parameters Q = {r, D}.

We do so by employing a variational inference scheme (Bishop, 1999;
Klami etal., 2015) in which we maximize the evidence lower bound (ELBO),
L(Q, 2), with respect to the approximate posterior distribution Q(¢) and the
deterministic parameters Q, where

log P(Y) = L(Q, Q) = Ep[log P(Y, 8|22)] — Eg[log Q(8)]. (3.10)
We constrain Q(#) so that it factorizes over the elements of 6:

Q(6) = Qu(X)Qu(d)Qy (#)Qc(C)QA(A). (3.11)

This factorization enables closed-form updates during optimization. The
ELBO can then be iteratively maximized via coordinate ascent of the factors
of Q(f) and the deterministic parameters 2. Here all hyperparameters were
fixed to a very small value, 8, a4, by, ao, by = 10712, to produce noninforma-
tive priors (Klami et al., 2015). Throughout this work, we take estimates of
the latent variables and model parameters to be the corresponding means
of the posterior distributions comprising equation 3.11.

The computational bottlenecks in mDLAG-time comprise three stages
of the fitting procedure: (1) the update of the posterior distribution over
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latents, Q.(X), (2) the updates of the GP parameters, €2, via gradient ascent,
and (3) evaluation of the ELBO, equation 3.10. From equation 3.7, let

Kiij - Kimj

K; =

J € SMIMT (3.12)

Ky o Kuwmj

Each of the three stages above requires the inversion of the MT x MT
covariance matrix K; and therefore require at least O(M>T?) operations and
O(M?T?) storage. The update of Q.(X), in fact, requires the inversion of
a larger pMT x pMT matrix (see below). The iterative nature of gradient
ascent also requires potentially several reevaluations of Kj’1 within a single
fitting iteration.

A complete set of update equations, including for the three stages above,
can be found in Gokcen et al. (2023). For the sake of concision, we high-
light just the update of the posterior distribution over latents, Q(X). Let
us first define several variables. Construct y,; = [y, ---yY/ 1" € R7, g =
> . qm, by vertically concatenating the observed activity of groups m =
1,...,M at time t on trial n. Then construct y, = [y, ,---y,r]" € R/ by
vertically concatenating the observed activity y,; across all time points
t=1,...,T. For latents, define x,; =[x}, ---x}"]" € R"M by vertically
concatenating the p latents of each group at time t on trial n. Then we ver-
tically concatenate the latents x; ; across all time pointst =1, ..., T to give
X, = [x;1 ---x, r]" € RPMT_Finally, we collect the parameters C", ®", and
d" across populations m =1, ..., M by defining C = diag(C!,...,CM)
RP>*PM o = diag(d!,..., ®") € S, andd = [d'" ---dMT]T e R,

The update to the posterior distribution over latents, Q.(X), takes the
same functional form as the prior distribution (see equation 3.7), a gaussian
distribution,

N
QX(X) = 1:[1-/\[()_(11 | ﬂ'x,,? z_:x)v (3~13)

with trial-dependent posterior mean j,, € RPT and trial-independent pos-
terior covariance £, € SPMT*PMT The update for the posterior covariance is
the computationally limiting step:

S = (K" +(CTa0) . (3.14)

Here we introduce the notation (-) to indicate the expectation with re-
spect to the approximate posterior distribution, Eg[-]. The term (CT®C) €
RPMTxpMT ig 3 block diagonal matrix comprising T copies of the matrix
(CT®C). The elements of the prior covariance matrix K € RPMI*PMT follow
the structure of X, and are computed using equations 3.8 and 3.9. Evaluating
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equation 3.14 on each mDLAG fitting iteration thus requires the inversion of
a pMT x pMT matrix, costing O(p>M>T?) operations and O(p*M?>T?) stor-
age. Ameliorating this computational cost and the remaining costs of the
three bottleneck stages above is the focus of the rest of this work.

3.2 mDLAG with Inducing Variables (nDLAG-Inducing). The scal-
ing challenges of mDLAG-time stem from the gaussian process state model
(equation 3.7), namely, the MT x MT covariance matrix K; and the compu-
tation of its inverse and determinant. Alternative formulations of the state
model that mitigate or avoid these computations altogether are therefore
desirable. We first consider an approach that incorporates inducing vari-
ables (Alvarez et al., 2010; Duncker et al., 2018; Titsias, 2009). In essence,
we might be able to improve scalability if instead of the full set of la-
tents across groups, we manipulate one latent representation common to
all groups (thereby improving scaling with M) at a lower temporal resolu-
tion (thereby improving scaling with T). This approach, mDLAG-inducing,
requires no changes to the mDLAG-time observation model or ARD com-
ponents (equations 3.1-3.6), only the state model (see Figure 1C).

3.2.1 Gaussian Process State Model with Inducing Variables. For each la-
tent j on trial n we define a corresponding inducing variable w, ;. =
[wy, i1 wy, T, .17 € RTnd Inducing variable values are defined over a set of
inducing (time) points indexed by t € {1, ..., Ting}. The number of inducing
points per trial, Ting, is a hyperparameter, and in this work we choose Ting
to be no greater than the number of time points per trial, T, so that Tjng < T
(in principle, Ting can also be chosen separately for each latent j, but we
choose not to do so here). While the number of inducing points is discrete,
the times at which the inducing variables are defined are real-valued. In de-
tail, inducing variable w, ;; at inducing point ¢, t € {1, ..., Tinq} is defined
attime & € R.

These locations in time are themselves a design choice and can even
be treated as learnable model parameters, just like the GP parameters
(Duncker & Sahani, 2018; Snelson & Ghahramani, 2005; Titsias, 2009).
Throughout this work, we will fix the inducing points on a uniformly
spaced grid, with the first and last inducing points fixed at the beginning
and end of each trial—&; =1 and &r,, = T. We do not explore inducing
points as learnable model parameters here to facilitate comparison with the
other two methods (updating the inducing points adds a significant compu-
tational cost to the model-fitting procedure), but we do include that option
in accompanying code (see appendix E).

We then define a GP over all inducing points &, ..., &g, , for each latent
j=1,..., pas follows:

wy .~ N (0.K7), (3.15)

G20z ¥snbny (g uo Jasn INIDIAIN 40 393 110D NIFLSNIT LIV Aq Jpd-zz e 000u/61.58€5Z/60. 1/6/L€/HPA-B]01E/008U/NPA W }0R.IP//:dRY WOl papeojumoq



1722 E. Gokcen et al.

where K}’ € STnaxTind i the inducing variable covariance matrix (see Fig-
ure 1D, top, KY). Continuing with the squared exponential GP covariance
function, element (t1, tp) of K;” is computed according to

A 2
kY (6. &) = (1 - a]‘?') exp<— (2:2) ) +o? b (3.16)
]

At = g;:tz - é:tl' (317)

The characteristic timescale, 7; € R.o, and the GP noise variance, o?e

(0, 1), are defined as in equation 3.8. :

We then define each latent j across groups m=1,....M, x, . =
[x};j’: e xﬁ/’I].T’:]T € RMT in terms of the common inducing variable, w,, ;. via
the following conditional gaussian distribution:

p (xn,j,: | Wn]) = N(xn,j,: |K?w(K;U)_1wn]7 K] - K;{w(K}U)_lK;})X)v (318)

where K; € SMT*XMT s the covariance matrix defined in equation 3.12 (see
Figure 1B), and K" = (K}”)T € RMTxTia ig the cross-covariance matrix be-
tween latent j and its inducing variable (see Figure 1D, bottom, K;.“”). If we
define K}, € R"i to be the mth block of K3 = [K{ T --- Ky’ T1", then ele-
ment (¢4, £) of K;‘fj, wheret; € {1,...,T}and t;, € {1, ..., Tinq}, can be com-
puted according to the covariance function,

Aty
67 (h.8) = (1-02) exp (— = ) +of o .19
]

with the same timescale parameter z; and GP noise variance o ]2 as defined in
equation 3.16. The time delay parameter D7 € R is defined in equation 3.9.
Under this formulation, each x; . for latent j and group m can be viewed

as an interpolated (upsampled) and time-delayed version of the common
inducing variable w,, ;...

3.2.2 Posterior Inference, Fitting, and Computational Scaling. LetY, X, and
W be collections of all observed variables, latent variables, and inducing
variables, respectively, across all time points (or inducing points) and
trials. As with mDLAG-time, let d, ¢, C, A, t, and D be collections of the
mean parameters, noise precisions, loading matrices, ARD parameters,
GP timescales, and time delays, respectively. From the observed activity,
we seek to estimate posterior distributions over the probabilistic model
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components 6 = {X, W, d, ¢, C, A}, which now includes the inducing
variables W, and point estimates of the deterministic GP parameters
Q= {r, D}.

We again employ variational inference, in which we maximize the ELBO,
L(Q, ) (equation 3.10), with respect to the approximate posterior distribu-
tion Q(0) and the deterministic parameters Q. For mDLAG-inducing, how-
ever, we follow Titsias (2009) and constrain Q(#) so that it factorizes over
the elements of 6 as follows:

Q(6) = Quu (X, W)Qa(d)Qy (#)Qc(C)QA(A). (3.21)
= P(XIW)Qu(W)Qu(d)Qy (#)Qc(C)Q.A(A). (3.22)

Here we have constrained the joint approximate posterior distribution
over the latents and their inducing variables to factorize as Q., (X, W) =
P(XIW)Q., (W), with generic distribution Q,,(W) over the inducing vari-
ables and the conditional prior distribution P(X|W) over the latents them-
selves. From equation 3.18, P(X|W) =[], [, P(xx,j.: | Wy,j:). Then as with
mDLAG-time, this factorization enables closed-form updates during opti-
mization. The ELBO can be iteratively maximized via coordinate ascent of
the factors of Q(f) and the deterministic parameters .

As with mDLAG-time in section 3.1.3, the three key stages of the
mDLAG-inducing fitting procedure are (1) the update of the posterior dis-
tribution over the latents and their inducing variables, Q.,, (X, W); (2) the
updates of the GP parameters, €, via gradient ascent; and (3) evaluation of
the variational lower bound, equation 3.10. A complete set of update equa-
tions, including for these three key stages, is provided in appendix B. At all
three stages, mDLAG-inducing achieves linear scaling in both the number
of groups M and the number of time points per trial T, albeit with superlin-
ear scaling in the number of inducing points Tj,q. For example, the limiting
computation in the update of Q,,, (X, W) costs O( ;;)3MTT§1 4) operations (see
appendix B).

3.3 mDLAG in the Frequency Domain (mDLAG-Frequency). Con-
sider now the unitary discrete Fourier transform (DFT) of the time se-
ries of observations for unit r in group m on trial n: ;' .. = Ury], ., where
Ur € CT*T is the unitary DFT matrix. Our goal is to develop a generative
model for these observations while remaining entirely in the frequency do-
main (for mDLAG-frequency; see Figure 1E), with the hope of uncovering
computational benefits. Note that the conversion of each unit’s activity from
the time domain to the frequency domain has time complexity O(T log T),
assuming the DFT is implemented using a fast Fourier transform (FFT) al-
gorithm. Developing a generative model entirely in the frequency domain,
and thereby procedures for posterior inference and fitting entirely in the
frequency domain, requires this computation only once, as a preprocessing
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step. Then, as we will show, each iteration of the fitting procedure will scale
linearly in T and M.

3.3.1 Gaussian Process State Model. For the frequency domain to provide
those computational benefits, it must improve the scalability of the limiting
mDLAG-time model component, the GP state model. We first consider the
case with M = 1 group. Taking the unitary DFT of the time course of latent
jontrial 1, x,, ., we get

Urxy, j: ~ N (0, UrK;Ub), (3.23)

a linear transformation of the state model (U} is the conjugate transpose of
Ur). The key quantity in equation 3.23 is the transformed covariance matrix
K; = UrK; U'T" Unfortunately, like the time domain covariance matrix K j, the
frequency domain covariance matrix K j is, in general, dense. Consequently,
any fitting procedure based on this state model will still scale cubicly in the
number of time points per trial. We will get no computational benefit over
the bottleneck mDLAG-time updates (see section 3.1.3).

But critically, for large T (and for a stationary GP), the transformed co-
variance matrix K; approaches a diagonal matrix, a well-established re-
sult in spectral analysis (Kolmogorov et al., 1941; Priestley, 1981). The di-
agonal elements of that limiting matrix are given by the power spectral
density (PSD) of the gaussian process, a function of frequency. By the
Wiener-Khinchin theorem, the PSD function of latent j, s j, is given by the
continuous-time Fourier transform of its covariance function, k; (treated as
a function of the time difference t, — t1). For the squared exponential covari-
ance function in equation 3.8, the PSD function takes the following closed
form,

si(fi) = (1 - ojz) V2rr; exp(—% @2n fi)? ‘L']2> +ajz, (3.24)

where f; € R is a frequency value (I indexes the components of a discretely
sampled signal; see below). The characteristic timescale, 7; € R.o, and the
GP noise variance, crjz € (0, 1), are defined as in equation 3.8.

A generative model for a GP with a diagonal covariance matrix would
lead to significant runtime advantages. Toward that end, let X, j: € CT be
the values of latent j across frequencies I =1, ..., T on trial n. Following
the symmetry properties of the DFT, the index [ =1 corresponds to the
zero frequency, fi = 0. For even values of T, the indices | =2, ..., % +1
correspond to increasing positive frequencies, where [ = g + 1 indexes
the Nyquist frequency (fr,, is half the sampling rate of observations).

Indices [ = g +2,...,T correspond to negative frequencies increasing
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toward zero, with symmetry about the Nyquist rate such that f Ty =— f 1,
fris=—fr_y,up to fr = —fo. Odd values of T lead to similar frequency
ordering but with subtle differences in bookkeeping.

Then as an approximation to the GP prior defined in equation 3.23, we
define a (complex-valued) GP over all frequencies for each frequency do-
main latent j =1, ..., p, where the covariance matrix is diagonal by con-
struction (see Figure 1F, top, S)):

Xuj: ~ N (0,5)) . (3.25)

The Ith element of the diagonal “PSD matrix” S; € ST*T is given by the
PSD function of the GP (equation 3.24). We explore the consequences of this
approximation in section 4.5. For now, we continue to define the frequency
domain generative model under this approximation and extract any com-
putational benefit that arises.

3.3.2 Observation Model. From here, we could define a linear observation
model from latents to observed activity, akin to equation 3.1. However, we
have omitted in the development of the model thus far any notion of time
delays. Let us revisit, for the multigroup (M > 1) case, the continuous-time
Fourier transform of the cross-covariance function k,, .,  (equation 3.8) be-
tween groups m; and m;:

S nn (1) = (1 - sz) VarT; eXp(—; @r fi)? ff)

-exp (—iZn A(DY =D )) +ol. (3.26)

Here i = +/—1 is the imaginary number. This cross-spectral density
(CSD) function is nearly identical in form to the PSD function of equa-
tion 3.24, but with the addition of a multiplicative complex exponential
term, exp(—i2r (D" — D’*)). This term isolates the time-delay parame-

ters D'}“ and D%, representing them as a relative phase shift, 2 fl(D’]ﬁ1 -
D’}” ), at frequency f;. Note the separability of the complex exponential term
by groups:

exp(—iZnﬂ(D;"l - DTZ)) = eXp(—iZnﬁDTl) -exp (iZnﬁD’;lz)

= exp(—iZnﬁD']ﬂl) : exp(—iZnﬁD']@)

=1 (Y (3.27)
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where we have defined 17!, = exp(—i27 fiD7') to be the phase shift term from

latent j to observed group m at frequency I.
We can then construct a frequency domain analog, X" . € CT, to the

time delayed latent to group m, x';. € RT. Collect the phase -shift terms
h’”l across all frequencies I =1,...,T into the diagonal matrix H}" =
diag(h,, ... h}'r) € CTT (see Figure 1F, bottom, HY"). Then we get X', by
multiplication of the diagonal phase shift matrix H}" with the frequency do-
main latent j defined in equation 3.25: X ni. =H' xn jioe

We now have the conceptual basis to defme a frequency domain obser-
vation model, from latents to observed activity. For group m (comprising
gm units) at frequency [ on trial n, we define a linear relationship between
observed activity, ?;fl € C, and the set of latents common to all groups,
Xut € CP (see Figure 1E):

¥, = C"H"Zy + dJ' + €™, (3.28)
"~ N, (@), (3.29)

Here the diagonal matrix H" € CP*? is a different collection of the phase
shift terms 17}, across all latents j =1, ..., p at the single frequency I: H" =

diag(hy'), ... h’;]’ ;)- The mean parameter term E;" € R is shorthand for §;_1 -

V/Td™, which is +/Td™ for the zero frequency (f; = 0 for index I = 1), and
0 otherwise.

All other parameters are the same as defined in the mDLAG-time ob-
servation model (equations 3.1 and 3.2). We further set the same prior dis-
tributions over the mean parameters d” (equation 3.3) and noise precision
parameters (equation 3.4), and we maintain the ARD prior over the columns
of each loading matrix C" (equations 3.5 and 3.6). Note that the PSD func-
tion given by equation 3.24 is normalized so that fj;o sj(f)df =1, thereby
removing—as was the case for mDLAG-time—model redundancy in the
scaling of the latents and loading matrices C™.

3.3.3 Posterior Inference, Fitting, and Computational Scaling. Fitting the
mDLAG-frequency model proceeds analogous to fitting for mDLAG-time.
Let Y and X be collections of all observed and latent variables, respectively,
across all frequencies and trials. As before, let d, ¢, C, A, t, and D be col-
lections of the mean parameters, noise precisions, loading matrices, ARD
parameters, GP timescales, and time delays, respectively. From frequency
domain observations, we seek to estimate posterior distributions over the
probabilistic model components 6 = {X d, ¢, C, A} and point estimates
of the deterministic GP parameters Q = {z, D}.

We again employ variational inference, in which we maximize the lower
bound L(Q, Q) to the log quasi-likelihood log P(Y), with respect to the ap-
proximate posterior distribution Q(G) and the deterministic parameters Q:
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log P(Y) > L(Q. 2) = Egllog P(Y. 6]2)] — Eg[log O(9)]. (3.30)

The quasi-likelihood P(Y) is meant to approximate the time domain likeli-
hood P(Y) (equation 3.10). The two quantities converge as the number of
time points per trial, T, becomes large (Whittle, 1951).

We again constrain Q(0) so that it factorizes over the elements of 6:

Q) = Q(X)Qu(d)Qy(#)Q:(C)QA(A). (3.31)

In the same manner as mDLAG-time, this factorization enables closed-
form updates during optimization, and the lower bound L(Q Q) can be
iteratively maximized with coordinate ascent of the factors of Q(Q) and the
deterministic parameters .

As with the previous two methods, the three key stages of the mDLAG-
frequency fitting procedure are (1) updating the posterior distribution over
latents, Qz(X); (2) updating the GP parameters, 2, via gradient ascent; and
(3) evaluating the variational lower bound, equation 3.30. At all three stages,
mDLAG-frequency achieves linear scaling in both the number of groups M
and the number of time points per trial T. A complete set of update equa-
tions, including for these three key stages, is provided in appendix C.

Here, we highlight just the update of the posterior distribution over la-
tents, Qz(X). The update to Qz(X) takes the same functional form as the
prior distribution (equation 3.25), a gaussian distribution,

~ N T ~
Qf(x) = l_[ l_[ N(;(lﬂ,l | ,’zxnvp Ex,l)5 (332)

n=11=1

with trial- and frequency-dependent posterior mean i, 6 € CF and
frequency-dependent but trial-independent posterior PSD matrix %, €
CP*P. Note the independence in equation 3.32 not only across trials, but
also across frequencies. This independence emerges naturally: we impose
only the factorization in equation 3.31. By contrast, the analogous updates
for mDLAG-time are independent across trials only, not time points (equa-
tion 3.13). We can thus update the posterior PSD matrix, f)xy 1, separately for
each frequency I:

-1
o= (S + Z (HMH (C"’)TdDmC’”)Hl"’> . (3.33)
m=1

The elements of the diagonal PSD matrix §; = diag(si(f1). ...,s,(f1)) €
RP*P are computed using equation 3.24. The diagonal phase shift matrix
H[" € CP*7 is defined as in equation 3.28.

Evaluation of equation 3.33 for all frequencies | =1,...,T is signifi-
cantly more efficient than the evaluation of the analogous equation 3.14 for
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Table 1: Summary of Simulated Data Sets.

Data Set Demo Scaling, T Scaling, M Model selection
Independent runs 1 20 20 10 per SNR
Training trials 100 100 100 50
Time points 100 10-500 50 10-200
Samp. period (ms) 20 20 20 20
Trial duration (s) 2 0.2-10 1 0.2-4
Groups 2 2 1-24 1
Units per group 10 12 24-1 1
Latents 4 1 1 4

GP timescales (ms) 20-120 100 100 50

GP time delays (ms)  +12, —23 10 0-20 —
Signal-to-noise ratio 0.2 0.2 0.2 0.01-10.0

mDLAG-time. In the first term, the PSD matrix S, is diagonal, and thus its
inversion scales linearly in the number of latents, p. In the second term,
H" is diagonal, and thus the sum over groups m =1, ..., M costs O(p*M),
and O(p?MT) in total when evaluated for all frequencies. The final com-
putation is the inversion of a p x p matrix, costing O(p*T) operations and
O(p?T) storage, when evaluated for all frequencies. Thus in total, posterior
inference over the latents scales linearly in both the number of time points
per trial T and the number of groups M.

4 Results

4.1 Demonstration in Simulation. We start with an illustrative simula-
tion to demonstrate, across our three fitting methods, (1) their basic correct-
ness, (2) their relative runtime performance, and (3) themes explored more
deeply in subsequent sections. Data set characteristics are summarized in
Table 1.

We generated simulated activity from two groups (M = 2) according to
the mDLAG generative model (see equations 3.1 to 3.9 and section 6.1).
For illustration, we set 10 units in each group (g,, = 10). We designed the
loading matrices C" so that all types of intergroup interactions were repre-
sented (see Figure 2A, left, ground truth): a feedforward interaction (A to B),
a feedback interaction (B to A), and an interaction local to each group. We
also scaled the observation noise precision matrices ®™ so that noise lev-
els were representative of realistic neural activity. Specifically, activity due
to single-unit observation noise was five times stronger than activity due
to latents (the signal-to-noise ratio, or SNR, tr(C"C" ") /tr((®™)~!) = 0.2 for
each group). Gaussian process timescales and time delays were also chosen
within realistic ranges (see Table 1, Demo). With all model parameters spec-
ified, we then generated N = 100 independent and identically distributed
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Figure 2: Demonstrative simulation. (A) Loading matrix estimates. From left
to right: Ground truth (G.T.), mDLAG-time (Time), mDLAG-inducing (Induc.),
mDLAG-frequency (Freq.). Here the loading matrices C' and C?, for groups A
and B, respectively, have been concatenated vertically. Each element of each ma-
trix is represented by a square: magnitude is represented by the square’s area,
and sign is represented by the square’s color (red: positive; blue: negative). Note
that the sign and ordering of each loading matrix column are in general arbi-
trary. We have therefore reordered and flipped the signs of the columns of the
estimates to facilitate comparison with the ground truth. (B) Gaussian process
(GP) parameter estimates. Left: GP timescales. Right: GP time delays. Time de-
lays are only relevant for latents 1 and 2. Latents 3 and 4 are local to groups
A and B, respectively. (C) Latent time course estimates for an example train-
ing trial. Each panel includes the ground truth and estimated time course—for
each method—of a single latent variable. All estimated time courses, regard-
less of the method used for model fitting, were computed using the mDLAG-
time inference equation 3.13. Inset: zoomed-in view of latent 1 time courses.
Note that mDLAG-time and mDLAG-frequency estimates are visually indistin-
guishable, and thus mDLAG-time estimates (black) are occluded by mDLAG-
frequency estimates (magenta). For concision, for latents 1 and 2 we show only
latents corresponding to group A (xj; ); the latents corresponding to group B
are time-shifted versions of those shown here. a.u.: arbitrary units. (D) Lower-
bound value versus elapsed clock time over the course of model fitting. Note
that each method optimizes a slightly different lower bound. Lower-bound val-
ues are therefore not directly comparable across methods. Color scheme is con-
sistent across panels A to D. Gray: ground truth; black: mDLAG-time; green:
mDLAG-inducing; magenta: mDLAG-frequency.
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trials. Each trial was 2 s in length, comprising T = 100 time points with a
sampling period of 20 ms, or a rate of 50 Hz.

We then fit three mDLAG models to the simulated activity using each of
the three fitting methods: mDLAG-time, mDLAG-inducing, and mDLAG-
frequency. For all fitting methods, we set the initial number of latents (p = 8)
to be greater than the ground-truth number (p = 4) to verify that these addi-
tional latents would be pruned during fitting (see section 6.2). For mDLAG-
inducing we chose the number of inducing points to be half of the number
of time points per trial (Tinqg = 50; we elaborate on the choice of this hyper-
parameter in subsequent sections).

All fitting methods produced similar estimates. The number of latent
variables (p = 4) was correctly identified in all cases (see section 6.3). The
loading matrices (C) and their group-wise sparsity patterns were also re-
covered with high accuracy (see Figure 2A; normalized Frobenius norm be-
tween ground-truth loading matrix and estimates: mDLAG-time, 0.0462;
mDLAG-inducing, 0.0538; mDLAG-frequency, 0.0467). GP timescale (see
Figure 2B, left) and time delay (Figure 2B, right) estimates were all within
10% of the ground truth, with one exception: mDLAG-inducing produced
a significant overestimate of the timescale for latent 1 (see Figure 2B, left,
latent 1; compare green to gray). Consequently, the trial-to-trial time course
estimates of latent 1, based on the mDLAG-inducing fit, were overly smooth
(see Figure 2C, latent 1; see inset), leading to lower reconstruction accuracy
than the other two fitting methods (R? between ground truth and estimated
time courses: mDLAG-time, 0.8653; mDLAG-inducing, 0.8357; mDLAG-
frequency, 0.8652). We elaborate on this phenomenon in subsequent sec-
tions. The mDLAG-time and mDLAG-frequency methods produced practi-
cally indistinguishable estimates of latent time courses (see Figure 2C, black
and magenta traces coincide).

The runtime for mDLAG-frequency, however, was significantly faster
than for the other two fitting methods (see Figure 2D). Per fitting iter-
ation, mDLAG-frequency ran more than an order of magnitude faster
than either mDLAG-time or mDLAG-inducing (wall clock time per itera-
tion: mDLAG-time, 0.616 s; mDLAG-inducing, 0.464 s; mDLAG-frequency,
0.032s; see appendix E for details on computing resources used). Compared
to mDLAG-time, mDLAG-frequency also required significantly fewer it-
erations to reach convergence (nDLAG-time, 6,952; mDLAG-inducing,
1,282; mDLAG-frequency, 1,091). mDLAG-frequency appears to converge
in fewer iterations than mDLAG-time because, at least in part, the GP pa-
rameters converge more quickly to their optimal values (see supplementary
Figure 1). The total runtime to convergence of mDLAG-frequency was thus
faster by a factor of over 100 (total wall clock time: mDLAG-time, 4,283 s;
mDLAG-inducing, 595 s; mDLAG-frequency, 35 s).

4.2 Scaling with Number of Time Points per Trial. We next performed
a more exhaustive characterization of the runtime performance of each
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fitting method, starting with runtime scaling as a function of the number
of time points per trial. We again generated simulated activity from two
groups (M = 2) according to the mDLAG generative model (section 6.1),
with a few key differences from above (see Table 1, Scaling, T'). Without loss
of generality, we fixed one global latent variable, shared across both groups
(p = 1), and fixed the associated GP timescale and time delay throughout
all experiments (100 ms and 10 ms for the GP timescale and time delay, re-
spectively). We generated data sets comprising T = 500 time points per trial
(10 s in length). Beyond T = 500, mDLAG-time was prohibitively expen-
sive to run, precluding method-to-method comparisons (but see below for
an application of mDLAG-frequency to longer trials). We then fit mDLAG
models to increasingly long trial epochs (lengths spaced equally on a log
scale from 10 to 500 time points per trial). Here we chose the same number
of estimated latent variables as the ground truth (p = 1). Overall, we ran
20 independent experiments (“runs” on independent data sets produced
by different randomly generated mDLAG models) to gauge variability in
performance.

Across nearly all trial lengths, T, the three fitting methods gave practi-
cally indistinguishable statistical performance (see Figure 3A: black, green,
and magenta traces visually indistinguishable). All methods exhibited a
leave-unit-out test R? value (see section D.5) close to the noise ceiling (see
Figure 3A, black dashed line, R* = 0.167). Below 50 time points per trial (1 s
trial duration), mDLAG-frequency exhibited slightly worse performance
(see Figure 3A, inset; in the worst case, R? for mDLAG-frequency was 1%
worse than the other two methods at T = 10 time points, or 200 ms dura-
tion, per trial).

However, mDLAG-frequency exhibited dramatically better runtime
scaling with the number of time points per trial. In agreement with theory,
per fitting iteration, mDLAG-time exhibited cubic scaling with T (see Fig-
ure 3B: compare mDLAG-time, black trace, to the cubic reference slope, gray
dotted line), while mDLAG-frequency exhibited linear scaling or better
(Figure 3B: compare mDLAG-frequency, magenta solid trace, to the linear
reference slope, gray dashed line). Fitting with mDLAG-frequency thus
produced a 100x speed-up per iteration at T = 500 (mean clock time per
iteration: mDLAG-time, 6.030 £ 0.048 s; mDLAG-inducing, 0.524 & 0.005 s;
mDLAG-frequency, 0.059 + 0.002 s). Because mDLAG-time also exhibited
an increase in the number of iterations required for convergence (Fig-
ure 3C, at T = 500: mDLAG-time, 3,822 + 209; mDLAG-inducing, 2,242
+ 91, mDLAG-frequency, 424 & 79; see also supplementary Figure 1), the
computational advantage of mDLAG-frequency compounded: at T = 500,
the overall runtime of mDLAG-frequency was 1,000x faster than that of
mDLAG-time (see Figure 3D, total clock time: mDLAG-time, 22,871 +
1,128 s; mDLAG-inducing, 1,167 & 37.0 s; mDLAG-frequency, 23.3 £ 3.4 s).

Note that mDLAG-inducing scaled superlinearly with T (see Figure 3B:
compare mDLAG-inducing, green trace, to the linear reference slope, gray
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Figure 3: Scaling of performance and runtime with number of time points per
trial. (A) Leave-unit-out R? versus number of time points per trial. For each
run, performance was evaluated on 100 held-out test trials. The performance
curves for each method are visually indistinguishable from one another. Black
dashed line: noise ceiling (R* = 0.167 for these simulations). Inset: same data,
but with vertical axis magnified to show the difference between methods. (B)
Mean (across fitting iterations) clock time per iteration versus number of time
points per trial. Gray dashed line: reference slope for a linear scaling law, O(T).
Gray dotted line: reference slope for a cubic scaling law, O(T?). (C) Number
of iterations to convergence versus number of time points per trial. (D) Total
clock time to convergence versus number of time points per trial. Across pan-
els Ato D, solid traces indicate the mean, and shading (where visible) indicates
standard error of the mean, computed across 20 runs. Color scheme is consis-
tent across panels. Black: mDLAG-time (Time); green: mDLAG-inducing (In-
duc.); magenta: mDLAG-frequency (Freq.). Across panels B to D, dotted ma-
genta traces with open circles show results from applying mDLAG-frequency
to a separate, additional set of 20 runs with extended trial lengths, up to T =
5000 time points (100 s in duration). The slight discontinuity between solid ma-
genta and dotted magenta in panel B is due to increased memory overhead for
the larger data sets.
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dashed line). In theory, for a fixed number of inducing points, Tinq, mMDLAG-
inducing should scale linearly with the number of time points per trial.
Here, however, as T increased, we also increased the number of induc-
ing points to maintain it above the approximate Nyquist rate of the un-
derlying latent time course (for a squared exponential GP with 100 ms
timescale, a sampling rate of 12.5 Hz or greater captures essentially 100%
of the frequency content). Without doing so, the performance of mDLAG-
inducing suffers significantly (see supplementary Figure 2; see also Fig-
ure 2C, latent 1). Consequently, the runtime benefit (with increasing T)
of mDLAG-inducing over mDLAG-time is less significant than that of
mDLAG-frequency.

The linear runtime scaling of mDLAG-frequency allowed us to apply it
to data sets with even longer trials. We generated an additional 20 inde-
pendent data sets with T = 5,000 time points per trial (100 s in length). All
other data set characteristics remained the same as above (see Table 1, Scal-
ing, T). We then fit models via mDLAG-frequency to increasingly long trial
epochs, from T =890 to T = 5,000 time points in length, to demonstrate
mDLAG-frequency’s extended runtime scaling (see Figures 3B-D, magenta
dotted traces and open circles). nDLAG-frequency not only maintained lin-
ear scaling with T up to T = 5,000 (Figures 3B and 3D: compare magenta
dotted trace to the linear reference slope, gray dashed line), but remained
faster in total runtime than mDLAG-time and mDLAG-inducing applied to
T = 500 time points per trial.

4.3 Scaling with Number of Groups. We performed a similar charac-
terization of runtime scaling as a function of the number of observation
groups (see Table 1, Scaling, M). Here, we fixed the total number of units
throughout experiments at g = 24, but then considered a varying number
of groups, from M =1 (with 24 units belonging to one group) to M = 24
(with one “group” comprising one unit). We again fixed one global latent
variable (p = 1), with the same GP timescale as in section 4.2 (100 ms), but
we selected the magnitudes of pairwise time delays, uniformly at random,
between 0 ms and 20 ms. The number of time points per trial was fixed at
T =50 (1 s in length). The number of estimated latent variables was again
chosen to match the ground truth (p = 1). For mDLAG-inducing, we chose
Tina = 13 inducing points, the smallest number that maintained the approx-
imate Nyquist rate of the latent signals (12-13 Hz for a squared exponential
GP with 100 ms timescale). Overall, we ran 20 independent experiments at
each group number (M) to gauge variability in performance.

Across all group numbers, M, the three fitting methods gave practically
indistinguishable statistical performance (see Figure 4A: black, green, and
magenta traces visually indistinguishable). Both mDLAG-frequency and
mDLAG-inducing, however, scaled significantly better than mDLAG-time.
In agreement with theory, per fitting iteration, mDLAG-time exhib-
ited near-cubic scaling with the number of groups (Figure 4B: compare
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Figure 4: Scaling of performance and runtime with number of groups. (A)
Leave-unit-out R? versus number of groups. For each run, performance was
evaluated on 100 held-out test trials. The performance curves for each method
are visually indistinguishable from one another. Black dashed line: noise ceiling
(R? = 0.167 for these simulations). (B) Mean (across fitting iterations) clock time
per iteration versus number of groups. Gray dashed line: reference slope for a
linear scaling law, O(M). Gray dotted line: reference slope for a cubic scaling
law, O(M?). (C) Number of iterations to convergence versus number of groups.
(D) Total clock time to convergence versus number of groups. Across panels A
to D, solid traces indicate the mean, and shading (where visible) indicates stan-
dard error of the mean, computed across 20 runs. Color scheme is consistent
across panels. Black: mDLAG-time (Time); green: mDLAG-inducing (Induc.);
magenta: mDLAG-frequency (Freq.).

mDLAG-time, black trace, to the cubic reference slope, gray dotted line),
while both mDLAG-frequency and mDLAG-inducing exhibited linear
scaling or better (Figure 4B: compare mDLAG-frequency, magenta trace,
and mDLAG-inducing, green trace, to the linear reference slope, gray
dashed line). Fitting with mDLAG-frequency and mDLAG-inducing
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thus produced a 285x and a 88x speed-up per iteration, respectively,
at M = 24 (mean clock time per iteration: mDLAG-time, 7.200 % 0.091 s;
mDLAG-inducing, 0.0816 £+ 0.0013 s; mDLAG-frequency, 0.0252 + 0.0004
s). The number of iterations required for mDLAG-time convergence also
increased with the number of groups (Figure 4C, number of iterations
at M =24: mDLAG-time, 15,770+ 387; mDLAG-inducing, 273 £ 11;
mDLAG-frequency, 240 & 10). The computational advantages of mDLAG-
frequency and mDLAG-inducing thus compounded, resulting in overall
runtime speed-ups of over 18,000x and 5,000x for mDLAG-frequency
and mDLAG-inducing, respectively, at M =24 (Figure 4D, total clock
time: mDLAG-time, 113,087 + 1,987 s; mDLAG-inducing, 22.20 +0.80 s;
mDLAG-frequency, 6.05 £ 0.29 s).

4.4 Neuropixels Recordings of Three Visual Cortical Areas. We next
sought to validate our accelerated methods beyond a simulated environ-
ment on state-of-the-art neural recordings. We considered electrophysiolog-
ical recordings from neuronal populations in anesthetized macaque visual
cortex, recorded using multiple Neuropixels probes (see section 6.4). These
recordings encompassed hundreds of neurons spanning three brain areas:
V1, V2, and V3d (V1: 55-191 neurons across recording sessions; V2: 63-166;
V3d: 8-111). Each brain area was treated as a separate group throughout
our analyses below (i.e., M = 3). Within a recording session, on each trial,
animals were visually presented with a drifting sinusoidal grating (one of
two possible orientations, 90° apart). Each orientation was presented on 300
trials, for a total of 600 trials per recording session.

Overall, we analyzed seven recording sessions from three animals. We
further treated each grating stimulus orientation separately, giving a total
of 14 “data sets” (a subset of which were previously analyzed in Gokcen
et al., 2023). For each data set, we allocated at random 225 trials as a train-
ing set and 75 trials as a test set on which to measure model performance
(see appendix D). We applied each fitting method (mnDLAG-time, mDLAG-
inducing, mDLAG-frequency) to spike counts (taken in 20 ms nonoverlap-
ping time bins) measured during the first 1,000 ms after stimulus onset (see
Figure 5A, trial-averaged responses for an example data set). As a prepro-
cessing step, for each neuron, we subtracted the mean spike count across
time bins within each trial to remove slow fluctuations beyond the timescale
of a trial (Cowley et al., 2020). We started all fitting methods from the same
initialization, with p = 30 latents (see section 6.2). In terms of scale, these
recordings included many more trials and neurons than the simulations in
sections 4.2 and 4.3, but the number of time points per trial (T = 50) and
groups (M = 3) are within the ranges considered above.

mDLAG-frequency performed statistically as well as mDLAG-time (see
Figure 5B, magenta points lie on the diagonal) and achieved a median
2.9x speed-up per fitting iteration and a 25x speed-up overall (Figure 5C,
median clock time per iteration across data sets—mDLAG-time, 5.88 s;
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Figure 5: Performance and runtime on Neuropixels recordings from macaque
visual cortex. Here M = 3 groups, corresponding to the three brain areas V1,
V2, and V3d. (A) Temporally smoothed peristimulus time histograms during
the stimulus presentation period, for an example session and stimulus condi-
tion. (B) Performance (leave-group-out R?) of mDLAG-inducing (green points;
Induc.) or mDLAG-frequency (magenta points; Freq.) versus performance of
mDLAG-time. Each data point represents one data set. For each data set, perfor-
mance was evaluated on 75 held-out test trials. mDLAG-inducing (with Tiq =
20 inducing points) was significantly outperformed by mDLAG-time (one-
sided paired sign test: mDLAG-time better than mDLAG-inducing, p = 0.0065),
whereas mDLAG-frequency performed as well as mDLAG-time (one-sided
paired sign test: mMDLAG-time better than mDLAG-frequency, p = 0.7880). (C)
Mean clock time per iteration, mDLAG-inducing or mDLAG-frequency versus
mDLAG-time. As in panel B, each data point represents one data set. White-
filled circles indicate the median of the magenta points (circle with magenta
border) or of the green points (circle with green border, occluded by the ma-
genta median). (D) Number of iterations to convergence, mDLAG-inducing
or mDLAG-frequency versus mDLAG-time. Same conventions as in panel C.
Median over green points is occluded by median over magenta points. (E) To-
tal clock time to convergence, mDLAG-inducing or mDLAG-frequency versus
mDLAG-time. Same conventions as in panel C.

mDLAG-frequency, 2.00 s; Figure 5D, median number of iterations across
data sets: mDLAG-time, 30,737, mDLAG-frequency, 3,659; Figure 5E,
median total clock time across data sets: mDLAG-time, 50.4 hr; mDLAG-
frequency, 1.8 hr). These speed-ups are of the same order of magnitude as or
better than the speed-ups seen in simulation (see section 4.3). For example,
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in simulated data with M =3 groups and T = 50 time points per trial,
mDLAG-frequency achieved a 3.6x speed-up per fitting iteration (see Fig-
ure 4B) and a 12 x speed-up overall (see Figure 4D) relative to mDLAG-time.

mDLAG-inducing, by contrast, presented a performance trade-off that
depended on the choice of the number of inducing points. At Tjng = 20 in-
ducing points, mDLAG-inducing achieved a runtime similar to mDLAG-
frequency (Figure 5C, median clock time per iteration across data sets:
2.03 s; Figure 5D, median number of iterations across data sets: 3,457; Fig-
ure 5E, median total clock time across data sets: 1.9 hr). However, T;nq = 20
inducing points corresponds to an effective sampling rate of 20 Hz. At a
20 Hz sampling rate, aliasing becomes a potential issue for latents with
(squared exponential) GP timescales of about 50 ms or shorter. For instance,
by mDLAG-time estimates, about 25% of the GP timescales encountered
across Neuropixels data sets were 35 ms or shorter. By contrast, no mDLAG-
inducing timescale estimates were shorter than 35 ms (see supplementary
Figure 3).

Models fit by mDLAG-inducing consequently performed significantly
worse than models fit by the other two methods (see Figure 5B, one-sided
paired sign tests, leave-group-out R>: mDLAG-time better than mDLAG-
inducing, p = 0.0065; mDLAG-frequency better than mDLAG-inducing,
p = 0.0009). This gap in mDLAG-inducing’s statistical performance could
be closed by increasing the number of inducing points (see supplementary
Figure 4A: mDLAG-inducing performance when we chose Tinq = 32 induc-
ing points, corresponding to an approximate Nyquist rate for GP timescales
of 30 ms or longer), but at the expense of runtime benefit (see supplemen-
tary Figure 4B: mDLAG-frequency 55% faster than mDLAG-inducing per
iteration, and 72% faster overall).

Finally, we sought to characterize further the extent to which mDLAG-
frequency for these neural recordings maintained the runtime scaling prop-
erties exhibited in simulation (see Figures 3 and 4). Importantly, mDLAG-
frequency maintained linear scaling or better with both the number of time
points per trial (see supplementary Figure 5, up to T = 500) and the number
of analyzed groups (see supplementary Figure 6, up to M = 7, where each
group represents a distinct laminar compartment of sampled V1, V2, and
V3d recordings).

4.5 Exploration of Biases Introduced by Frequency Domain Fitting.
Thus far, we have shown that the frequency domain fitting approach pro-
vides orders of magnitude runtime speed-up with seemingly minimal loss
in statistical performance relative to baseline. Of course, no approximation
comes without a cost. We now explore the biases introduced by the fre-
quency domain approach, particularly in the estimation of GP parameters
and latent dimensionality.

But first, why might there be biases in the first place? The approxima-
tion to take the frequency domain PSD matrix as diagonal is equivalent to
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Figure 6: The circulant approximation induced by the frequency domain ap-
proach and its effects on generation and inference. (A) Generation via the time
domain. Top: An example gaussian process (GP) covariance matrix (K), cor-
responding to the mDLAG-time model. Bottom: An example GP time course
(black solid trace) generated via the mDLAG-time model. To emphasize the
(lack of) boundary conditions, copies of that time course are displayed to its
left and right (black dotted traces). (B) Generation via the frequency domain.
Top: The circulant approximation of K in panel A (K), arising implicitly from
the mDLAG-frequency model. Both K and K shown here were generated with
the same squared exponential GP timescale (100 ms) for trial length T = 25
time points and M = 1 group. Bottom: An example GP time course (black solid
trace) generated via the mDLAG-frequency model. The signal was generated in
the frequency domain and then transformed into the time domain via the dis-
crete Fourier transform (DFT). To emphasize the periodic boundary conditions,
copies of that time course are displayed to its left and right (black dotted traces).
(C) Inference via the time domain versus the frequency domain. A ground-truth
latent time course (G.T., gray; occluded by the black trace) was generated via
the mDLAG-time model (trial length T = 50 time points, M = 1 group, and GP
timescale 100 ms). Then, time courses were inferred via the mDLAG-time model
(Time, black; equation 3.13) or the mDLAG-frequency model (Freq., magenta;
equation 3.32, followed by DFT). In either case, the ground-truth parameters
were used for inference. a.u.: arbitrary units.

replacing the time domain covariance matrix with a circulant matrix (see
Figure 6A, top: time domain covariance matrix; Figure 6B, top: circulant
approximation arising implicitly from the mDLAG-frequency model). This
circulant approximation affects both the generative model and posterior
inference. Latent time courses generated via the approximate frequency
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domain model (equation 3.25, followed by an inverse DFT) are putatively
periodic (Figure 6B, bottom: note the continuity between the solid trace
and its copies, the dotted traces), with correlations between the beginning
of the trial and the end of the trial (Figure 6B, top: note the large magnitude
of covariance in the upper right and lower left quadrants of the circulant
covariance matrix K).

Like frequency-domain-generated time courses, frequency-domain-
inferred time courses are similarly periodic, leading to edge effects (Fig-
ure 6C). In the middle of a trial, time domain and frequency domain infer-
ence produce practically indistinguishable estimates (Figure 6C: compare
black and magenta traces). However, the estimates start to visibly deviate
toward the beginning and end of the trial as the frequency domain estimate
curves away from the time domain estimate to satisfy its periodic bound-
ary conditions. The extent of edge effects, in both generation and inference,
increases as the length of the GP timescale increases relative to the length
of the trial.

4.5.1 Biases in Estimation of Gaussian Process Parameters. To characterize
the impact of the frequency domain approximation on GP parameter esti-
mation, we returned to our simulated data sets from above. Here we focus
on bias as a function of trial length (see Table 1, Scaling, T), as the departure
of the frequency domain approximation from the original time domain
specification is ultimately a finite trial length effect. We also explore biases
as a function of group number (see supplementary Figure 7A), sampling
rate (supplementary Table 1, Sampling rate; supplementary Figure 7B),
and number of units (supplementary Table 1, Scaling, g; supplementary
Figure 7C).

Comparing the GP timescales and time delays estimated via mDLAG-
frequency to the ground-truth values, we found that the magnitudes of
both parameters were consistently underestimated (see Figures 7A and
7B, magenta traces). Biases were more severe for shorter trial lengths
and approached the ground truth for longer trial lengths. In separate
analyses, we refit models via mDLAG-frequency while keeping either the
GP timescales or the GP time delays fixed throughout fitting. Regardless
of which parameter was held fixed, the bias remained in estimates of the
other parameter, suggesting that these biases are decoupled effects (see
supplementary Figure 8).

Intuition for this effect can be gained by considering the time domain
covariance matrix and its (approximate) circulant counterpart. Consider,
for example, a ground-truth latent variable with covariance matrix as
depicted in Figure 6A. Consider also a frequency domain (circulant in the
time domain) estimate with GP timescale that matches the ground-truth
value (Figure 6B, top). If we consider the error between the ground-truth
covariance matrix and the circulant estimate, then the error for elements
close to the main diagonal will be low, while the error for elements in the
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Figure 7: Bias in gaussian process (GP) parameter estimation with number of
time points per trial. (A) GP timescale estimates versus number of time points
per trial. (B) GP time delay estimates versus number of time points per trial.
Across panels A and B, black dashed traces indicate ground-truth parameter
values. Solid traces indicate the mean of estimates, and shading (where visible)
indicates standard error of the mean, computed across 20 runs. Black: mDLAG-
time (Time); magenta: mDLAG-frequency without tapering (Freq., no taper);
gold: mDLAG-frequency with tapering (Freq., taper).

upper right and lower left quadrants will be relatively high. The error ac-
cumulated in these upper right and lower left quadrants could be reduced
if the GP timescale estimate was shorter, but at the expense of added error
for elements close to the main diagonal. Ultimately, the optimal timescale
balances these sources of error, settling on an estimate that is shorter than
the ground truth but not too short. We validated this intuition empirically
in simulation (see supplementary Figure 9). Importantly, as the length
of the trial increases, the bias approaches zero (see Figures 7A and 7B,
magenta traces): the bias becomes less concerning precisely as the runtime
of mDLAG-frequency becomes more advantageous (see Figure 3).

Why does this bias not lead to more severe negative impacts on model
performance (see Figures 3A, 4A, and 5B)? An underestimate of GP
timescale means that higher frequencies are overrepresented a priori. In
principle, then, posterior estimates of the latent time courses are encour-
aged to maintain potentially spurious high-frequency content in held-out
test trials, leading to overfitting. In practice, however, given the consis-
tently similar performance between mDLAG-frequency and mDLAG-time,
overfitting was evidently not an issue for the simulated data sets and neu-
ral recordings considered here. An overestimate of GP timescale, by con-
trast, would encourage underfitting, as meaningful high-frequency con-
tent is suppressed. For the neural recordings considered here, that type of
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underfitting appeared to be the more salient issue, as evidenced by the rel-
atively poor performance of mDLAG-inducing model fits (see Figure 5B)
paired with their consistent overestimates of GP timescales (see supplemen-
tary Figure 3).

4.5.2 Biases in Estimation of Dimensionality. We next explored potential
biases in the estimation of latent dimensionality, that is, model selection. In
the case of methods like GPFA (Yu et al., 2009) and DLAG (Gokcen et al.,
2022), model selection is accomplished via cross-validation and grid search
to find optimal latent dimensionalities. In the case of mMDLAG, estimation of
latent dimensionality is incorporated into the model fitting process via the
ARD prior, which encourages group-wise sparsity of the loadings (equa-
tions 3.5 and 3.6). Here we focus on estimation of latent dimensionality via
ARD (see section 6.3).

As we will demonstrate, the results of model selection are noise-level
dependent. We therefore generated (via the mDLAG generative model; see
section 6.1) 10 independent data sets at four noise levels (SNR = 0.01, 0.1,
1.0, 10.0), for a total of 40 data sets (see Table 1, Model Selection). Each data
set comprised N = 50 trials, with 200 time points per trial (400 ms in length).
Here we were also interested in bias as a function of trial length, and thus fit
mDLAG models to increasingly long trial epochs (lengths spaced equally
on a log scale from 10 to 200 time points per trial). For simplicity, we gen-
erated activity for just one group with 24 units. The themes from model
selection for one group are representative of themes that underlie model
selection in multigroup contexts. We set the ground-truth number of latents
to p = 4, but initialized all models with p = 8 latents to allow dimensional-
ity to be freely estimated. All ground-truth GP timescales were set to 50 ms.

We first considered trends in dimensionality estimates via mDLAG-time
as a baseline (see Figure 8A). Biases in these estimates depended on trial
length. Atlow SNRs (Figure 8A, red, SNR = 0.01), mDLAG-time produced
conservative dimensionality estimates—underestimates that approached
the ground truth with increasing trial length (and increasing training data
set size). At midlevel SNRs (Figure 8A, gold and magenta, SNR = 0.1, 1.0,
respectively), dimensionality estimates were accurate at all trial lengths.
But interestingly, at high SNRs (Figure 8A, green, SNR = 10.0), mDLAG-
time produced overestimates of dimensionality at long trial lengths (large
training data set sizes). This behavior has been reported previously for
simpler dimensionality reduction approaches like factor analysis, in con-
junction with cross-validation (Williamson et al., 2016): in low-noise, data-
rich regimes, the effects of overfitting are small, and cross-validated perfor-
mance remains high even for models with dimensionalities larger than the
ground truth.

We then sought to characterize the extent to which dimensionality es-
timates via mDLAG-frequency matched or deviated from the trends de-
scribed above (Figure 8B). At the lowest two SNRs (Figure 8B, red and gold,
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Figure 8: Bias in estimation of latent dimensionality with number of time points
per trial. (A) mDLAG-time estimates. (B) mDLAG-frequency (mDLAG-freq.)
estimates. (C) mDLAG-frequency estimates with tapering as a preprocessing
step. Across panels A to C, black dashed lines indicate ground-truth dimension-
ality (p = 4). Solid traces indicate the mean of estimates, and shading (where
visible) indicates standard error of the mean, computed across 10 runs. SNR:
Signal-to-noise ratio. Green: SNR = 10.0; magenta: SNR = 1.0; gold: SNR = 0.1;
red: SNR = 0.01. In panels A and C, the gold and magenta curves almost fully
coincide along the ground-truth line.

SNR = 0.01, 0.1, respectively), mDLAG-frequency estimates were qualita-
tively indistinguishable from estimates by mDLAG-time (compare to Fig-
ure 8A). At the highest two SNRs (Figure 8B, magenta and green, SNR
= 1.0, 10.0, respectively), trends for the two fitting methods were notably
different, at least for shorter trial lengths (T < 44). In contrast with mDLAG-
time estimates, mDLAG-frequency estimates were biased toward dimen-
sionality values that were larger than the ground truth at shorter trial
lengths and approached the ground truth as trial length increased (up to
T = 44). Then as trial length continued to grow, the trends in mDLAG-
frequency estimates matched the trends of mDLAG-time estimates, grow-
ing in magnitude above the ground-truth value (for T = 44 and larger).
The trend for short trial lengths can be explained by the bias in GP
timescale estimation (see section 4.5.1). mDLAG-frequency tends to pro-
duce underestimates of GP timescales at short trial lengths—a mismatch
with the data. By employing additional latents, mDLAG-frequency could
possibly compensate for any explanatory power lost by this parameter
bias. As trial length increases, the bias in GP timescale decreases; mDLAG-
frequency estimates behave increasingly like mDLAG-time estimates.

4.5.3 Bias Mitigation Strategies. We have demonstrated empirically that
the biases explored above have a minimal impact on model performance
and that such biases diminish as the runtime benefit of mDLAG-frequency
grows. Still, it might be of practical and scientific importance to mitigate
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these biases during the model-fitting process. Bias mitigation is a mature
topic of study in spectral estimation, with many strategies to choose from
(Priestley, 1981). To demonstrate that this body of work is applicable to the
present context, we considered one such strategy: tapering.

We repeated all simulated experiments with mDLAG-frequency (see Fig-
ures 7, 8, and supplementary Figure 7). Here, however, as a preprocessing
step, we applied a taper (we chose a periodic Hamming window function,
see section 6.5) to each observed unit on each trial. Tapering smoothly at-
tenuates each observed time series toward zero at the beginning and end of
each trial, effectively enforcing the periodic boundary conditions assumed
by the frequency domain approach.

Across experiments, tapering was an effective bias mitigation strategy.
For instance, in trial length experiments, mDLAG-frequency (without ta-
pering) achieved within 10% error of the ground-truth GP timescale by
T =163 (Figure 7A, magenta). With tapering, that error was achieved by
T = 53 (Figure 7A, gold). In model selection experiments (Figure 8C), taper-
ing removed the tendency of mDLAG-frequency to overestimate dimen-
sionality at short trial lengths (compare Figure 8C to Figure 8B, for trial
lengths T = 44 and shorter). Tapering was also effective for bias mitigation
in our experiments scaling group number (supplementary Figure 7A), sam-
pling rate (supplementary Figure 7B), and number of neurons (supplemen-
tary Figure 7C).

As an alternative to tapering, one could use mDLAG-frequency to fit
an initial set of model parameters and then fine-tune those parameters us-
ing mDLAG-time for a limited number of iterations. For example, we em-
ployed this approach on one of the Neuropixels data sets (see supplemen-
tary Figure 10). After 500 iterations of fine-tuning with mDLAG-time, GP
timescales and time delays settled into slightly different values from the
initial mDLAG-frequency estimates.

5 Discussion

In this work, we developed two methods to accelerate model fitting and
inference in multigroup GP factor models. Our methods incorporate
multigroup extensions of techniques drawn from two broader classes of
approaches in the GP and spectral estimation fields: sparsity via inducing
variables (Alvarez et al., 2010; Duncker & Sahani, 2018; Titsias, 2009) and
frequency domain representations (Dowling et al., 2023; Keeley, Aoi et al.,
2020; Paciorek, 2007; Ulrich et al., 2015; Whittle, 1951). We demonstrated
that mDLAG-inducing and mDLAG-frequency can achieve linear scaling
in both the number of time points per trial T and the number of groups
M, translating to orders of magnitude runtime speed-ups over the base-
line approach, mDLAG-time, across simulations and neural recordings.
Notably, in neural recordings of hundreds of neurons across three brain
areas, mDLAG-frequency produced a 25x speed-up over mDLAG-time
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without compromising statistical performance. Prior to this work, the
analysis of increasingly available recordings that span many brain areas,
cortical layers, and cell types was prohibitive for the class of multigroup
GP factor models. With the methods developed here, that analysis is now
feasible, opening the door to questions about multipopulation interactions
that were previously inaccessible.

In contrast with mDLAG-frequency, mDLAG-inducing often presented
a trade-off between runtime and statistical performance. Applied to neural
recordings, mDLAG-inducing could achieve either equal runtime perfor-
mance to mDLAG-frequency (see Figure 5) or equal statistical performance
to mDLAG-frequency (see supplementary Figure 4), but not both. In the-
ory, mDLAG-inducing scales linearly in T so long as the number of induc-
ing points Ting is held fixed. In practice, Ting must be kept large enough
to avoid aliasing and excessively overestimating latent timescales (see Fig-
ure 2B, supplementary Figure 2, supplementary Figure 3), hence temper-
ing the runtime benefit of the approach (see Figures 2D and 3). The need
to search for the optimal hyperparameter T;,4, when the (potentially wide-
ranging) latent timescales are not known a priori tempers that runtime ben-
efit further.

Of course, mDLAG-frequency is not without trade-offs. For small trial
lengths, we demonstrated that mDLAG-frequency exhibits a tendency to
underestimate the magnitudes of GP timescales and time delays (see Fig-
ure 7 and supplementary Figure 3), and a tendency to overestimate di-
mensionality (Figure 8B). Both of these biases could leave models fit via
mDLAG-frequency prone to overfitting. For the simulated data and neu-
ral recordings considered here, however, overfitting did not appear to be
an issue. Importantly, as trial length increases, mDLAG-frequency’s bias
diminishes (see Figures 7 and 8) precisely as its runtime benefit grows (see
Figure 3). For instance, in the simulations with T = 500 time points per trial,
a 1000x runtime speed-up (see Figure 3D) with less than 2% bias in GP pa-
rameter estimates (see Figure 7) represents a remarkably good trade-off.

We explored tapering and fine-tuning in the time domain as straightfor-
ward yet effective bias mitigation strategies (see section 4.5.3). While these
strategies worked well for the simulated and neural data sets considered
here, they might not always be the best strategy for the problem at hand.
In other contexts, other strategies could be explored, such as zero-padding
(Aoi & Pillow, 2017) or even debiased modifications to the variational lower
bound (Sykulski et al., 2019), though likely at the expense of increased com-
putational cost.

In our Neuropixels analyses (see section 4.4), neurons were straight-
forwardly grouped by brain area. In other scenarios, delineating groups
(e.g., by layer or cell type) might be challenging. Control analyses are
critical for validating interactions across the chosen groups. Within-group
controls (Gokcen et al., 2022; Semedo et al., 2019) help confirm that the
across-group interactions of interest are meaningful. Analyses based on
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random subsamples of neurons also serve as valuable controls (Gokcen
et al., 2022). For example, given two groups of neurons, one could ran-
domly subsample neurons from group 1 and then randomly subsample
neurons from group 2. mDLAG models could then be refit to these two
subselected groups. Highly inconsistent results across repetitions of this
procedure might suggest the need to reevaluate group definitions.

Future work could adapt mDLAG for group discovery (Buesing et al.,
2014; Klami et al., 2015). When groups are unknown a priori, one could
forsake assigning groups altogether and take each individual neuron to be
its own “group.” Then one could study the fitted mDLAG models in an
exploratory fashion to search for meaningful group structure. This analysis,
previously computationally prohibitive with mDLAG-time, is now feasible
with mDLAG-frequency or mDLAG-inducing (see, e.g., Figure 4, at M = 24
groups).

We have focused here on approaches to accelerating one particular di-
mensionality reduction method, mDLAG; but in fact, mDLAG is repre-
sentative of a general class of dimensionality reduction methods. Our ap-
proaches are therefore quite general, applicable to a wide range of dimen-
sionality reduction methods commonly used in neuroscience. In the case
of two groups (M = 2), mDLAG is equivalent to a Bayesian formulation
of DLAG (Gokcen et al., 2022) and closely related to other multigroup ap-
proaches that incorporated GP state models (Balzani et al., 2023; Keeley,
Aoi et al., 2020). In the case of one group (M = 1) and when all time de-
lays are fixed to zero (D7 = 0), mDLAG becomes equivalent to a Bayesian
formulation of gaussian process factor analysis (GPFA; Duncker & Sahani,
2018; Jensen et al., 2021; Yu et al., 2009). When each group comprises one
unit (M = g), as noted above, mDLAG resembles a time-delay GPFA (Lak-
shmanan et al., 2015) or cross-spectral factor analysis (Gallagher et al., 2017)
model with a sparsity prior on each coefficient of the loading matrix, C. Fi-
nally, by removing temporal smoothing (i.e., in the limit as all GP timescale
parameters 7; approach 0) mDLAG becomes equivalent to the static method
group factor analysis (Klami et al., 2015).

The accelerated fitting methods developed here, in the Bayesian mD-
LAG setting, are readily applicable to non-Bayesian methods like GPFA
and DLAG. For these non-Bayesian methods, development would largely
follow sections 3.2 and 3.3, but the mean parameter d”, the loading matrix
C™, and the noise precision matrix ®™ would be treated as deterministic
model parameters for which we seek point estimates rather than prob-
abilistic model parameters for which we seek posterior distributions. In
fact, we include an implementation of these methods in accompanying
code (see appendix E). We note also that we restricted our development
here to models with a linear-gaussian relationship between latents and
observations (equations 3.1 and 3.2). Our approaches could be adapted
to nonlinear regimes (Duncker et al., 2023; Gondur et al., 2024; Wu et al.,
2017) and non-gaussian noise models (Duncker & Sahani, 2018; Keeley,
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Zoltowski, Yu et al., 2020; Zhao & Park, 2017), though again likely at the
expense of increased computational cost.

Our investigations focused on the commonly used squared exponen-
tial GP covariance function with time delays (equation 3.8). We emphasize,
however, that all three fitting methods examined here are compatible with
any stationary GP covariance function, while possessing the same compu-
tational scaling properties (see Figures 3 and 4). The mDLAG-frequency
mathematical development, specifically, need not depend on the particular
parameterization of the GP cross-spectral density (CSD) function given in
equation 3.26. Rather, any GP CSD function that can be written in terms
of an amplitude function and a phase function is compatible with the ap-
proach. Concretely, for latent j and groups m; and m,, we can write the GP
CSD function sy, um,,j(f1), evaluated at frequency f, in terms of the ampli-
tude function ¢;(f;) and phase function 7, s, ;(f1):

S, j(f1) = € (f1) - @Xp (=it s, j(f1)) - 5.1)

For the squared exponential GP covariance function (equation 3.8), the
corresponding amplitude function ¢;( f;) is the squared exponential in equa-
tion 3.24. The phase function is a linear function of frequency, 1, m,, j(f1) =
27 fi (D’;.11 - D’;’Z ), where the slope is determined by the difference between
time delay parameters D’;“ and DTZ. Alternative choices for the amplitude
function can be drawn directly from the single-output GP literature (Wilson
& Adams, 2013). In tandem, alternative choices of the phase function would
lead to alternative multi-output GP kernels, for instance, constant (as in a
simple phase shift; Ulrich et al., 2015) or affine (Parra & Tobar, 2017) func-
tions of frequency. Different choices of GP kernel would lead to different
behavior in terms of statistical performance and biases in estimation. These
differences ought to be explored on a case-by-case basis. Still, the themes
raised in section 4.5 will be relevant to any alternative GP kernel choices.

Multigroup dimensionality reduction methods have historically faced
a number of scaling challenges, from model selection to model fitting. The
challenge of model selection requires identifying both the number of latents
across all observed groups and which subset of groups each latent involves.
For example, in the case of M = 2 groups, the non-Bayesian DLAG (Gok-
cen et al., 2022), and methods with similar group structure (e.g., Balzani
et al., 2023; Keeley, Aoi et al., 2020), has three hyperparameters: one for the
number of shared latents and two for the number of latents local to each
group. Grid search over just 10 candidate values for each of these three hy-
perparameters would result in 103 candidate models to fit, and k-fold cross-
validation would inflate that number further. To generalize this model se-
lection approach to M groups would require the fitting of p?"~'k candidate
models, for a search over p candidate values for each of 2" — 1 hyperpa-
rameters with k-fold cross-validation. With the incorporation of automatic
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relevance determination (Klami et al., 2015), mDLAG reduced the number
of model fits to one. The methods developed here then accelerate that model
fit to overcome remaining computational barriers, thereby enabling a broad
class of dimensionality reduction techniques to keep pace with the rapidly
growing scale of multipopulation neural recordings.

6 Methods

6.1 Synthetic Data Generation via the Time and Frequency Domains.
Throughout our simulated experiments (see Table 1 and supplementary Ta-
ble 1), we generated the simulated data sets using the mDLAG generative
model. In section 4.1 (see Figure 2 and Table 1, Demo), generation could
be performed straightforwardly via the mDLAG-time formulation, equa-
tions 3.1 to 3.9. For the remaining larger-scale experiments (see Table 1: Scal-
ing, T; Scaling, M; Model selection; see also supplementary Table 1: Sam-
pling rate; Scaling, ), data generation via the mDLAG-time formulation
was prohibitively expensive. Sampling from the multivariate gaussian dis-
tribution in equation 3.7 requires O(M>T?) operations, cubic in the number
of groups, M, and the number of time points per trial, T.

For these remaining experiments, we therefore generated simulated data
sets using the mDLAG-frequency formulation, equations 3.24-3.25, 3.28—
3.29, and 3.3-3.6 (Dietrich & Newsam, 1997). The computational cost of
sampling frequency domain observations is ameliorated to O(MT) oper-
ations. Then we convert these observations to the time domain by taking
the inverse unitary DFT of the frequency domain activity for each unit
r=1,...,quin group m on each trial n: y) .. = URyr" . .. Assuming the DFT
is carried out using an FFT algorithm, this operation scales O(T log T) in
the number of time points per trial.

Yet time courses generated via mDLAG-frequency exhibit edge effects
(see section 4.5 and Figure 6B). To mitigate the influence of these edge ef-
fects on our experimental results, we conservatively first generated trials
that were three times longer than desired (3T time points in length, when
we desired length-T trials). Then we took only the middle third of each trial
and threw out the first and final thirds. For our simulated experiments, in
which latent time courses were generated with a squared exponential GP
timescale of 100 ms, taking only the middle third of the trial was sufficient
for edge effects to be rendered negligible. Even with the generation of extra
time points per trial, data generation via the mDLAG-frequency formula-
tion was still markedly faster than data generation via the mDLAG-time
formulation.

6.2 Parameter Initialization. We initialized each of the three meth-
ods, mDLAG-time, mDLAG-inducing, and mDLAG-frequency, in a simi-
lar fashion. For any of the methods, we first specified the number of la-
tents, p. Through automatic relevance determination, insignificant latents
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are then effectively pruned. Therefore, in general, p should be chosen to be
as small as possible (to minimize runtime) yet large enough that at least
one of the initial latents is deemed insignificant (according to shared vari-
ance explained; see equation 6.2), thereby ensuring that dimensionalities
are not underestimated. We indicate our chosen value of p for each experi-
ment throughout section 4.

To initialize the rest of the fitting procedure, we specified initial values for
only the moments of the posterior factors Qu(d), Qs(¢), Qc(C), and Q4(A)
(see, e.g., equations B.18-B.21) that were needed to begin iteration. The pos-
terior distribution over the latents Q,(X) (for mDLAG-time, equation 3.13;
Q. (W) over inducing variables for mDLAG-inducing, equation B.17; Qz(X)
over frequency domain latents for mDLAG-frequency, equation 3.32) was
then the first factor to be updated each iteration of the fitting procedure.
We specified noninformative priors by fixing all hyperparameters to a very
small value (Klami et al., 2015), B, ag, by, a4, by = 10712,

For Qu(d), we initialized u/ at the sample mean of observed activity
across all trials and time points. For Q,(¢), we initialized (¢™)~! for each
unit 7 in group m to the sample variance of that unit across all trials and time
points. For Q.(C), we first randomly initialized all first moments @i}’ € R?
(for the rth row of C™ in group m, see equation B.36) with entries drawn
from a zero-mean gaussian distribution with variance chosen to match the
scale of the data. Then we initialized the second moments (€”(¢")") to the
outer product of first moments " [_LZ'ZT. For Q4(A), we initialized (a;ﬁ) for

each latent j in group m to gy, /(||c’]?1||§), which stems from equations B.37
and B.38.

We initialized all delay parameters to zero and all gaussian process
timescale parameters to the same value, equal to twice the sampling pe-
riod or spike count bin width of the neural activity. All gaussian process
noise variances were fixed to small values (1073), as in Gokcen et al. (2023).
Finally, for mDLAG-inducing specifically, we specified the number of in-
ducing points Ting and fixed the inducing points on a uniformly spaced
grid, with the first and last inducing points fixed at the beginning and end
of each trial, that is, & =1 and &7, , = T. Fitting via all three methods pro-
ceeded iteratively, until their respective lower bounds improved from one
iteration to the next by less than a present tolerance (here we used 1075; see
appendixes B and C).

6.3 Choosing the Number of Significant Latents in Each Group. mD-
LAG incorporates automatic relevance determination (ARD) to automati-
cally determine, during model fitting, both the total number of latents and
the subset of groups that each latent involves. We sought an intuitive mea-
sure of the significance of each latent variable within a population, post-
fitting, based on the amount of shared variance each latent explains. The
shared variance of latent j in group m is given by (||C’}1||%), the expected
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squared magnitude of the jth column of the loading matrix C", with re-
spect to the posterior distribution Q.(C). Since the total shared variance can
vary widely across observed groups, we considered a normalized metric,
the fraction of shared variance explained by latent j in group m:

(Il 113)
Vi = —— 5
S a(iralr

For small ARD hyperparameters, 4, and b, (as we have chosen in this
work), the fraction of shared variance can equivalently be computed us-
ing the estimated ARD parameters (see, e.g., equations B.37 and B.38, ap-
pendix B):

6.1)

(6.2)

If a latent does not significantly explain activity in a group, then v?* will
be close to zero. Throughout this work, across all methods considered, we
reported a latent as significant in a group if it explained at least 2% of the
shared variance within that group (v} > 0.02).

6.4 Neural Recordings. Animal procedures have been reported in pre-
vious work (Smith & Kohn, 2008; Zandvakili & Kohn, 2015). Briefly, ani-
mals (Macaca fascicularis, 2-5 years old) were anesthetized with ketamine
(10 mg kg~!) and maintained on isoflurane during surgery. All recordings
were performed under sufentanil (6-18 ug kg=! hr~!) anesthesia. Vecuro-
nium bromide (150 ug kg~! hr™!) was used to prevent eye movements. All
procedures were approved by the Institutional Animal Care and Use Com-
mittee of the Albert Einstein College of Medicine.

Recordings were performed using up to four Neuropixels 1.0 (IMEC,
Belgium) probes spaced primarily in the mediolateral direction, with the
most anterior probe placed roughly 3 mm posterior to the lunate sulcus.
After the probes were lowered, the brain surface was covered with agar
or Dura-Gel (Cambridge Neurotech LTD, U.K.) to prevent desiccation. We
carried out seven recording sessions from three animals. In one animal, we
recorded from both hemispheres (in separate sessions). For the analysis of
each recording session, we excluded neurons that fired fewer than 0.5 spikes
s71, on average, across all trials and all grating orientations, or exhibited a
Fano factor greater than 5. Average analyzed population sizes per record-
ing session were 125 for V1 (range 55-191), 124 for V2 (range 63-166), and
53 for V3d (range 8-111).

6.5 Bias Mitigation: Tapering. Tapering is a well-established technique
for bias mitigation in spectral estimation (Priestley, 1981). In this work (see
section 4.5.3 and Figures 7 and 8C), we used tapering as a preprocessing step

G20z ¥snbny (g uo Jasn INIDIAIN 40 393 110D NIFLSNIT LIV Aq Jpd-zz e 000u/61.58€5Z/60. 1/6/L€/HPA-B]01E/008U/NPA W }0R.IP//:dRY WOl papeojumoq



1750 E. Gokcen et al.

to bring observed time series (in training data only; we left test data unal-
tered to faithfully measure performance) in line with the periodic boundary
conditions assumed by the frequency domain approach. Toward that end,
letvi e R, t =1,..., T, be aset of weights, to be applied to a time series of
length T. We chose the commonly used periodic Hamming window func-
tion to compute each weight according to

t—1
vy = 0.54 — 0.46 cos (27‘( . T) . (6.3)

The act of tapering then involves the multiplication of each weight v;
with eachy, ,; € R, the observation at time ¢ on trial # of unit r (here, group
identity does not matter, and we suppress any dependency). The same
weights v; are used for all trials and units.

We took additional care to preserve the sample mean and variance (over
time points and trials) of each unit’s activity pre- and post-tapering. Let
iy € Rbe the sample mean of the observations for unit 7, and let o, € R. be
its standard deviation. Then we apply the taper to normalized observations
as follows:

Ynrt — Ur

Oy

(6.4)

/ —
Yt =Vt -

The sample mean and standard deviation (over time points and trials)
of the modified observations y,, ,;, 1, and o/, are no longer the same as the
original sample mean and standard deviation, u, and o,. We restore these
original statistics with an additional processing step:

7" Or / /
%”=;%mmﬂm+m. (6.5)

¥

Models were then fit via mDLAG-frequency to the fully preprocessed ob-

servations v, ;.

Appendix A: Mathematical Notation

To disambiguate each variable or parameter across the three models we
consider here, we need to keep track of up to four labels that indicate their
associated (1) trial, (2) unit (neuron) or latent variable index, (3) sample in
time or frequency, or (4) group or subpopulation (see Table 2). We indicate
the first three labels with subscripts. Trials are indexed by n =1, ..., N.

Units (neurons) are indexed by r =1, ..., g, and latent variables (latents)
are indexed by j =1, ..., p. In the time domain, we index a trial of length
T samplesbyt =1, ..., T.In the frequency domain, we must also consider

T frequency components, but to emphasize the indexing over frequency
rather than time, we switch to the subscript | =1, ..., T. Where relevant,
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Table 2: Data Shape, Indices, and Other Constants.

W

<
3
53
3
e

Description

Number of trials

Index over trials,n =1,...,N

Number of time points (or frequencies) per trial
Index over time points or inducing points, t =1,..., T
Index over frequency components, [ =1, ..., T
The real-valued frequency of component /
Number of observed groups

Index over groups, m =1,...,.M

Number of units (neurons) in group m

Total number of units across all groups, >, G
Index over units, r =1, ..., qm

Number of latent variables (same for all groups)
Index over latent variables, j =1,...,p

The imaginary number, +/—1

N,\_v.,sﬁx,?igb'\n._]ﬁz

we indicate the group (subpopulation) to which a variable or parameter
pertains viam =1, ..., M (most commonly a superscript).

Putting these four labels together, we define the observed activity of unit
7 (out of g,,) in group m at time t on trial nas ;' ; € R (see Table 3). Similarly,
we define latent j (out of p) in group m at time ¢ on trial n as x}/;, € R. To
indicate a collection of all variables along a particular index, we replace that
index with a colon. Hence we represent the simultaneous activity of g, units
observed in group m at time ¢ on trial 7 as the vector y}'. , € R Similarly,
we represent the collection of all p latents in group m at time t on trial n
as the vector x;’.; € RP. For concision, where a particular index is either
not applicable or not immediately relevant, we omit it. The identities of
the remaining indices should be clear from context. For example, we might
rewrite y)' , asy,’;.

It is conceptually helpful to understand the above notation as taking
cross-sections of three-dimensional arrays (see Tables 3-5). For example,
observed activity in group m on trial n can be collected into the matrix
(two-dimensional array) Y = [y, ---y";] € R%*T. Hence each y/, is a
column of Y. Then we can form the three-dimensional array Y” by con-
catenating the matrices Y7", ..., Y] across trials along a third dimension.
Similarly, the latents in group m on trial n can be collected into the matrix
X =1 x ] e RP*T. We represent a row of X" (i.e., the values of a
single latent j at all time points on trial 1) as x}/ i € RT. Then we can form
the three-dimensional array X™ by concatenating the matrices X", ..., X
across trials along a third dimension.

For all variables with a frequency domain counterpart, we indicate that
counterpart using a tilde (see Table 5). The complex-valued iy, € C s thus
the activity of unit r in group m at frequency ! on trial . Similarly, x, ;; € C
is the value of latent j at frequency [ on trial n (in the frequency domain,
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Table 3: mDLAG-Time and Symbols Common across Methods.

Symbol Description

Y gm x T matrix of time domain observations in group m on trial

Vit qm x 1 vector of observations in group m at time f on trial #; the fth
column of V!

.. T x 1 vector of observations of unit 7 in group m over time on trial 1;

- the rth row of Y}"

Y The activity of unit r in group m at time f on trial #; the rth element of
Vit

X p x T matrix of time domain latents in group m on trial n

X The collection, across groups, of time domain latents on trial 7,
(X! XM

Xy ¢ p x 1 vector of latents in group m at time t on trial #; the tth column
of X!

XZ’,] T x 1 vector of values of latent j in group m over time on trial #; the
jth row of X!

X! it The value of latent j in group m at time t on trial #; the jth element of
xy . ; and the tth element of x;’ i

cm qm x p loading matrix for group m

a}” automatic relevance determination (ARD) parameter for group m
and latent j

da” gm x 1 mean parameter for group m

o qm x 1 observation noise precision parameter for group m,
" =loy a1

B precision (hyper)parameter of the gaussian prior over each mean
parameter d"; fixed to a small value

ag, by shape and rate (hyper)parameters, respectively, of the gamma prior

over each noise precision parameter ¢;" for unit r in group m; fixed
to small values

g, by shape and rate (hyper)parameters, respectively, of the gamma prior
over each ARD parameter a}” for group m and latent j; fixed to
small values

D;?I GP time delay between group m and latent j

T GP timescale for latent j

oj GP noise parameter for latent j; fixed to a small value

Kiny iy j T x T covariance matrix for latent j, between groups m; and m;
Ky iy, j covariance function for latent j, between groups m; and m,

we do not assign latents to each group m; see section 3.3). We collect these
frequency domain quantities into structures analogous to their time domain
counterparts—for example, y', € C?" as the analog to y},, defined above.

Appendix B: Posterior Inference and Fitting via mDLAG-Inducing

B.1 Variational Inference. LetY, X, and W be collections of all observed
variables, latent variables, and inducing variables, respectively, across all
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Table 4: mDLAG-Inducing.

1753

Symbol Description

Tind Number of inducing points per trial

Wy, p x Tjnq matrix of inducing variables (common to all groups) on trial 1

Wi j.: Ting x 1 vector of inducing variable values for latent j (common to all
groups) on trial #; the jth row of W,

Wy, it Inducing variable for latent j at inducing point t on trial n; the tth
element of w,, ;.

& inducing point; the real-valued time at which inducing variable wy, ;;
is defined

K]V’ Ting X Ting inducing variable covariance matrix for latent j

k'j‘” covariance function for the inducing variable of latent j

Kxw MT x Tjpq covariance matrix between latent j and its inducing variable

covariance function between latent j and its inducing variable

Table 5: mDLAG-Frequency.

Symbol Description

?,’1” qm x T matrix of frequency domain observations in group m on trial n

Y gm % 1 vector of observations in group m at frequency [ on trial n; the
Ith column of Y}

Vi T x 1 vector of observations of unit 7 in group m across frequencies on
trial 1; the rth row of Y}

v The value of unit r in group m at frequency [ on trial n; the rth element
of ', and the /th element of ¥, .

X p x T matrix of frequency domain latents (common to all groups) on
trial n

X1 p x 1 vector of latents (common to all groups) at frequency [ on trial 7;
the Ith column of )N(n

X i T x 1 vector of values of latent j (common to all groups) across
frequencies on trial ; the jth row of X,

X, The value of latent j at frequency / on trial #; the jth element of X,, .|

B and the /th element of X, ; .

dy shorthand for §;_; - v/Td™: ¥/Td™ for the zero frequency, and 0
otherwise

H;" T x T diagonal phase-shift operator matrix, from latent j to group m

H" p x p diagonal phase-shift operator matrix at frequency /, from latents
to group m

S; T x T diagonal power spectral density (PSD) matrix for latent j

S p x p diagonal PSD matrix at frequency /

S; PSD function for latent j

Ur T x T unitary discrete Fourier transform matrix
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time points (or inducing points) and trials. Similarly, letd, ¢, C, A, t,and D
be collections of the mean parameters, noise precisions, loading matrices,
ARD parameters, GP timescales, and time delays, respectively. From the
observed activity, we seek to estimate posterior distributions over X, W,
and the remaining probabilistic model components,

6 ={d. ¢. C. A}, (B.1)

and point estimates of the deterministic GP parameters Q = {r, D}.

In the case of methods like GPFA (Yu et al., 2009) and DLAG (Gokcen
et al.,, 2022), the linear-gaussian structure of the model enables an exact
expectation-maximization (EM) algorithm. With the introduction of prior
distributions over model parameters (to enable automatic relevance de-
termination), the family of mDLAG models, including mDLAG-inducing,
loses this property. The complete likelihood of the mDLAG-inducing model
(see Figure 1C),

P(Y, X, W, 0|Q2) = P(d)P(¢)P(C|A)P(A)P(Y|X, C, d, p)P(X|W, Q)P(W|r)

M qm 4
=11 {P(dm) []‘[ P(dﬂ“)} []‘[ P(c} | a',?')P(a}")}
r=1

m=1 j=1

N T
'[HHP(% %, C", A", ¢m)ﬂ

n=1t=1
N p
l_[ H|:P(xn,j,: | Wi jis Tjs {DT}le)P(wn,j,: | 77]’):|’ (B.2)
n=1 j=1

is no longer gaussian. Then a hypothetical EM E-step (evaluation of the
posterior distribution P(X, W, 8|Y, 2)) becomes prohibitive, as it relies on
the analytically intractable marginalization of equation B.2 with respect to
X, W, and 6.

We therefore employ a variational inference scheme (Bishop, 1999; Gok-
cen et al., 2023; Klami et al., 2015), in which we maximize the lower-bound
L(Q, ) to the log-likelihood log P(Y), with respect to the approximate pos-
terior distribution Q(X, W, 0) and the deterministic parameters :

log P(Y) = L(Q, Q) = Eg[log P(Y, X, W, 6|Q)] — Eg[log Q(X, W, 0)]. (B.3)

We constrain Q(X, W, 6) so that it factorizes over X, W, and the elements of
0:

QX W, 0) = Quu(X, W)Qa(d)Qy (¢)Qc(C)Q4(A). (B4)
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We then follow Titsias (2009), and further constrain Q,,, (X, W), the joint
approximate posterior distribution over the latents and their inducing vari-
ables, to factorize as Q. (X, W) = P(X|W, 2)Q,, (W), with generic distribu-
tion Q,,(W) over the inducing variables and the conditional prior distribu-
tion P(X|W, Q) (equation B.2) over the latents themselves. The final con-
strained form of Q(X, W, 0) is thus

QX W.0) = P(XIW, Q)Qu(W)Qu(d)Qs(¢)Q:(C)QA(A). (B.5)

This particular choice of factorization leads to an important simplifica-
tion of the lower-bound L(Q, €2), ultimately enabling efficient (and closed-
form) updates of the latents X and inducing variables W during optimiza-
tion. We first rewrite the lower bound by explicitly writing out the definition
of the expectation:

L(Q, Q) = Eo[log P(Y, X, W, 6]2)] — Eg[log Q(X. W, 0)] (B.6)

_ / Q(X, W, 6)log P(Y, X, W, 0]Q)dXdWd6

- / Q(X. W, 8) log Q(X, W, 0)dXdWd6 (B7)
- P(Y, X, W, 6|9)
= /Q(X, W, 0)

log P(d)P(¢)P(C|A)P(A)P(Y|X,C, d, ¢)P(X|W, Q)P(W|t)

PXIW, 2)Qu(W)Qa(d)Qy (¢)Qc(C)Q4(A)
- dXdWde, (B.9)

where in the last line, we substituted equations B.2 and B.5 into the numera-
tor and denominator, respectively, of the log term. Notice the common term
P(X|W, Q) between the numerator and denominator. This term cancels, re-
sulting in the following simplified expression for the lower bound:

L(Q.Q) = / QX. . 0)

P(d)P(¢)P(CIAP(A)P(Y X, C, d, ¢)P(W|r)
Qu(W)Qu(d)Qs (#)Qc(C)Qa(A)

log dX dW d6 (B.10)

To simplify notation further, define the joint prior distribution
P(W, 8|t) = P(d)P(¢)P(C|A)P(A)P(W|r) and the joint posterior distri-
bution Qus(W,0) = Qu(W)Qu(d)Qy(¢)Q:(C)Q.4(A). Then substituting in
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these expressions, along with Q(X, W, 8) = P(X|W, 2)Q.¢(W, 0), we get

PY|X,C,d, p)P(W, 0]|7)
Qw9(w’ 9)

L(Q. Q) = f P(X|W, Q)Qus (W, 0)log dX dW de

(B.11)
_ / Qwe(w,o)[p(mw, Q) - log P(Y|X. C, d,qb)dX}dW do

P(W, 0]7)

+ /ng(W, 9)|:P(X|W, Q) - log m

dX]dW do  (B.12)

Now letEp,, [-]and Eg,, [-] be expectations with respect to the conditional
prior distribution P(X|W, ©) and joint posterior distribution Q,,» (W, 6), re-
spectively. We can then rewrite the lower bound as

L(Q, ) = Eg,,[Ep,, [log P(Y|X,C, d., ¢)]]

Ry

+Eq,, [EP.W [log 0.a(W.0) (B.13)
- P(W, 0]7)

- EQme [pr\w [108 P(Y|X7 C.d, ¢)]] + EQ“,H [log m} s (B14)

The term Ep,, [log P(Y|X, C, d, ¢)] integrates out any dependence on the
latents X and is therefore only a function of observations Y, inducing vari-
ables W, and parameters in 6 and Q. To emphasize these dependencies, we
define log G(Y, W, 0|Q2) = Ep,, [log P(Y|X, C, d, ¢)]. Furthermore, note that
the second term in equation B.14 is the negative KL-divergence between
the joint posterior distribution Q,»(W, #) and the joint prior distribution
P(W, 6]7).

We then arrive at the final reexpression of the lower bound:

L(Q, Q) = Eg,, [log G(Y, W, 6|2)] — KL(Qus (W, 6)|IP(W, 6]7)). (B.15)

This reexpression of the lower bound can then be iteratively maximized
via coordinate ascent of the factors of Q,»(W, 0) and the deterministic pa-
rameters 2. Each factor or deterministic parameter is updated in turn, while
the remaining factors or parameters are held fixed. These updates are re-
peated until the lower bound, which is guaranteed to be nondecreasing,
improves from one iteration to the next by less than a present tolerance (here
we used 1078).

B.1.1 Posterior Distribution Updates. Maximizing the lower bound,
L(Q, 2), with respect to the kth factor of Qs (W, 6), Qx, results in the fol-
lowing update rule:
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log Or = (log G(Y, W, 6|2) + log P(W, |t))_; 4 const. (B.16)

Here we introduce the notation (-) to indicate the expectation, Eq,,[],
with respect to the posterior distribution Qs (W, #), and (-)_ specifically
indicates the expectation with respect to all but the kth factor of Q,,» (W, 9).

Because of the choice of gaussian and conjugate gamma priors in sec-
tion 3.2, evaluation of equation B.16 for each factor Oy leads to factors with
the same functional form as their corresponding priors (equations 3.15 and
3.1-3.6):

N

QuW) = [ [N | iy, Z). (B.17)
n=1
M

= [IN@" 1wy =), (B.18)

m=1
M qm ~

Q)= TT1r@ 14,85, (B.19)
m=1r=1
M Gm

QO =[]]]N~NGE" 1/ = (B.20)
m=1 r=1

Qu(A) = ]_[]_[F (' 1@y, By ). (B.21)
m=1 j=1

Here W, € RPTnd is a collection of all inducing variables on trial 1 (see
below), and ¢}' € R? is the rth row of C", the loading matrix for group m.
Any additional factorization in equations B.17 to B.21 emerge naturally; we
only impose the factorization in equation B.5.

To express the updates for Q, (W), we first define several variables.
First construct w, = [w,, .---w, , ]T € RPnt by vertically concatenating
the inducing variables w,, ;. for latents j =1,..., p on trial n. Collect the
inducing variable covariance matrices Ky for j=1,..., p (equation 3.15;
see Figure 1D, top) into the block diagonal matrix K* = diag(Ky’, ..., Ky) €
SPTinaxPTind . Then let k;:f,)j,t € RTnd be the tth row of GRS RT*Tind | the mth
block (for group m) of the covariance matrix between latent j and its in-
ducing variable, K" (equation 3.18; Figure 1D, bottom). For time point

t, collect each kjj;f]., for latents j =1, ..., p into the block diagonal matrix
Ky, = diag(kyy,, ... ky'),) € RP*PTind

Posterior estimates of the inducing variables W are independent across
trials. We can thus update Q,,(W) by evaluating the posterior covariance,
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£, € SPTnaxPTnd and mean, ft,,, € RPTnd, of Wy, for each trial n:

-1

M T
2 — ((K ) +(Kw [ZZ (Cm q)mcm wa:| (Kw) )
m=1 t=1
. (B.22)
B, = Sl [ YR Cm (@™ (yi — (d’”))] (B.23)
m=1 t=1

where K% = (K3,)T. Note that (1) the update for the posterior covariance,
Y., is identical for trials of the same length. This computation can there-
fore be reused efficiently across trials. (2) Under the posterior distribution,
the inducing variables for latents j = 1, ..., p are no longer independent, as
they are under the prior distribution (equations 3.15, B.2).

For multiple groups (M > 1) and a sufficiently small number of induc-
ing points Tjng, evaluation of equation B.22 is significantly more efficient
than the evaluation of the analogous equation 3.14 for mDLAG-time. The
quantity K2* ((C™)T ®"C™)KX, costs O(p>T2,) operations, for a total cost of
O(p’MTT?,) when evaluated for all groups and time points. The inversion
of the block diagonal K" costs O(pT;} ;) operations. Then the final inversion
of a pTing % pTing matrix costs O(p*T2 ;) operations and O(p*T2,) storage.
Thus, in total, posterior inference over the inducing variables scales linearly
in both the number of time points per trial T and the number of groups M,
albeit superlinearly in the number of inducing points Ting.

The posterior mean and covariance of the latents, X, are computed from
their corresponding inducing variables using the conditional prior distribu-
tion P (X [W, @) (equation 3.18). The posterior mean of latent j across groups

m=1,....,M Xy, = [XE x ~X],\:I]T:]T € RMT is given by
(%n,j.) = Eq,, [Ep,, [xuj:]] (B.24)
= Eq,, [K]"(KY) "Wy ] (B.25)
= K" (KY) " (w ). (B.26)

This computation requires O(T?,) operations for the inversion of
Ky, followed by O(MTTing + T2,) operations for the remaining matrix
multiplications.

We next construct %, =[x, .- e RPMT by vertically con-
catenating latents j=1,...,p on trlal n. Also collect the covariance
matrices between each latent j=1,...,p and its inducing variable,
K;‘“’ € RMI*Tna (equation 3.18; Figure 1D, bottom), into the block diagonal
matrix K* = diag(K}", ..., K e RPMT>PTnd - Similarly, collect the latent
covariance matrices, K; € SMMT (equation 3.12; Figure 1B), into the block

T]T
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diagonal matrix K = diag(Ki, ..., K,) € SPMT*PMT (K is simply a reorga-
nization of K in equation 3.14). Then the full posterior covariance of the
latents, 3, € SPMI*PMT g oiven by

S = Eg,, [Er, [%:&] ]] - Equ [Er, [%]]Eq,, [Er, [%]]T (B27)
= (RnX,) — (Rn) (Xn) " (B.28)
= K= K™(R")' K" + K" (K") " (w,w,) ) (R*) T K™

— K™ (R*) (W) <wn>T(KW)*1I<’” (B.29)
= K — K™(R") K" + K" (K") 7 £, (K") 1K™, (B.30)

where the inducing variable covariance matrix £, is defined in equa-
tion B.22.

The prior covariance matrix K the posterior covariance matrix 3, or the
posterior second moment (X,X, Ty never need to be computed in full dur-
ing the mDLAG-inducing f1tt1ng procedure. Only subsets of these quanti-
ties are needed, thereby maintaining linear scaling in M and T and runtime
gains over mDLAG-time. From here, the updates for Q;(d), Q,(¢), Q.(C),
and Q 4(.A) look identical in form to the analogous updates in mDLAG-time
(Gokcen et al., 2023). We include them here for completeness.

Posterior estimates of the mean parameters d are independent across
groups (and, in fact, units). We can thus update Q;(d) by evaluating the
posterior covariance, X' € 7", and mean, u}' € R, of mean parameter
d"™ for each group m:

1

=i = (Bl + NT(@™) ", (B.31)
N T

="M D (yi - X)) (B.32)
n=1 t=1

Posterior estimates of precision parameters ¢ are independent across
groups and units. We can thus update Q,(¢) by evaluating the posterior
parameters 4, and by, of parameter ¢;" for each unit r in group m:

(B.33)

1 N T
=by+5D Z[(y;”,r,t)z @)+t (@ @) i () )

=1 t=1

=

2@ T (s — () — 24, ”<d:">}. (B.34)

Here €' € R? is again the rth row of C", the loading matrix for group m.
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1760 E. Gokcen et al.

Posterior estimates of loading matrices C are independent across groups
and units, that is, across the rows of each C". We can thus update Q.(C) by
evaluating the posterior covariance, % e SPP, and mean, e eRP, of the
rth row of C™:

N -1
zr = (14 + 0 i) 3.35)
n=1 t=1
N
BY = SO YD (i — (dh). (B.36)
n=1 t=1
Here A™ = diag(ay", ..., a}). Note that the posterior independence over

the rows of each C™ contrasts with the prior independence over the columns
of each C" (equations 3.5, B.2).

Finally, posterior estimates of ARD parameters A are independent across
groups and latents. We can thus update Q 4(.A) by evaluating the posterior
parameters 7' and b j of parameter o' for each group m and latent j:

A" = a, + %’” (B.37)
m 1 m
By = b+ 5 (I1]15). (B.38)

where ¢ € R is the jth column of the loading matrix C". All moments

(-) can be readily computed from the approximate posterior distributions
given in equations B.17 to B.21.

B.1.2 Gaussian Process Parameter Updates. There are no closed-form solu-
tions for the gaussian process parameter updates, but we can compute gra-
dients and perform gradient ascent. To optimize timescales and time delays,
we rewrite the lower bound to show the terms that depend on the covari-
ance matrices that define the latents and their inducing variables, K;, K;““,
and K}" for latents j =1, ..., p. First we define several intermediate vari-
ables. Construct gy’ =[y;'].---yi; 17 € Ri"" by vertically concatenating
the observed activity of each unit r =1, ..., gy in group m across time on
trial n, y”I. € RT. Then construct §, = [§," - - 9M"1" € R, g =", g, by
vertically concatenating the §" across groups m =1, ..., M. Vertically con-
catenate all mean parameters d” € R across groupsm =1, ..., M to give
the vector d = [d'"---d™T]" € R7. And finally, let C; = diag(c}, ..., c}) €
R7M be the block diagonal matrix where each block is the jth column of
the loading matrix to group m, ¢ € R7.
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Then the terms of the lower-bound L(Q, 2) that depend on the jth latent
are given by

1
[ log (K} ~ 3tr ((K'f’) oy )

I~
Il
t i Mz

nje) (KD TK(CH (@) @ Ir) (9 — (d) @ 1)

( CT(I)C ® IT)( KXIU(KUJ) 1K}ux)>

I\JM—* NM—‘

< CTq>C ®1T)1<jf“)(1<;”) (Wi j W, ) (KY) 11<]“.”‘>

_Ztr((@péﬂ@zr)qukw oW ) 1K) |
il (B.39)

where ® is the Kronecker product, I € ST*T isthe T x T identity matrix,
and 17 € RT is the length-T column vector of ones. The overall lower bound
can then be reexpressed as

p
L(Q. )= ) Lj+ const. (B.40)
j=1
From here we omit explicit expressions for the gradients of the lower-
bound L(Q, €2) with respect to each of the timescale and time delay param-
eters. However, we do write out intermediate expressions for the gradients

starting from the chain rule to illustrate the dependencies of each gradient
update on the covariance matrices K;, K']?w, and K}” The gradients with re-

spect to timescale ; for latent j are given by
oL . oL; oK;
3‘17]‘ 81( 8‘5]‘
oL\ | (oK aL; \ | (9K
+ tr XJLU . + tr U{X .
aK]» at]' 3K]» at]'
oL;\ [ 0KY
+tr ” — - (B.41)

However because of special structure in the partial derlvatlves (chag—

onal) and 3 (zero along the diagonal), the first trace term evaluates exactly
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1762 E. Gokcen et al.

to zero. Furthermore, because K™ = (K;.“”)T, we can simplify

3afo —r <(%)T (3§)> i ((adzi) (aakj)) , (B.A2)

leaving dependence only on the smaller covariance matrices K7 and K7,

and not on the large covariance matrix K;. The gradients with respect to
time delay D'’ for latent j and group m can be similarly simplified:

;};}1 —2.tr ((%)T (%)) : (B.43)

Since K}’ does not involve time delays (equation 3.17), the partial deriva-

tive does not depend on K.

BD"’

B.2 Evaluation of the Lower Bound. To monitor the progress of the fit-
ting procedure, we evaluate the variational lower bound on each iteration:

L(Q, ) = Eq,, [log G(Y, W, 012)] — KL(Que (W, 0)IIP(W, 0]7)). (B.44)
Due to the factorized forms of Q,»(W, ) and P(W, 0|t), L(Q, 2) becomes

L(Q. ©) = Eg,, [log G(Y. W, 0]22)] — KL(Qu(W)IP(W]7))
— KL(Q:(C)IP(CIA)) — KL(Qa(A)IP(A))
— KL(Qy (#)1P()) — KL(Qa(d)IP(d)). (B.45)

This form of the lower bound provides insight into the nature of the op-
timization procedure for fitting mDLAG-inducing models. The first term
is essentially an expected log-likelihood (with respect to the approximate
posterior Q,,9(W, 0)) of the observations Y, given the latest estimates of the
inducing variables W and model parameters 6 and 2. This term encourages
mDLAG-inducing models to explain the observed activity as well as pos-
sible. The KL-divergence terms, on the other hand, penalize deviations of
each factor of the fitted posterior from its corresponding prior distribution,
and hence act as a form of regularization.

Using the posterior updates in section B.1.1 and the prior definitions in
section 3.2, each term of the lower bound can be computed as follows:

M qm

Eq,,[log G(Y. W, 0|Q)] = og(2r) + ML Z 3 log

m=1 r=1

M Gm

— YD (@ — (@"by) (B.46)

m=1 r=1
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KLQuW)IPOW ) = Py 2 Z[longl

n=1

P
_ Z[log |K;U| + tI‘((K}”)—1 <wﬂ,jy;W,Ij’:))]i|

j=1
(B47)
qm

M
—KL(Q.(O)|P(C|A)) = %JFZ[ Zlog|2m

+3 ["7 (log ) — 5 (@) lIe) | >H (B.4S)
M p F(ﬁm)
—KL(Qa(A)IP(A) = ) Z[ " logh] ; + 4, 10g by +1og r(;)

m=1 j=1

b+ 8+ (a, — W)~ log ) |

(B.49)
v ; r(d)
_KL(Q¢ ¢)”P(¢) = Z Z[_d¢ IOg bm,r + ag IOg b¢ + IOg (ﬂ¢)

m=1 r=1

— by (p)") +ay + (ay — dy)(W(ay) — log b¢ r)]
(B.50)

—KL(Q4(d)|P(d)) = 7+‘710g5+ - log %] - 5<||d||§>. (B.51)

Here, I'(-) is the gamma function, and W¥(:) is the digamma function. All
moments (-) can be readily computed from the approximate posterior dis-
tributions given in equations B.17 to B.21.

Appendix C: Posterior Inference and Fitting via mDLAG-Frequency __

C.1 Variational Inference. Let Y and X be collections of all observed
neural activity and latent variables, respectively, across all frequencies and
trials. Similarly, letd, ¢, C, A, t, and D be collections of the mean parameters,
noise precisions, loading matrices, ARD parameters, GP timescales, and
time delays, respectively. From frequency domain observations, we seek to
estimate posterior distributions over the probabilistic model components,

0={X, d, ¢, C. A}, (C.1)

and point estimates of the deterministic GP parameters Q = {r, D}.
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1764 E. Gokcen et al.

In the case of methods like GPFA (Yu et al., 2009) and DLAG (Gok-
cen et al., 2022), the linear-gaussian structure of the model enables an
exact expectation-maximization (EM) algorithm. With the introduction
of prior distributions over model parameters (to enable automatic rele-
vance determination), the family of mDLAG models, including mDLAG-
frequency, loses this property. The complete quasi-likelihood of the
mDLAG-frequency model (Figure 1E),

P(Y,0|Q) = P(d)P (¢)P (C|A) P (A)P (17|)~<, C.d, ¢, D) P(XI7)
M qm
= 1[0 1o [T e
m=1

N T[FM
. HHH:HP(W,I | %1, C", A", ¢, (DT 1)i|

n=11=1 L Lm=1
p

: |:l_[P(xn.j,l | Tj):|:|, (C.2)
=1

isno longer gaussian. Then a hypothetical EM E-step (evaluation of the pos-
terior distribution P(6 IlN/, 2)) becomes prohibitive, as it relies on the analyt-
ically intractable marginalization of equation C.2 with respect to 6.

We therefore employ instead a variational inference scheme (Bishop,
1999; Gokceen et al., 2023; Klami et al., 2015) in which we maximize the
lower-bound L(Q, ) to the log quasi-likelihood log P(Y), with respect to
the approximate posterior distribution Q(0) and the deterministic parame-
ters Q:

log P(Y) > L(Q. @) = E5llog P(Y, 0|2)] — Ellog Q(6)]. (C3)

The quasi-likelihood P(Y) is meant to approximate the time domain like-
lihood P(Y) (equation 3.10). The two quantities converge as the number of
time points per trial, T, becomes large (Whittle, 1951).

We constrain Q(6) so that it factorizes over the elements of 6:

Q(0) = Qe(X)Qu(d)Qy(#)Q:(C)Q(A). (C4)

This factorization enables closed-form updates during optimization (see
below). The lower-bound Z(é , Q) can then be iteratively maximized via co-
ordinate ascent of the factors of é(@) and the deterministic parameters :
each factor or deterministic parameter is updated in turn while the remain-
ing factors or parameters are held fixed. These updates are repeated until
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the lower bound, which is guaranteed to be nondecreasing, improves from
one iteration to the next by less than a present tolerance (here we used 107%).

C.1.1 Posterior Distribution Updates. Maximizing the lower bound,

E(é, ), with respect to the kth factor of @, Ok, results in the following up-
date rule (Bishop, 1999):

log O(6¢) = (log P(Y, 8]2))_x + const. (C.5)

Here we introduce the notation (-) to indicate the expectation with re-
spect to the approximate posterior distribution, Eg[-], and (log P(Y,0|Q))
specifically indicates the expectation of the complete log likelihood with
respect to all but the kth factor of Q.

Because of the choice of gaussian and conjugate gamma priors in sec-
tion 3.3, evaluation of equation C.5 for each factor Qk leads to factors with
the same functional form as their corresponding priors (equations 3.25, 3.3-
3.6):

N T

Qe(X) = [[[ [N Gt | B, ), (C.6)
n=1I1=1
M

Qu(d) = [[NV@" | ny, =), (C7)
M Gm B

= [TI1r@; 1.8, (C8)

m=1r=1
M Gm

QO =[]]IVE" 1/ = (C.9)
m=1 r=1

Qa(A) = ]‘[Hr(a |ay, By ). (C.10)

m=1 j=1

Here ¢ € R? is the rth row of C", the loading matrix for group m. Any
additional factorization in equations C.6 to C.10 emerge naturally; we im-
pose only the factorization in equation C.4.

Posterior estimates of the frequency domain latents X are independent
across trials and frequencies. We can thus update Qx (X ) by evaluating the
posterior covariance, X, ; € CP*?, and mean, [Lx L eCr, of X,,; for each trial
n and frequency I:

M -1
Y= (s,—l + Y (HM ((C’")TCD’"C’")HZ’"> (C.11)

m=1
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M
B, = Zxs Y (HMMCM (@) (T, — (d]"). (C.12)

m=1

Recall from equation 3.28 that the diagonal matrix H;" € CP*7 is a col-
lection of the phase shift terms /) = exp(—i2x fiD7'), across all latents j =

., p atthe single frequency I: H/" = diag(h'), ... h;”, 1)- The mean param-

eter term a;” € R is shorthand for &_; - ~/Td™, which is +~/Td" for the
zero frequency, and 0 otherwise. The elements of the diagonal PSD ma-
trix S; = diag(s1(f1), ..., sp(fi)) € RP*? are computed using equation 3.24.
Note that (1) the update for the posterior covariance, f]x_;, is identical for
trials of the same length. This computation can therefore be reused effi-
ciently across trials. (2) Under the posterior distribution, latent variables
j=1,..., p are no longer independent, as they are under the prior distri-
bution (equations 3.25, C.2).

Posterior estimates of the mean parameters d are independent across
groups (and, in fact, observed units). We can thus update Q;(d) by eval-
uating the posterior covariance, £} € §7*, and mean, ui' € R%, of mean
parameter d” for each population m:

0= (B, + NT(cDm))*l, (C.13)

T AT L) Zf ¥ — (C") K1) (C.14)

n=1

Note that updates to the mean, p/}, depend only on observed and latent
variables at the zero frequency, at index = 1.

Posterior estimates of precision parameters ¢ are independent across
groups and units. We can thus update Q4(¢) by evaluating the posterior
parameters d, and E?,r of parameter ¢ for each unit r in group m:

~ NT
o=t

" 1 N T
by =bs+ 5 > Zm{ [|;7,;f,,,|2 + 84 T((d™)?)

n=1 I=1

(C.15)

+ tr (&' (@) " H}" (X, PH™)
— 2@ TH" %) (T2, — SoVT{A") " — 284V THE, (d “

(C.16)

Here &' € R” is again, the rth row of C", the loading matrix for group m.
The term §;_; is the Kronecker delta: 1 for the zero frequency (/ = 1) and 0
otherwise. i{-} indicates the real part of the enclosed expression.
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Posterior estimates of loading matrices C are independent across groups
and units, that is, across the rows of each C". We can thus update Q.(C) by
evaluating the posterior covariance, z e 8PP, and mean, reRP, of the
rth row of C™:

N -1
o= (<Am> + <¢:">9t{ZZH%,&E»HFH}) : (C.17)
n=1 I=1
N
jl = EZ’j(qj{”)ﬂt{ZZH{"(S('n,l)(ﬂfnl — 8T (@dm) } (C.18)
n=1 =1
Here A" = diag(ey’, ..., o). Note that the posterior independence over

the rows of each C™ contrasts with the prior independence over the columns
of each C" (equations 3.5, C.2).

Finally, posterior estimates of ARD parameters .4 are independent across
groups and latents. We can thus update Q 4(A) by evaluating the posterior
parameters 4’ and E’;ﬂ j of parameter of for each group m and latent j:

=g, 4 1
al =aq + ” (C.19)
- 1

B = b+ 5 (I1]15). (C.20)

where ¢ € R is the jth column of the loading matrix C". All moments

(-) can be readily computed from the approximate posterior distributions
given in equations C.6 to C.10.

C.1.2 Gaussian Process Parameter Updates. There are no closed-form so-
lutions for the gaussian process parameter updates, but we can compute
gradients and perform gradient ascent. To optimize timescales, we rewrite
the lower bound, L (é, ), to show the terms that depend on the PSD matrix
S; (from equation 3.25). Let

N

Q. ) = Zp: |:I;] log ‘S]fl‘ - % Ztr (S]?1 <;”’j’:;:ij'z>)i| +const.  (C.21)

j=1

We further make the change of variables y; =1/ rjz. The variable y; is
simpler to work with. We then optimize with respect to y;. The y; gradients
for latent j are then given by the chain rule,

~ ~\ T
aS;
L _ o (3t (4) , (C.22)
a)/]' BS]‘ 3)/]'
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where

N

oL N, 1., 1
8751___551‘ +55; <;(xn1x >>s . (C.23)

Because §; is a diagonal matrix, so is 3S;/dy;. The Ith element along the
diagonal of 35;/dy; is then given by

ds;(f1) T —@2n fi)? - -
57)4 =(1-9}) \/;exp <T1> (@ 2y =y (29

]

To optimize y; while respecting nonnegativity constraints, we perform
the change of variables y; = exp(7;) and then perform unconstrained gra-
dient ascent with respect to 7;.

Naive computation of the posterior second moment (X,,, ]§:j j:) in equa-
tion C.23 would lead to a gradient evaluation (equation C.22) that costs
O(T?) operations. This cost can be improved to O(T) by exploiting the di-
agonal structure of S; and its gradient 9S;/dy;. Substituting equation C.23
into equation C.22, we get

~ T

L N N 3S:
—=tr||-55"+5S %, X0y ) st 220,
dy; ' ( 2 +2] (HX;(X”‘]"X”*]")) f) (8w

N, S\ 1. (n . o
== (sl y])+2tr<2(xn]xH >T51 s ) (C.25)

n=1

Because of the diagonal structure of S; and its gradient 9S;/dy;, how-
ever, both trace terms can be computed efficiently, and only the diagonal
elements of (X, j,&;‘, ;) are needed:

- §
EZE(*l(f)aiiﬁ <Z<|a?n,j,z| ) IR ’1(ﬁ)>. (C.26)

dyj n=1

The evaluation of GP timescale gradients therefore requires only O(T)
operations.

The diagonal structure of the phase shift matrix H" can be similarly ex-
ploited to produce efficient time delay parameter updates. To optimize time
delays, we rewrite the lower bound to show the terms that depend on H;".
Let

1 -
I = —Etr((C’"be’”C”’)Hl (XX )H’”H)
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1 - - ~
+ 5tr<Hl’”(xn,1)(yZ1,l — (d?l))H(q>m>(Cm>)

1 N ~o
+gee(enT@m @ - @t ). 27
Then
- N T M -
LQ.@) =) L + const. (C.28)
n=1 =1 m=1

Since HJ" is generally complex valued, we follow the Wirtinger calculus
(Schreier & Scharf, 2010; Wirtinger, 1927), and treat the lower-bound E(é , Q)
formally as a function of both H}" and its complex conjugate (H;")*. Then
delay gradients for group m and latent j are given by the Wirtinger chain
rule, which requires partial derivatives with respect to both H" and (H;")*:

N T 8Lm

aDm X; 121: D" (C.29)
R ) () )
= oH[" 8D’]’.1 a(H")* aD';’
(C.30)
The partial derivatives 2 € CP*? and 2" ¢ CP*? are each single-entry

it it
BD’. SDI

matrices with

811;[:: = diag(0, ..., =27 fi - 1Y), ..., 0) (C.31)
and

a(g;)* — diag(0..... 227 fi - (1})". ... 0), (C32)
where h7; = exp(—i2x fiD'). Each 2;’% CP*? and r,(;"m‘)* CP*P are given

by
aLm 1 e HT
81—2’,; = —E(C”‘TCD’”C’“)(H,’”) (xn,lxyﬂ

1 =m NWI * >
+5ENT(@") (T — @) )T (C33)
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o = LRy )
+ %&n,n*(ﬂ%z —(d)T@men. (C.34)
The overall delay gradient -2 W L then evaluates to
7 N T P
— F )G~ <'&7">>“<<I>"1><c';1>) } (C.35)

which costs O(T') operations.

In practice, we fix all delay parameters for group 1 at 0 to ensure iden-
tifiability. Similar to the timescales, one might wish to constrain the delays
within some physically realistic range, such as the length of an experimen-
tal trial, so that —Dpax < DT < Dpax. Toward that end, we make the change

) D . .
of variables D’]." = Dmax - tanh(—-) and perform unconstrained gradient as-

cent with respect to D’]?’. Here we chose Dpay to be half the length of a trial.

C.2 Evaluation of the Lower Bound. To monitor the progress of the
fitting procedure, we evaluate the lower bound, L(Q Q), on each iteration.
To evaluate the lower bound, we can rewrite it as follows:

L(Q. 2) = Egllog P(Y]6. 2)] — KL(Q(®)P(6]2)). (C.36)

KL(Q(@)HP(QlQ)) is the KL-divergence between the approximate poste-
rior distribution Q(G) and prior distribution P(0|2). Due to the factorized
forms of Q( ) and P(0|2), L(Q Q) becomes

L(Q. @) = Egllog P(Y10. 2)] — KL(Qx(X) | P(X|£2)) — KL(Q:(C)[IP(CI.A))

— KL(QA(A)IIP(A)) — KL(Qy (&) IIP(¢)) — KL(Qa(d) [ P(d)).
(C.37)

This form of the ELBO provides insight into the nature of the opti-
mization procedure for fitting via mDLAG-frequency. The first term is the
expected log-quasi-likelihood (with respect to the approximate posterior
Q(0)) of the frequency domain observations, Y, given the latest model
parameters, 6 and Q. This term encourages mDLAG-frequency models
to explain the frequency domain observations as well as possible. The
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KL-divergence terms, on the other hand, penalize deviations of each factor
of the fitted posterior from its corresponding prior distribution, and hence
act as a form of regularization.

Using the posterior updates in section C.1.1 and the prior definitions in
section 3.3, each term of the lower bound can be computed as follows:

M qm
Eé[logP(?IG, Q] =——— log (2r) + — Z Z log ¢,")
Mo m=1 r=1
= 2.2 (@ — (#]"by) (C38)
m=1 r=1
NT
—KL(Q:«(X)IP(X|2)) = =~ + = Zlog PR ZZlog(s (/)
=1 j=1
1 T p N "
_EZZS l(ﬁ)z |xn] (C.39)
=1 j=1 n=1

M qm

T Z[ 2 log %

-

—KL(Q(O)IP(CIA)) =

S0 gy L
+] 2 log ) — 3 (@) Ie] ||2>H (C.40)
i 7 r@m)
—KL(Qa(A)IP(A)) =22[ 7 1ogTy + 0, Togh + log 1)
m=1 j=1 o

- )+ (0, — W)~ log B |

(A1)
A& I'()
—KL(Q4 () IP(9)) = ZZ[ ag logb ++aglogb, + log (:)
m=1 r=1
= B0+ (0~ 05)(V(ay) — og )
(C.42)

1 1
~KLQu()IP@) = $ + T 10g + S 1og 1241 - S(IdIB).  (C43)

Here, I'(+) is the gamma function, and ¥(-) is the digamma function. All
moments (-) can be readily computed from the approximate posterior dis-
tributions given in equations C.6 to C.10.
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Appendix D: Leave-Group-Out Prediction

Each of the three methods we considered here is designed to optimize a
slightly different objective function (mDLAG-time: equation 3.10; mDLAG-
inducing: equation B.3, mDLAG-frequency: equation C.3). We therefore
developed a common performance metric to facilitate comparison across
these methods: leave-group-out prediction (Gokcen et al., 2023; Klami et al.,
2015). Leave-group-out prediction measures an mDLAG model’s ability to
capture interactions across observed groups. In brief, we used a model fit
to training data to predict (on held-out test trials) the unobserved activity
of held-out units in one group, given the observed activity of units in the
remaining groups. Our three methods each give rise to a distinct way to
perform this prediction.

D.1 Prediction via mDLAG-Time. We first collect observed variables
(for one trial) in a manner that highlights group structure. We collect ob-
servations in group m on trial n in y' = [y, ---y»[.]T € Ri"T by verti-
cally concatenating the observed activity y)'., € R in group m across all
timest =1, ..., T. Then we collect the observations for the remaining M — 1
groups in y," € R T obtained by vertically concatenating the ordered
set of observations {¥* }s.-

Our goal is to predict ¥}/ given y,”. We do so by inferring the latents
given observations y,” and then predicting the held-out activity y/' from
the inferred latents. Toward that end, we similarly collect the latents for
group m on trial 7 in X =[x, ---x"T.]T € RP" by vertically concatenat-
ing the latents x’ ; € R” across all times t = 1, ..., T. Then the latents for
the remaining M — 1 groups can be collected in X, € RM-D/T  obtained
by vertically concatenating the ordered set of latents {X{ };..,,. This variable
reorganization then allows us to rewrite the mDLAG-time state model as

5’(;" N( |: Km.m Km,—m :I)
X\~ (0] Zmm : D.1
[xn } Ko Ko -

where the elements of the GP covariance matrices Km,m e SPTrT, Kmﬁ,m =
KT, € RFTXM-DpT and K_,, _,, € SM-DPTXM=DiT are computed using
equations 3.8 and 3.9.

Next, for each group m, define (C") € RI"T*PT, (d™") ¢ SmT>inT  and
(R™) e RFT*PT as block diagonal matrices comprising T copies of the ma-
trices (C™), (®™), and (R™) = (C"T ®™"C™), respectively. Define also (dmy e
R7T by vertically concatenating T copies of (d"). The parameters corre-
sponding to the remaining M — 1 populations can then be collected into
the block diagonal matrices (Cmy = diag({(Cvk)}k;gm) € RXwn &TxM=1)pT

(&) = diag({(DF) hesm) € REwen BT *Lisn T (R=) = diag({(RF) }wm) €
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RM-DpTxM=-DpT " and the vector (d") € REtn%T, obtained by vertically
concatenating the elements of the set { <ak>}k¢m.

Similar to the update equations for the posterior distribution over latents
(Qx(X), equation 3.13), we compute the inferred latents given only the ob-

servations y, ™ according to

5= (Ko L, +(RTM) (D.2)
I\l;”m = E;m (é*lﬂ)T(é*iH)(}v’;m _ (&77!1)) (D3)

We then use equation D.1 to infer the latents for group m according to
1Y, = Koo (Ko) ™" (D4)
and take predictions of the observations in group m to be

Y= (M + (dm, (D.5)

We employed this approach for models fit via mDLAG-time and for
models fit via mDLAG-frequency in Figure 5B and supplementary Fig-
ure 4A.

D.2 Prediction via mDLAG-Inducing. Predictions via inducing vari-
ables take the same form as equation D.5. However, the predicted latents
in group m, jiy , are computed differently than those in equation D.4. Simi-
lar to the updates of the posterior distribution over the inducing variables,
Qu (W) (equations B.22 and B.23), we compute the inferred inducing vari-
ables given observations in all but the held-out mth group.

Toward that end, we first define several variables. First construct w,, =
[w,,. - W, , ]" € RFn by vertically concatenating the inducing variables
W . forlatents j =1, ..., pon trial n. Collect the inducing variable covari-
ance matrices K for j=1,..., p (equation 3.15; Figure 1D, top) into the

block diagonal matrix K* = diag(KV, ..., KY) e SPTinaxPTind Then let kj;l“fj_ , €
R'n be the tth row of K}, € R"*"n¢, the mth block (for group m) of the
covariance matrix between latent j and its inducing variable, K7 (equa-
tion 3.18; Figure 1D, bottom). For time point ¢, collect each k;’f'j, , for latents
j=1,..., pinto the block diagonal matrix K", = diag(k}",, ..., k}"},) €
RP*PTina

Given observations in all but the mth group, we can then evaluate the

posterior covariance, £, € SPTwa*#Tnd, and mean, fi," € RFfnd, of W, for
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each trial n:

-1

(D.6)

" = B,(K")7! ZZK;” (€T @b) (yh, — ) | (D.7)
k#m t=1

If we collect the covariance matrices KJ"; for group m and for latents
j=1,...,p into the block diagonal matrlx K’“‘ dlag(K“" .. K"“” ) €

m,1°
RPT*PTnd, then we can compute the predicted latents in group m based on

equation B.26:
Ry = Ko (R (D.8)

The vector of predicted latents in equation D.5, ji , can be obtained by a
reorganization (permutation) of the elements in it} , above. Then predicted
observations can be obtained directly from equation D.5. We employed this
approach for models fit via mDLAG-inducing in Figure 5B and supplemen-
tary Figure 4A.

D.3 Prediction via mDLAG-Frequency. As in section 3.3, we now con-
sider the unitary DEFT of the time series of observations for unit r in group
m on trial n: .. = Ury” .., where Ur € C™*7 is the unitary DFT matrix.
Then let y)', € R be the frequency domain observations of group m on
trial n and frequency /, and further collect the observations for the remain-
ing M — 1 groups on trial n and frequency [/ in the set Y, " = {yﬁ,l}k¢m. Ul-
timately, our goal is still to predict the time domain observations yj/, . for
allunitsr =1, ..., g, in group m. We will do so, however, by using the fre-
quency domain observations 17”’}” and performing inference of the latents
in the frequency domain.

Similar to the updates of the posterior distribution over the frequency
domain latents, Q#(X) (equations C.11 and C.12), we compute the inferred
latents given the frequency domain observations Y, ;" according to

-1

= (S + Y (HHM(CH T Hk) : (D.9)
k#£m

= S0y (HHMCH o) (§, - (dh)). (D.10)

k#£m
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Recall the diagonal phase shift matrix H" € CP*F, defined in equa-
tion 3.28. We then take predictions of the frequency domain observations
in group m to be

§1’Zz = (C"H","} + +(dn. (D.11)

To convert these predictions from the frequency domain to the time do-
main, we take the inverse unitary DFT of the frequency domain, act1V1ty
for each unit r =1, ..., g,y in group m on each trial n: y7,. = UHyy, . We
employed this approach in Figures 3A and 4A; see section D. 5.

D.4 A Common Performance Metric: Leave-Group-Out R*. Lety”, €
R7" be the observed activity for group m at time t on trial  of a held-out test

set, and let ymt € R be its predicted value. This prediction may come from
any of the methods above (sections D.1-D.3). Furthermore, let u’ € R7" be
the sample mean for each unit in group m, taken over all time pomts and
trials.

We then define a leave-group-out R? value as follows:

M N T ol 2
D=t 2om=t 2= YR = Y0 lIE

R =1-—
1go M N T 2"’
2om=t 2on=1 2= Y0y — I

(D.12)

where || - ||| is the Frobenius norm. The value Rl w € € (—o0, 1], where a value
of 1implies perfect prediction of held-out observations and a negative value
implies that estimates predict these held-out observations less accurately
than simply the sample mean. The Rlzg , metric is normalized by the total
variance of observed activity within each data set, thereby facilitating com-
parison across data sets, in which the variance of observed activity could
vary widely.

D.5 Leave-Unit-Out Prediction. In the group number scaling experi-
ments (see section 4.3, Figure 4), the number of groups, M, varied across
simulated data sets while the number of units in total, g, remained fixed (see
Table 1, Scaling, M). A fairer metric for comparison across data sets (as in
Figure 4A), then, would involve not leave-group-out prediction but rather
leave-unit-out prediction. To create a leave-unit-out prediction metric, we
leveraged the development of leave-group-out prediction.

Suppose we have a fitted mDLAG model, for M groups and g,, units per
group, wherem =1, ..., M. We can then simply re-index the parameters of
this model so that each unit r =1, ...,q, with g =", gy, is treated as its
own “group.” The same equations developed for any of the leave-group-
out prediction methods, above (equations D.5, D.8, or D.11 for generating
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predictions, and equation D.12 for measuring performance) can then be
used for leave-unit-out prediction: replace the index m=1,..., M over
groups with the indexr =1, ..., g over individual units.

Generating leave-unit-out predictions via mDLAG-time (section D.1),
however, was prohibitively expensive for the group number scaling exper-
iments (see Figure 4A). Computationally, predictions require O(g%) opera-
tions. We therefore generated predictions via the more efficient mDLAG-
frequency (see section D.3; O(q) operations), regardless of which method
(mDLAG-time, mDLAG-inducing, mDLAG-frequency) was used to fit the
given model parameters.

Yet predictions via mDLAG-frequency exhibit edge effects (see sec-
tion 4.5 and Figure 6C). To mitigate the impact of these edge effects on
our measures of performance, we evaluated equation D.12 for only a mid-
dle portion of the test trials. For squared exponential GP timescales of 100
ms, removing the first and final 10 time points (200 ms) from evaluation
was sufficient for edge effects to be rendered neglible. For the group num-
ber scaling experiments, where there were T' = 50 time points per test trial,
we therefore used only the middle 30 time points (t = 11 through 40). We
also employed leave-unit-out prediction via mDLAG-frequency in the trial-
length scaling experiments (section 4.2 and Figure 3), for consistency across
simulated experiments and for computational benefit. Test trials comprised
T = 500 time points, but we similarly used only the middle 480 time points
(t =11 through 490).

Appendix E: Reproducibility, Code Availability, and Data Avail-
ability. All numerical and statistical analyses described in this work
were performed in Matlab (MathWorks; version 2024a). Numerical re-
sults were obtained on a Red Hat Enterprise Linux machine (release 7.9,
64-bit) with 219.68 GB of RAM, on an Intel Xeon Gold 6140 CPU (2.3
GHz). An implementation of mDLAG-time is available on GitHub at
http://github.com/egokcen/mDLAG and on Zenodo at https:/ /doi.org/
10.5281/zenodo.10048163 (Gokcen, 2023). Implementations of mDLAG-
inducing and mDLAG-frequency, as well as code and data to reproduce
figures and any reported p-values, are available on GitHub at https://
github.com/egokcen/fast-mDLAG and on Zenodo at https://doi.org/
10.5281/zenodo.15305287 (Gokcen, 2025b). A frequency domain imple-
mentation of the non-Bayesian DLAG is also available on GitHub at
https://github.com/egokcen/DLAG and on Zenodo at https://doi.org/
10.5281/zenodo0.15304817 (Gokcen, 2025a).
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