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Abstract— We present a novel brain machine interface (BMI)
control algorithm, the recalibrated feedback intention-trained
Kalman filter (ReFIT-KF). The design of ReFIT-KF is moti-
vated from a feedback control perspective applied to existing
BMI control algorithms. The result is two design innovations
that alter the modeling assumptions made by these algorithms
and the methods by which these algorithms are trained.
In online neural control experiments recording from a 96-
electrode array implanted in M1 of a macaque monkey, the
ReFIT-KF control algorithm demonstrates large performance
improvements over the current state of the art velocity Kalman
filter, reducing target acquisition time by a factor of two,
while maintaining a 500 ms hold period, thereby increasing
the clinical viability of BMI systems.

I. INTRODUCTION

Many existing proof-of-concept brain machine interface
(BMI) control algorithms are initially designed, tested, and
fit offline using data collected without the BMI, or neural
prosthesis, in loop (e.g., [1]–[5]). For example, at the be-
ginning of the session, cursor movement is controlled by
the native limb as illustrated in Fig. 1a. During this task,
the arm movement kinematics (xt) and neural activity (yt)
are recorded. These data are used to build a mathematical
model used for neural control. The underlying assumption
is that observations of neural signal outputs during arm
control provide a good estimate of signal characteristics
while under brain control (Fig. 1b). However, under brain
control a new plant, defined by the dynamics of the neural
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Fig. 1. A comparison of the offline and online perspectives for BMI
design. (a) cursor control with native arm movements; neural data yt are
collected with arm kinematics xt to fit the BMI parameters. (b) online neural
control, xt is now the BMI output. (c) hypothetical plot of parameter setting
vs. quality/performance from the offline perspective. (d) same hypothetical
plot from the online perspective.

prosthesis, is presented to the user. This change in the control
loop likely alters the user’s strategy and neural signal output
characteristics.

Other studies have noted and addressed this change by
holding model parameters constant and allowing perfor-
mance to increase over days as the user learns [6] or by
iteratively refining parameters during BMI experiments [7]–
[10]. These approaches recognize that control strategies,
and therefore model parameters, are best measured and
understood during closed-loop BMI experiments. In this
study, we adopt this philosophy to develop a new neural
control algorithm, the recalibrated feedback intention-trained
Kalman filter (ReFIT-KF), taking into account differences
between offline arm movement reconstruction and online
BMI control in both its algorithmic design and parameter
fitting methodology. We test these algorithmic innovations
and demonstrate BMI performance gains.

II. THE REFIT-KF ALGORITHM

The ReFIT-KF is composed of two design innova-
tions applied to a Kalman filter based neural con-
trol algorithm (Fig. 2a). The kinematic state vector, xt,
represents position and velocity of the cursor (xt =
[pvertt , phorizt , vvertt , vhorizt , 1]T ), with a constant element to
accommodate baseline firing rates. yt is the measured neural
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Fig. 2. Kalman Filter Graphical Models. (a) Basic model, xt is
kinematics and yt is neural output at time t. (b) The position (pt) and
velocity (vt) Kalman. (c) The position and velocity kalman filter modeling
position feedback through causal intervention.

signal, which is binned spike counts. Typical bin widths
used in studies range from 10 ms to 100 ms. The system
is modeled as linear-Gaussian:

xt = Axt−1 + wt (1)
yt = Cxt + qt (2)

where A ∈ IRp×p and C ∈ IRk×p represent kinematic and
output model matrices, and wt and qt are additive Gaussian
uncertainty and noise, defined as wt ∼ N (0,W ) and qt ∼
N (0, Q). A models kinematic state transition for one time
step and C models the mapping from kinematic state to
neural output. In practice, we constrain the form of the A
and W matrices so that integrated velocity perfectly explains
position:

A =


1 0 dt 0 0
0 1 0 dt 0
0 0 avhoriz,vhoriz avhoriz,vvert 0
0 0 avvert,vhoriz avvert,vvert 0
0 0 0 0 1

 (3)

W =


0 0 0 0 0
0 0 0 0 0
0 0 wvhoriz,vhoriz wvhoriz,vvert 0
0 0 wvvert,vhoriz wvvert,vvert 0
0 0 0 0 0

 (4)

After fitting, avvert,vhoriz and avhoriz,vvert are typically close
to 0 and avhoriz,vhoriz and avvert,vvert are less than 1.
The resulting model introduces damped velocity dynamics.
Therefore, given no neural measurements, we expect a cursor
in motion to smoothly slow down. If we fit the full C matrix,
then the neural output model incorporates both position and
velocity. If we constrain the position terms to be 0, the
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Fig. 3. Generating an “intention-based” kinematic training set. (a) the
user is engaged in online control with a neural cursor. The neural decoder
drives the cursor with a velocity (red vector). The assumed intention is to
generate a velocity towards the target. Thus, in the training data velocity
vectors are rotated, generating intended velocity estimates (blue vector),
used to fit ReFIT-KF parameters. (b) is an example of this transformation
applied to data from one trial.

model is a velocity kalman filter (Velocity-KF), used online
in previous studies (e.g., [11], [12]).

Fig. 2b is a graphical representation of the posi-
tion/velocity Kalman filter. xt has been split into two compo-
nents, pt for position variables and vt for velocity variables.
As defined by the constraints on the A matrix, position does
not have a direct influence on velocity.

A. Innovation 1: Parameter Fitting

Kalman filter parameters found to explain arm kinematics
from neural outputs can be for used brain control. The
hypothetical plot in Fig. 1c shows the relationship between
parameter setting, offline reconstruction quality, and control
performance suggested by this perspective. Suppose we were
to systematically sweep one of the Kalman filter parameters
and measure the filter’s effectiveness. For arm kinematic
reconstruction quality, this is a measure of correspondence
between observed and reconstructed arm movements, which
can be fully quantified and understood offline. For BMI
control performance, we wish to measure the user’s ability
to complete task goals during online control. The offline
perspective assumes that both applications have the same
optimal parameters and so the offline and online measures
share the same global maximum (black arrow).

It could be that these two maxima are not necessarily
aligned, such as in the hypothetical plot in Fig. 1d. More
concretely, a model designed for offline reconstructions may
not necessarily translate to a good online controller. Thus,
we pursued a different approach and fit model parameters
from data collected during online control. One such strategy,
which has been previously employed [9], [11], is to regress
neural activity against neural cursor kinematics. Another
strategy is to randomly seed decoder parameters and to
provide assistive control during the training procedure [9].
In this assistive control scheme, the prosthetic output is
driven by a mixture of decoder output and task relevant
movements, such as precomputed trajectories directly to the
target. At each iterative refinement the decoder’s contribution
is increased, until the prosthesis is fully driven by the
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decoder. This scheme works well in practice, especially when
easing monkeys into performing the task.

The initial decoder can be seeded with either random or
learned parameters. Since prosthetic systems typically aim
to record from arm related motor areas, it is possible that
the global maximum is close to the parameter set fit by the
offline perspective (the black arrow versus the gray arrow,
local maxima, in Fig. 1d). Thus, instead of a random seed,
the decoder can be seeded with this reasonable choice of
parameters. Previous reports have employed this approach by
having the prosthetic user observe movements to establish
an initial model fit [9], [11], [13]. Then iterative training
procedures fit the model with either the kinematics of an
observed [11], [13] or controlled [9] cursor. The kinematics
of the observed cursor are subject to the same limitations
as arm kinematics: since the control algorithm is not in the
feedback loop during this initial observation stage, the model
fitting procedure is still fundamentally offline. Regressing
against the kinematics of the controlled cursor is, therefore,
perhaps a step in the right direction, since it regresses against
measurements of the neural control signals during online
control. However, this approach will tend to carry forward
aspects of model misfit acquired during the initial seeding
of decoder parameters. As a simple example, consider an
initial decoder that rotates the user’s desired velocity by 90
degrees. All measured movements of this cursor will retain
this bias and when we refit the decoder parameters this bias
will remain.

To address the limitations described above, we develop a
new method for training BMI parameters. Initially, the BMI
system is fit from neural and cursor data, where the cursor
moves along with the native arm. Next, the monkey is placed
in online brain control mode with this “offline perspective”
control algorithm. Training data are collected during brain
control and are transformed to estimate the user’s intended
control command. The details of this transformation are
summarized in Fig. 3. The kinematics of the neurally driven
cursor at each time-step may not be the best estimate of
the user’s intentions. The monkey generates intentions by
applying knowledge of the task goal, in this case “acquire
the green target,” to the current state of the cursor. We make
the simple assumption that the monkey intends to generate a
velocity oriented towards the target at every time-step, since
this is the most direct path to the goal and should lead to most
rapid trial completion and reward. Thus, for model training
purposes only, we rotate the velocity vector of the neural
cursor (in red) to orient towards the goal, resulting in a new
set of “intention-based” kinematics (in cyan). Additionally,
when the cursor is on target, we assume that the user wishes
to instruct zero velocity. We believe that this new set of
kinematics are a better estimate of the user’s intention than
the original neural cursor kinematics, effectively cleaning up
noisy training data. Importantly, after refitting the model in
this way, the resulting decoder can be used with neural data
alone and no knowledge of the target or task goal. A similar
manipulation to training data was used in a rat study to adapt
a one dimensional neural controller over time [8].

B. Innovation 2: Decoding Algorithm

Existing work typically decodes either position (e.g., [1],
[4]) or velocity (e.g., [9]). In a comparison of position and
velocity decoders, tetraplegic patients demonstrated higher
performance control with velocity decoders than with po-
sition decoders [11]. However, we find that when position
decoding is removed, decoded velocities tend to be less
stable. Colloquially put, the cursor appears to get caught
in “force fields” resulting in “orbiting” around the target
and getting “stuck” in parts of the workspace. This is not
surprising, given that firing rates in the recorded brain areas
are correlated to cursor position.

One approach is to decode both position and velocity.
However, the Kalman filter described in Sec. II (Fig. 2b)
with a position and velocity output model describes the
relationship between position and velocity in a manner
that produces an undesired high frequency jitter in cursor
position. Although the kinematic model is physically based,
with the cursor effectively modeled as an object moving with
damped velocity, these constraints are not preserved when the
model is applied online.

At time t we have a previous estimate of the kinematic
state, x̂t−1 and a new neural output, yt. Next the filter applies
the dynamics model to estimate xt with all neural outputs
up to time t− 1. This is the a priori estimate of xt:

x̂t|t−1 = Ax̂t−1 (5)

The model also estimates the a priori covariance (or uncer-
tainty) of x̂t|t−1:

Σt|t−1 = AΣt−1A
T + W (6)

W is the uncertainty introduced by the trajectory model
update. Even if W adds no uncertainty to position, such
as in the constrained structure of equation 4, AΣt−1A

T

translates previous velocity uncertainty into current position
uncertainty. This makes sense: if we do not know the pre-
vious velocity with certainty, we do not know the integrated
velocity with certainty and so our position estimate may
have error. Thus, in practice, there is uncertainty in the a
priori estimate of every kinematic variable. This uncertainty
in position translates to jitter in the decode, as noise in the
neural outputs will now filter into position.

We must distinguish online and offline use of the Kalman
filter. In the online setting, the user is presented with the a
posteriori estimate of cursor kinematics at every time-step. If
we believe that the user sees and internalizes the presentation
of the cursor on the screen at each time-step, then the way
in which we model a posteriori covariance no longer makes
sense, as the user accepts the presented position as the current
position state. By presenting the decode to the user, we create
a causal intervention, that explicitly sets the value of the
kinematic variable. This operation is defined by probability
theory and is well described by causal calculus [14] (see also
[15], [16]).
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As a first step to modify the filter to incorporate this
feedback, we presume that the user internalizes the filter’s es-
timate of cursor position, p̂t, with complete certainty at time
t. Accordingly, pt is explicitly set to p̂t, with no uncertainty.
We are assuming that the user knows the previous cursor
position via feedback and that his forward model is exact.
This is shown graphically in Fig. 2c, where the intervened
variable is in green. Note also that the arrows coming into pt
have been removed, to indicate that pt has been externally
set and uncertainty is not propagated.

The result of this intervention is to remove uncertainty in
pt. All parameter fitting methods described in previous sec-
tions remain unchanged. To implement this position feedback
filter, we only have to alter estimation of the a posteriori
covariance describing uncertainty in kinematics. Previously,
we had:

Σt|t−1 = AΣtA
T +W : Σt|t−1 =

Σp,p
t|t−1 Σp,v

t|t−1 0

Σv,p
t|t−1 Σv,v

t|t−1 0

0 0 0

 (7)

where each block of the matrix Σt|t−1 represents the uncer-
tainty propagated from previous kinematic estimates (posi-
tion to position, position to velocity, and so on). Each one of
these sub-matricies of Σt|t−1 is 2 x 2, representing horizontal
and vertical components. The bottom row and right column
of zeros encodes the fact that the bias or constant offset
term of xt, the last element of the state vector, is known
with certainty. Since we have intervened and set pt with
feedback, this matrix becomes:

Σt|t−1 =

0 0 0
0 Σv,v

t|t−1 0

0 0 0

 . (8)

We are zeroing out all a priori position uncertainty, as we
are explicitly assuming that the monkey and the control
algorithm have matching beliefs about the position of the
cursor at time t. Otherwise, this filter is run in the same
manner as the standard Kalman filter. This modified Kalman
filter, together with innovation 1 described above, comprise
the ReFIT-KF control algorithm.

III. METHODS

All procedures and experiments were approved by the
Stanford University Institutional Animal Care and Use Com-
mittee (IACUC). Experiments were conducted with an adult
male rhesus macaque (L), implanted with a 96 electrode
Utah array (Blackrock Microsystems Inc., Salt Lake City,
UT) using standard neurosurgical techniques [17]. Monkey
L was implanted 19-33 months prior to the experiments.
The electrode array was implanted in the dorsal aspect of
premotor cortex (PMd) and primary motor cortex (M1), as
estimated visually from local anatomical landmarks.

The monkey was trained to make point-to-point reaches
in a 2D plane with a virtual cursor controlled by the con-
tralateral arm or by a neural decoder [18]. The virtual cursor
and targets were presented in a 3D environment (MSMS,
MDDF, USC, Los Angeles, CA). Visual presentation was

provided via two LCD monitors with refresh rates at 120 Hz,
yielding frame updates within 12 ± 4 ms. Two mirrors
visually fused the displays into a single 3D percept, cre-
ating a Wheatstone stereograph (see Fig. 2 in [18]). Hand
position data were measured with an infrared reflective bead
tracking system (Polaris, Northern Digital, Ontario, Canada).
Behavioral control and neural decode were run on separate
PCs using the Simulink/xPC platform (Mathworks, Natick,
MA) with communication latencies of 3 ms. This system
enabled millisecond-timing precision for all computations.
Neural data were initially processed by the Cerebus recording
system (Blackrock Microsystems Inc., Salt Lake City, UT).
An analog bandpass filter with a 0.3 Hz to 7.5 kHz passband
was applied to each channel. Channels were sampled at
30 kSamples/second and were filtered with a 250 Hz to
7.5 kHz digital bandpass filter. A threshold detector was
applied to each bandpassed channel. The threshold value
was set automatically to −4.5 times the measured root mean
squared value of the channel. When the signal value was
less than threshold a spike event was registered for that
channel and was received by the behavioral control system
within 5 ± 1 ms. The number of spike events are counted in
non-overlapping temporal bins (typically 50 ms). The counts
for each channel over time are the inputs to the control
algorithm.

For all sessions reported in this paper, the monkey acquired
targets in a center-out-and-back task in which a uniform
ring of 8 targets was 8 cm from the center target. Target
acceptance windows were square boxes with sides 4-6 cm in
length. Successful acquisition requires a 500 ms hold period,
during which the cursor must remain within the acceptance
window. Acquisition times do not include this hold period.

IV. RESULTS

Taken together, the innovations described in Sections II-A
and II-B increased performance relative to a velocity Kalman
filter (Velocity-KF), that is state-of-the-art for current BMIs
(e.g., [11], [12]). Fig. 4 shows representative cursor traces for
the different neural control modes and native arm based con-
trol. Fig. 5 shows the relative contributions to performance
made by each innovation; Fig. 5a shows performance with
Velocity-KF (green) compared to the Velocity-KF with only
the first innovation (yellow) and Fig. 5b shows the Velocity-
KF with the first innovation compared against the ReFIT-KF
(both innovations).

ReFIT-KF Velocity-KFNative Arm
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Fig. 4. Continuous center-out-and-back traces for 3 cursor control modes.
The order in which the radial targets appeared is indicated by the adjacent
numbers.
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We tested algorithms in succession, switching between
them on the same day against identical task conditions. The
acceptance window was 5 cm for Fig. 5a and 4 cm for Fig. 5b
and the monkey had 3 s to acquire the target. The acceptance
window was larger in Fig. 5a because acquisition of smaller
targets with Veloicty-KF control was incredibly difficult and
the monkey would lose interest in the task.
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Fig. 5. (a) Velocity-KF (green) vs Kalman filter with innovation 1 only
(yellow) (L-2010-01-13) (b) Kalman filter with innovation 1 only (yellow)
vs ReFIT Kalman filter (red) (L-2010-08-19)

Table 1 shows average acquisition times for the three
control modes during four different sessions. During all of
these sessions, the task parameters were the same as those
specified above, except the acceptance box was expanded to
6 cm to allow for high success rates across all three control
modes (>95%) permitting direct comparison of acquisition
times. Note that ReFIT-KF reduces acquisition times by a
factor of 2.

Dataset Native Arm ReFIT-KF Velocity-KF
2010-10-27 487 581 1736
2010-10-28 441 650 1653
2010-10-29 453 605 1329
2010-11-02 496 549 1089
Mean 469 596 1452

TABLE I
AVERAGE ACQUISITION TIMES FOR 3 CURSOR CONTROL MODES.

V. CONCLUSION

We present two control algorithm innovations developed
from a feedback control perspective. Each of these inno-
vations results in an increase in BMI control performance,
as measured by success rate and/or acquisition time. As

demonstrated across multiple datasets, the ReFIT-KF control
algorithm results in a large reduction in acquisition time rel-
ative to Velocity-KF control, approaching native arm control
performance for the tested cursor control task.
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